[go: up one dir, main page]

JPH03117643A - Fuel injection control device for two-cycle internal combustion engine - Google Patents

Fuel injection control device for two-cycle internal combustion engine

Info

Publication number
JPH03117643A
JPH03117643A JP25239289A JP25239289A JPH03117643A JP H03117643 A JPH03117643 A JP H03117643A JP 25239289 A JP25239289 A JP 25239289A JP 25239289 A JP25239289 A JP 25239289A JP H03117643 A JPH03117643 A JP H03117643A
Authority
JP
Japan
Prior art keywords
oxygen concentration
air
actual
engine
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25239289A
Other languages
Japanese (ja)
Other versions
JP2518057B2 (en
Inventor
Katsuhiko Hirose
雄彦 広瀬
Kenichi Nomura
野村 憲一
Tatsuo Kobayashi
辰夫 小林
Hiroshi Nomura
啓 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1252392A priority Critical patent/JP2518057B2/en
Publication of JPH03117643A publication Critical patent/JPH03117643A/en
Application granted granted Critical
Publication of JP2518057B2 publication Critical patent/JP2518057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To reliably maintain an air-fuel ratio at a target value by a method wherein based on actual oxygen concentration, a remaining rate of intake air remaining in a cylinder is determined, and based on the remaining rate, a fuel injection time is decided so that an actual air-fuel ratio is maintained at a target value. CONSTITUTION:A relation responding to an engine running state between oxygen concentration detected by an oxygen concentration sensor 25 and actual oxygen concentration is predetermined by experiment to store a result in a memory means A. From detected oxygen concentration, actual oxygen concentration is calculated by a calculating means B, and based on the actual oxygen concentration, a remaining rate of intake air remaining in an engine cylinder is calculated by a calculating means C. Based on the remaining rate of intake air, an injection time calculating means D decides a fuel injection time in which an actual air-fuel ratio in the engine cylinder is adjusted to a target value. This constitution reliably maintains an actual air-fuel ratio in the engine cylinder at a target value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2サイクル内燃機関の燃料噴射制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection control device for a two-stroke internal combustion engine.

〔従来の技術〕[Conventional technology]

2サイクル内燃機関では機関シリンダ内に供給された吸
入空気の全てが燃焼に寄与せず、一部の吸入空気は燃焼
に寄与することなく排気通路内に吹き抜ける。従って機
関シリンダ内に供給される吸入空気量を求めてこの吸入
空気量から空燃比が目標空燃比となるように燃料噴射量
を決定すると一部の吸入空気が吹き抜けるために機関シ
リンダ内の実際の空燃比は目標空燃比よりもリッチ側と
なり、機関シリンダ内の実際の空燃比を目標空燃比に一
致させることができない。
In a two-stroke internal combustion engine, not all of the intake air supplied into the engine cylinders contributes to combustion, and some of the intake air blows into the exhaust passage without contributing to combustion. Therefore, if the amount of intake air supplied to the engine cylinder is determined and the fuel injection amount is determined from this amount of intake air so that the air-fuel ratio becomes the target air-fuel ratio, some of the intake air will blow through, so the actual amount of air inside the engine cylinder will be The air-fuel ratio becomes richer than the target air-fuel ratio, and the actual air-fuel ratio in the engine cylinder cannot be made to match the target air-fuel ratio.

ところで吸入空気の吹き抜は量は機関の運転状態に応じ
て変化するが特定の定常運転状態における吹き抜は量は
一定となる。従って種々の定常運転状態にふける吹き抜
は量を予め実験により求めておけば現在の機関の運転状
態がわかれば吸入空気の吹き抜は量がわかることになる
Incidentally, the amount of intake air vented varies depending on the operating state of the engine, but the amount of intake air vented in a particular steady operating state is constant. Therefore, if the amount of the air vents used in various steady-state operating conditions is determined in advance through experiments, the amount of the intake air vents can be determined if the current operating state of the engine is known.

そこで種々の定常運転状態における機関シリンダ内に供
給される吸入空気量と吹き抜は量とを実測して新気捕捉
係数((吸入空気量−吹き抜は量/吸入空気量)、即ち
機関シリンダ内に残存する新気の割合を予め実験により
求め、この実験により求めた新気捕捉係数を予め記憶し
ておき、機関の運転状態を検出してこの運転状態に対応
する新気捕捉係数を求めると共に吸入空気量を測定し、
測定された吸入空気量と新気捕捉係数から実際に燃焼に
寄与する吸入空気量を求め、この吸入空気量から空燃比
が目標空燃比となるように燃料噴射量を決定するように
した2サイクル内燃機関が公知である(特開昭63−1
83231号公報から特開昭63−183236号公報
までを参照)。これらの2サイクル内燃機関では実際に
燃焼に寄与する吸入空気量に対して燃料噴射量が定めら
れるので機関シリンダ内の実際の空燃比を目標空燃比に
かなり一致せしめることができる。
Therefore, by actually measuring the amount of intake air and the amount of air vent supplied into the engine cylinder under various steady operating conditions, we calculated the fresh air capture coefficient ((amount of intake air - amount of air vent/amount of intake air), that is, the amount of intake air supplied to the engine cylinder. The proportion of fresh air remaining in the engine is determined in advance through an experiment, the fresh air capture coefficient determined through this experiment is stored in advance, and the operating state of the engine is detected to determine the fresh air capture coefficient corresponding to this operating state. and measure the amount of intake air,
A two-cycle system that calculates the amount of intake air that actually contributes to combustion from the measured intake air amount and fresh air capture coefficient, and then determines the fuel injection amount based on this intake air amount so that the air-fuel ratio becomes the target air-fuel ratio. Internal combustion engines are well known (Japanese Patent Laid-Open No. 63-1
83231 to JP-A-63-183236). In these two-stroke internal combustion engines, the fuel injection amount is determined based on the amount of intake air that actually contributes to combustion, so the actual air-fuel ratio within the engine cylinder can be made to closely match the target air-fuel ratio.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところでこのような新気捕捉係数を用いて燃料噴射時間
を制御しても機関シリンダ内の実際の空燃比を目標空燃
比に維持するのに限度があり、機関シリンダ内の実際の
空燃比を目標空燃比に正確に維持するためには吸入空気
の吹き抜は量を実測してこの実測された吹き抜は量に基
いて燃料噴射時間を制御することが必要となる。従来よ
り4サイクル内燃機関では排気中の酸素濃度を検出する
酸素濃度センサの出力信号に基いて空燃比が目標空燃比
となるようにフィードバック制御しているが2サイクル
内燃機関では多量の吸入空気が排気通路内に吹き抜け、
しかも排気ブローダウンの強さによって酸素センサによ
り検出された酸素濃度と実際の酸素濃度との間に差異を
生ずるので4サイクル内燃機関において用いられている
フィードバック制御をそのまま2サイクル内燃機関に適
用することができないという問題がある。
By the way, even if the fuel injection time is controlled using such a fresh air capture coefficient, there is a limit to maintaining the actual air-fuel ratio in the engine cylinder at the target air-fuel ratio. In order to accurately maintain the air-fuel ratio, it is necessary to actually measure the amount of intake air vented and to control the fuel injection time based on the measured amount of intake air. Conventionally, in a 4-stroke internal combustion engine, feedback control is performed so that the air-fuel ratio becomes the target air-fuel ratio based on the output signal of an oxygen concentration sensor that detects the oxygen concentration in the exhaust gas, but in a 2-stroke internal combustion engine, a large amount of intake air is Blow through into the exhaust passage,
Moreover, since a difference occurs between the oxygen concentration detected by the oxygen sensor and the actual oxygen concentration depending on the strength of exhaust blowdown, the feedback control used in 4-stroke internal combustion engines cannot be directly applied to 2-stroke internal combustion engines. The problem is that it is not possible.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために本発明によれば第1図の発
明の構成図に示されるように排気ガス中の酸素濃度を検
出する酸素濃度センサ25と、酸素濃度センサ25によ
り検出された酸素濃度と排気ガス中の実際の酸素濃度と
の機関運転状態に応じた関係を予め記憶している記憶手
段Aと、記憶手段Aに記憶された関係に基いて酸素濃度
センサ25により検出された酸素濃度から実際の酸素濃
度を求める酸素濃度算出手段Bと、実際の酸素濃度に基
いて機関シリンダ内に残存する吸入空気の残存率を計算
する残存率計算手段Cと、吸入空気の残存率に基いて機
関シリンダ内の実際の空燃比が目標空燃比となるように
燃料噴射時間を定める噴射時間計算手段りとを具備して
いる。
In order to solve the above problems, according to the present invention, as shown in the block diagram of the invention in FIG. Storage means A stores in advance the relationship between the concentration and the actual oxygen concentration in exhaust gas depending on the engine operating state, and the oxygen detected by the oxygen concentration sensor 25 based on the relationship stored in the storage means A. an oxygen concentration calculation means B that calculates the actual oxygen concentration from the concentration; a residual ratio calculation means C that calculates the residual rate of the intake air remaining in the engine cylinder based on the actual oxygen concentration; and injection time calculation means for determining the fuel injection time so that the actual air-fuel ratio in the engine cylinder becomes the target air-fuel ratio.

〔作 用〕[For production]

酸素濃度センサにより検出された酸素濃度と実際の酸素
濃度との機関運転状態に応じた関係は予め実験等により
求めておいて記憶しておく。従って酸素センサにより検
出された酸素濃度から実際の酸素濃度がわかる。実際の
酸素濃度がわかれば機関シリンダ内に残存する吸入空気
の残存率がわかり、残存率がわかれば機関シリンダ内の
実際の空燃比を目標空燃比とするのに必要な燃料噴射時
間を計算することができる。
The relationship between the oxygen concentration detected by the oxygen concentration sensor and the actual oxygen concentration depending on the engine operating state is determined in advance through experiments or the like and stored. Therefore, the actual oxygen concentration can be determined from the oxygen concentration detected by the oxygen sensor. If the actual oxygen concentration is known, the residual rate of intake air remaining in the engine cylinder can be determined, and if the residual rate is known, the fuel injection time required to bring the actual air-fuel ratio in the engine cylinder to the target air-fuel ratio can be calculated. be able to.

〔実施例〕〔Example〕

第2図に2サイクル内燃機関の全体図を示す。 FIG. 2 shows an overall diagram of a two-stroke internal combustion engine.

第2図を参照すると、1はシリンダブロック、2はシリ
ンダブロックl内において往復動するピストン、3はシ
リンダブロック1上に固締されたシリンダヘッド、4は
ピストン2とシリンダヘッド3間に形成された燃焼室、
5は給気弁、6は給気ポート、7は排気弁、8は排気ポ
ート、9は燃焼室4内に向けて燃料を圧縮空気と共に噴
射するエアブラスト弁を夫々示す。図面には示さないが
シリンダヘッド3の内壁面中央部には点火栓が配置され
る。給気ポート6は給気枝管10を介してサージタンク
11に連結され、サージタンク11は機関駆動の機械式
過給機12、給気ダクト13およびエアフローメータ1
4を介してエアクリーナ15に連結される。給気ダクト
13内にはスロットル弁16が配置される。
Referring to FIG. 2, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block l, 3 is a cylinder head fixed on the cylinder block 1, and 4 is a cylinder formed between the piston 2 and the cylinder head 3. combustion chamber,
Reference numeral 5 indicates an intake valve, 6 indicates an intake port, 7 indicates an exhaust valve, 8 indicates an exhaust port, and 9 indicates an air blast valve that injects fuel together with compressed air into the combustion chamber 4. Although not shown in the drawings, an ignition plug is arranged at the center of the inner wall surface of the cylinder head 3. The air supply port 6 is connected to a surge tank 11 via an air supply branch pipe 10, and the surge tank 11 is connected to an engine-driven mechanical supercharger 12, an air supply duct 13, and an air flow meter 1.
It is connected to the air cleaner 15 via 4. A throttle valve 16 is arranged within the air supply duct 13.

第3図にエアブラスト弁9の拡大断面図を示す。FIG. 3 shows an enlarged sectional view of the air blast valve 9.

第3図を参照するとエアブラスト弁9のハウジング30
内にはまっすぐに延びる圧縮空気通路31が形成され、
この圧縮空気通路31の先端部には燃焼室4 (第2図
)内に位置するノズル口32が形成される。圧縮空気通
路31内には開閉弁33が配置され、この開閉弁33の
外端部にはノズル口32の開閉制御をする弁体34が一
体形成される。ハウジング30内には開閉弁33と共軸
的に配置されかつ圧縮ばね35によって開閉弁33に向
けて付勢された可動コア36と、可動コア36を吸引す
るためのソレノイド37が配置される。開閉弁33の内
端部は圧縮ばね38によって可動コア36の端面に当接
せしめられており、圧縮ばね38のばね力は圧縮ばね3
5のばね力よりも強いので通常ノズル口32は開閉弁3
3の弁体34によって閉鎖されている。ソレノイド37
が付勢されると可動コア36が開閉弁33の方向に移動
し、その結果開閉弁33の弁体34がノズル口32を開
口せしめる。
Referring to FIG. 3, the housing 30 of the air blast valve 9
A compressed air passage 31 extending straight is formed inside.
A nozzle port 32 located within the combustion chamber 4 (FIG. 2) is formed at the tip of this compressed air passage 31. An on-off valve 33 is disposed within the compressed air passage 31, and a valve body 34 for controlling opening and closing of the nozzle port 32 is integrally formed at the outer end of the on-off valve 33. A movable core 36 that is disposed coaxially with the on-off valve 33 and urged toward the on-off valve 33 by a compression spring 35, and a solenoid 37 for attracting the movable core 36 are arranged within the housing 30. The inner end of the on-off valve 33 is brought into contact with the end surface of the movable core 36 by a compression spring 38, and the spring force of the compression spring 38 is
Since the spring force is stronger than the spring force of 5, the nozzle port 32 is normally used as the on-off valve 3.
It is closed by a valve body 34 of No. 3. solenoid 37
When the movable core 36 is energized, the movable core 36 moves toward the on-off valve 33, and as a result, the valve body 34 of the on-off valve 33 opens the nozzle port 32.

一方、圧縮空気通路31からは圧縮空気通路31から斜
めに延びる圧縮空気通路39が分岐され、この圧縮空気
通路39は圧縮空気供給口40に連結される。
On the other hand, a compressed air passage 39 that extends obliquely from the compressed air passage 31 branches off from the compressed air passage 31, and this compressed air passage 39 is connected to a compressed air supply port 40.

ハウジング30には燃料噴射弁41が取付けられ、この
燃料噴射弁41のノズル孔42からは燃料が圧縮空気通
路39内に向けて噴射される。
A fuel injection valve 41 is attached to the housing 30 , and fuel is injected into the compressed air passage 39 from a nozzle hole 42 of the fuel injection valve 41 .

第2図に示されるようにエアフローメータ14とスロッ
トル弁16間の給気ダクト13からはエアブラスト用空
気通路17が分岐され、このエアブラスト用空気通路1
7は機関駆動のベーンポンプエ8および圧縮空気通路1
9を介して圧縮空気分配室20に連結される。この圧縮
空気分配室20は各気筒に対して夫々設けられたエアブ
ラスト弁9の圧縮空気供給口40に連結される。圧縮空
気通路19内には圧縮空気分配室20内の圧縮空気圧を
予め定められた一定圧に維持するための副圧弁21が配
置され、余分な圧縮空気は圧縮空気返戻通路22を介し
て給気ダクト13内に返戻される。従ってエアブラスト
弁9の圧縮空気通路31.39は一定圧の圧縮空気によ
って満たされている。
As shown in FIG. 2, an air blasting air passage 17 is branched from the air supply duct 13 between the air flow meter 14 and the throttle valve 16.
7 is an engine-driven vane pump 8 and a compressed air passage 1
It is connected via 9 to a compressed air distribution chamber 20 . This compressed air distribution chamber 20 is connected to a compressed air supply port 40 of an air blast valve 9 provided for each cylinder. A sub-pressure valve 21 is disposed in the compressed air passage 19 to maintain the compressed air pressure in the compressed air distribution chamber 20 at a predetermined constant pressure, and excess compressed air is returned to the supply air via the compressed air return passage 22. It is returned into the duct 13. The compressed air passages 31, 39 of the air blast valve 9 are therefore filled with compressed air at a constant pressure.

第4図に給気弁5および排気弁7の開弁期間、燃料噴射
弁41からの燃料噴射期間および開閉弁33の弁体34
の開弁期間、即ちエアブラスト弁9の開弁期間を示す。
FIG. 4 shows the opening period of the intake valve 5 and the exhaust valve 7, the period of fuel injection from the fuel injection valve 41, and the valve body 34 of the on-off valve 33.
In other words, the valve opening period of the air blast valve 9 is shown.

第4図に示されるように第2図に示す実施例では排気弁
7が給気弁5よりも先に開弁し、先に閉弁する。また、
第4図に示されるように開閉弁33の弁体34が開弁す
る前に、即ちエアブラスト弁9が開弁する前に燃料噴射
弁41から圧縮空気通路39内の圧縮空気内に向けて燃
料が噴射される。次いでエアブラスト弁9が開弁すると
ノズル口32から噴射燃料が圧縮空気と共に燃焼室4内
に噴射される。一方、第2図に示されるように排気弁7
側の給気弁5の開口を給気弁5の全開弁期間に亘って覆
うマスク壁23がシリンダへラド3の内壁面上に形成さ
れる。従って給気弁5が開弁すると新気は給気ボート6
から排気弁7と反対側の給気弁5の開口を通って燃焼室
4内に供給される。その結果新気は矢印Sで示すように
燃焼室4の周壁面に沿って流れ、斯くして良好なループ
掃気が行なわれることになる。第2図に示されるように
排気ボート8は排気マニホルド24に連結され、排気マ
ニホルド24内には酸素濃度センサ25が配置される。
As shown in FIG. 4, in the embodiment shown in FIG. 2, the exhaust valve 7 opens before the intake valve 5 and closes before the intake valve 5. Also,
As shown in FIG. 4, before the valve body 34 of the on-off valve 33 opens, that is, before the air blast valve 9 opens, the fuel injection valve 41 directs the compressed air into the compressed air passage 39. Fuel is injected. Next, when the air blast valve 9 is opened, the injected fuel is injected from the nozzle port 32 into the combustion chamber 4 together with compressed air. On the other hand, as shown in FIG.
A mask wall 23 that covers the opening of the side air supply valve 5 over the period when the air supply valve 5 is fully open is formed on the inner wall surface of the cylinder head 3. Therefore, when the air supply valve 5 opens, fresh air flows into the air supply boat 6.
The air is supplied into the combustion chamber 4 through the opening of the intake valve 5 on the side opposite to the exhaust valve 7. As a result, the fresh air flows along the peripheral wall surface of the combustion chamber 4 as shown by arrow S, thus achieving good loop scavenging. As shown in FIG. 2, the exhaust boat 8 is connected to an exhaust manifold 24, and an oxygen concentration sensor 25 is disposed within the exhaust manifold 24.

第2図に示されるようにエアブラスト弁9は電子制御ユ
ニット50の出力信号に基いて制御される。
As shown in FIG. 2, the air blast valve 9 is controlled based on an output signal from an electronic control unit 50.

この電子制御ユニット50は双方向性バス51によって
相互に接続されたROM (リードオンリメモリ)52
と、RAM (ランダムアクセスメモリ)53と、CP
U (マイクロプロセッサ)54と、入力ポート55と
、出力ポート56を具備する。エアフローメータ14は
吸入空気量に比例した出力電圧を発生し、この出力電圧
はAD変換器57を介して入力ポート55に入力される
。酸素濃度センサ25は排気中の酸素濃度(重量%)に
比例した出力電圧を発生し、この出力電圧はAD変換器
58を介して入力ポート55に入力される。また入力ポ
ート55には機関回転数を表す回転数センサ26の出力
信号が入力される。
This electronic control unit 50 includes ROM (read only memory) 52 interconnected by a bidirectional bus 51.
, RAM (random access memory) 53, and CP
It has a U (microprocessor) 54, an input port 55, and an output port 56. The air flow meter 14 generates an output voltage proportional to the amount of intake air, and this output voltage is input to the input port 55 via the AD converter 57. The oxygen concentration sensor 25 generates an output voltage proportional to the oxygen concentration (weight %) in the exhaust gas, and this output voltage is input to the input port 55 via the AD converter 58. Further, an output signal from the rotation speed sensor 26 indicating the engine rotation speed is input to the input port 55 .

一方、出力ポート56は対応する駆動回路59.’60
を介してエアブラスト弁9のソレノイド37および燃料
噴射弁41に接続される。
On the other hand, the output port 56 has a corresponding drive circuit 59. '60
It is connected to the solenoid 37 of the air blast valve 9 and the fuel injection valve 41 via.

本発明においては燃料噴射時間TAUは次式に基いて計
算される。
In the present invention, the fuel injection time TAU is calculated based on the following equation.

TAtl=K −TP−F ・に こでKは定数 TPは基本燃料噴射時間 Fは機関シリンダ内に残存する吸入空気の残存率 Cは機関冷却水温等による補正係数である。TAtl=K-TP-F・to Here K is a constant TP is the basic fuel injection time F is the residual rate of intake air remaining in the engine cylinder C is a correction coefficient based on engine cooling water temperature, etc.

基本燃料噴射時間TPは機関負荷Q/N (機関シリン
ダ内に供給される吸入空気量Q/機関回転数N)と機関
回転数Nの関数であり、機関シリンダ内に供給された吸
入空気全部が吹き抜けることなくシリンダ内に残存する
と仮定したときに機関シリンダ内の空燃比を目標空燃比
とするのに必要な燃料噴射時間を表わしている。この基
本燃料噴射時間TPは第5図に示されるように機関負荷
Q/Nと機関回転数Nとの関数としてマツプの形で予め
ROM 52内に記憶されている。
The basic fuel injection time TP is a function of the engine load Q/N (amount of intake air supplied into the engine cylinder Q/engine speed N) and the engine speed N, and all the intake air supplied into the engine cylinder is It represents the fuel injection time required to bring the air-fuel ratio in the engine cylinder to the target air-fuel ratio, assuming that the fuel remains in the cylinder without blowing through. This basic fuel injection time TP is stored in advance in the ROM 52 in the form of a map as a function of the engine load Q/N and the engine speed N, as shown in FIG.

一方、吸入空気の残存率Fは次式に基いて計算される。On the other hand, the residual rate F of intake air is calculated based on the following equation.

F= 1−[02]。/[ozlt ここで[0□]。は排気ガス中の実際の酸素濃度(重量
%) [0□コ1は機関シリンダ内に供給される吸入空気の酸
素濃度(重量%)である。この吸入空気の酸素濃度[o
zlt はほぼ21重量%である。
F=1-[02]. /[ozlt here [0□]. is the actual oxygen concentration (weight %) in the exhaust gas; [0□ko1 is the oxygen concentration (weight %) of the intake air supplied into the engine cylinder. The oxygen concentration of this intake air [o
zlt is approximately 21% by weight.

2サイクル内燃機関では吸入空気の一部が排気ポート8
内に吹き抜けるために排気ガスは既燃ガスと吹き抜けた
吸入空気からなる。従って排気ガスは成る重量%の既燃
ガスと成る重量%の吹き抜けた吸入空気からなる。一方
、既燃ガスは成る重量%の燃料と成る重量%の燃焼に寄
与した吸入空気からなるが燃料の重量は燃焼に寄与した
吸入空気の重量に比べて無視できるので排気ガスは成る
重量%の燃焼に寄与した吸入空気と成る重量%の吹き抜
けた吸入空気からなるとみなすことができる。このよう
に考えると[0□コ。/[0□コ1は吹き抜けた空気の
割合を表わしており、(1−[02]。/[0□]、)
は燃焼に寄与した吸入空気の割合、即ち機関シリンダ内
に残存した吸入空気の割合を表わしていることがわかる
。従って上述した吸入空気の残存率Fは機関シリンダ内
に残存した吸入空気の割合を表わしていることがわかる
。基本燃料噴射時間TPに残存率Fを乗算するとこのT
P−Fは機関シリンダ内の実際の空燃比を目標空燃比と
するのに必要な燃料噴射時間を表わしており、また機関
シリンダ内に供給される吸入空気の酸素濃度[Oz]s
は一定であるので排気ガス中の実際の酸素濃度[02]
。がわかれば燃料噴射時間をTP−Fとすることにより
機関シリンダ内の実際の空燃比を目標空燃比とすること
ができる。
In a two-stroke internal combustion engine, a portion of the intake air is sent to exhaust port 8.
The exhaust gas consists of burnt gas and intake air that has blown through. The exhaust gas therefore consists of blown-through intake air in a weight percent of burnt gas. On the other hand, burnt gas consists of % of fuel by weight and intake air that contributed to combustion of % by weight, but since the weight of fuel is negligible compared to the weight of intake air that contributed to combustion, exhaust gas consists of % of fuel by weight. It can be considered that the weight percent of the intake air that has been blown through constitutes the intake air that contributed to combustion. If you think about it this way, [0□ko]. /[0□ko1 represents the proportion of air that has blown through, (1-[02]./[0□],)
It can be seen that represents the proportion of intake air that contributed to combustion, that is, the proportion of intake air that remained in the engine cylinder. Therefore, it can be seen that the intake air remaining ratio F described above represents the proportion of the intake air remaining in the engine cylinder. When the basic fuel injection time TP is multiplied by the residual rate F, this T
P-F represents the fuel injection time required to adjust the actual air-fuel ratio in the engine cylinder to the target air-fuel ratio, and also represents the oxygen concentration [Oz] of the intake air supplied into the engine cylinder.
is constant, so the actual oxygen concentration in the exhaust gas [02]
. If this is known, the actual air-fuel ratio in the engine cylinder can be set to the target air-fuel ratio by setting the fuel injection time to TP-F.

酸素濃度センサ25は第6図に示すように排気ガス中の
酸素濃度[0□]kに対応した出力電圧Vを発生するの
でこの酸素濃度[0□]、が排気ガス中の実際の酸素濃
度[0□]。を表わしていれば酸素濃度センサ25の出
力電圧Vから残存率Fを計算することによって機関シリ
ンダ内の実際の空燃比を目標空燃比とすることができる
As shown in FIG. 6, the oxygen concentration sensor 25 generates an output voltage V corresponding to the oxygen concentration [0□]k in the exhaust gas, so this oxygen concentration [0□] is the actual oxygen concentration in the exhaust gas. [0□]. By calculating the survival rate F from the output voltage V of the oxygen concentration sensor 25, the actual air-fuel ratio in the engine cylinder can be set as the target air-fuel ratio.

しかしながらこの酸素濃度センサ25により検出された
酸素濃度[02]kは必ずしも実際の排気ガス中の酸素
濃度[02コ。を表わしておらず、従ってこの酸素濃度
センサ25により検出された酸素濃度[02]kに基い
て残存率Fを求めても機関シリンダ内の実際の空燃比を
目標空燃比とすることはできない。
However, the oxygen concentration [02]k detected by this oxygen concentration sensor 25 is not necessarily the actual oxygen concentration [02]k in the exhaust gas. Therefore, even if the survival rate F is calculated based on the oxygen concentration [02]k detected by the oxygen concentration sensor 25, the actual air-fuel ratio in the engine cylinder cannot be set as the target air-fuel ratio.

即ち、2サイクル内燃機関では排気弁7が開弁すると燃
焼室4内の既燃ガスが急激に排気ポート8内に噴出し、
いわゆるブローダウンを発生する。
That is, in a two-stroke internal combustion engine, when the exhaust valve 7 opens, the burned gas in the combustion chamber 4 suddenly blows out into the exhaust port 8.
A so-called blowdown occurs.

このようなブローダウンを生じた後は燃焼室4内の既燃
ガスが比較的ゆっくりと排気ポート8内に流出する。次
いで給気弁5が開弁すると新気、即ち吸入空気が燃焼室
4内に流入を開始し、この吸入空気の一部が排気ポート
8内に吹き抜ける。
After such blowdown occurs, the burned gas within the combustion chamber 4 flows out into the exhaust port 8 relatively slowly. Next, when the intake valve 5 opens, fresh air, that is, intake air, begins to flow into the combustion chamber 4, and a portion of this intake air blows into the exhaust port 8.

ところで酸素濃度センサ25は酸素濃度センサ25と接
触する排気ガスの平均的な酸素濃度[oz]hに対応し
た出力電圧Vを発生する。即ち、排気弁8が開弁すると
既燃ガスが排出され、次いで吹き抜けた吸入空気が排出
されるが酸素濃度センサ25はこれら既燃ガスと吹き抜
けた吸入空気全体の平均的な酸素濃度[02]kを検出
する。しかしながらこの場合、既燃ガス量および吹き抜
けた吸入空気量が一定であっても既燃ガスと酸素濃度セ
ンサ25の接触時間および吹き抜けた吸入空気と酸素濃
度センサ25の接触時間が変化すると酸素濃度センサ2
5により検出された平均的な酸素濃度[0,]kが変化
する。例えば酸素濃度センサ25周りにおける既燃ガス
の流速が吹き抜けた吸入空気の流速よりも速いときは既
燃ガスと酸素濃度センサ25の接触時間が短かくなるた
めに酸素濃度センサ25によって既燃ガス量が実際の既
燃ガス量よりも少な目に検出される。即ち、吹き抜けた
吸入空気の量が多口に検出され、従って酸素濃度センサ
25により検出された酸素濃度[02]kは実際の酸素
濃度[0□]。よりも高目になる。このような現象は酸
素濃度センサ25周りの既燃ガスの流速が早(なるほど
激しくなる。酸素濃度センサ25周りの既燃ガスの流速
はブローダウンが強くなるほど速くなり、従ってブロー
ダウンが強くなるほど酸素濃度センサ25により検出さ
れた酸素濃度[0□1には実際の酸素濃度[0,]。
By the way, the oxygen concentration sensor 25 generates an output voltage V corresponding to the average oxygen concentration [oz]h of the exhaust gas that comes into contact with the oxygen concentration sensor 25. That is, when the exhaust valve 8 opens, the burnt gas is discharged, and then the blown-through intake air is discharged, but the oxygen concentration sensor 25 detects the average oxygen concentration [02] of these burnt gases and the entire blown-through intake air. Detect k. However, in this case, even if the amount of burned gas and the amount of intake air blown through are constant, if the contact time between the burned gas and the oxygen concentration sensor 25 and the contact time between the intake air blown through and the oxygen concentration sensor 25 change, the oxygen concentration sensor 2
The average oxygen concentration [0,]k detected by 5 changes. For example, when the flow rate of the burned gas around the oxygen concentration sensor 25 is faster than the flow rate of the intake air that has blown through, the amount of burned gas is determined by the oxygen concentration sensor 25 because the contact time between the burned gas and the oxygen concentration sensor 25 is shortened. is detected to be less than the actual amount of burned gas. That is, the amount of intake air that has blown through is detected in many ways, and therefore the oxygen concentration [02]k detected by the oxygen concentration sensor 25 is the actual oxygen concentration [0□]. becomes more expensive than This phenomenon occurs when the flow rate of the burnt gas around the oxygen concentration sensor 25 becomes faster (indeed, it becomes more intense).The flow rate of the burnt gas around the oxygen concentration sensor 25 becomes faster as the blowdown becomes stronger. The oxygen concentration [0□1] detected by the concentration sensor 25 is the actual oxygen concentration [0,].

よりも高目になる。becomes more expensive than

ところで機関負荷が高くなるほど燃焼圧が高くなり、従
って機関負荷が高くなるほどブローダウンが強くなる。
Incidentally, the higher the engine load, the higher the combustion pressure, and therefore the higher the engine load, the stronger the blowdown.

従って機関負荷が高くなるほど酸素濃度センサ25によ
り検出された酸素濃度[02] kは実際の酸素濃度[
0□]。よりも高めになる。従って[02]。/[02
]kをHで表わすと第7図に示されるように機関負荷Q
/N (機関シリンダ内に供給される吸入空気量Q/機
関回転数N)が高くなるほどこのHは小さくなる。上述
したようにH=[02]。
Therefore, as the engine load increases, the oxygen concentration [02] k detected by the oxygen concentration sensor 25 becomes smaller than the actual oxygen concentration [
0□]. It will be higher than that. Therefore [02]. /[02
] If k is expressed as H, the engine load Q is expressed as shown in Fig. 7.
/N (Intake air amount Q supplied into the engine cylinder/engine speed N) becomes smaller as H becomes smaller. As mentioned above, H=[02].

/[:ozlkであるから[0□3kにHを乗算すれば
[[12]。
/[:ozlk, so if you multiply [0□3k by H, you get [[12].

が求まることになり、以下このHを補正係数と称する。will be found, and hereinafter this H will be referred to as a correction coefficient.

また、この補正係数Hは機関回転数Nの影響を受ける。Further, this correction coefficient H is influenced by the engine speed N.

即ち、機関回転数Nが高くなると単位時間当りに排気ポ
ート8内に排出される既燃ガス量が増大するために排気
ポート8内の圧力、即ち背圧が上昇する。背圧が上昇す
ると排気弁7が開弁したときに既燃ガスが流出しにくく
なるためにブローダウンが弱くなる。従って機関負荷Q
/Nが同一であれば機関回転数Nが高くなるほど補正係
数Hは大きくなる。従って補正係数Hは機関負荷Q/N
と機関回転数Nの関数となる。第8図の各曲線は同一補
正係数Hを示しており、従って第8図から機関負荷Q/
Nが高くなるほど、機関回転数Nが低くなるほど補正係
数Hが大きくなることがわかる。この補正係数Hは予め
実験により求められており、この実験により求められた
補正係数Hは予めROM 52内に記憶されている。
That is, as the engine speed N increases, the amount of burnt gas discharged into the exhaust port 8 per unit time increases, so the pressure within the exhaust port 8, that is, the back pressure increases. When the back pressure increases, it becomes difficult for burned gas to flow out when the exhaust valve 7 is opened, so that blowdown becomes weaker. Therefore, the engine load Q
If /N is the same, the correction coefficient H becomes larger as the engine speed N becomes higher. Therefore, the correction coefficient H is the engine load Q/N
is a function of the engine speed N. Each curve in Fig. 8 shows the same correction coefficient H, so from Fig. 8 it can be seen that the engine load Q/
It can be seen that the higher N and the lower the engine speed N, the larger the correction coefficient H becomes. This correction coefficient H has been determined in advance through an experiment, and the correction coefficient H determined through this experiment is stored in the ROM 52 in advance.

第9図は燃料噴射時間TAUを計算するだめのルーチン
を示しており、このルーチンは一定時間毎の割込みによ
って実行される。
FIG. 9 shows a routine for calculating the fuel injection time TAU, and this routine is executed by interrupts at fixed time intervals.

第9図を参照するとまず初めにステップ70においてエ
アフローメータ14および回転数センサ26の出力信号
から第5図に示す関係に基いて基本燃料噴射時間TPが
計算される。次いでステップ71では酸素濃度センサ2
5の出力電圧Vが読み込まれ、次いでステップ72では
この出力電圧Vから第6図に示す関係に基いて酸素濃度
[02]kが計算される。
Referring to FIG. 9, first, in step 70, a basic fuel injection time TP is calculated from the output signals of the air flow meter 14 and the rotational speed sensor 26 based on the relationship shown in FIG. Next, in step 71, the oxygen concentration sensor 2
The output voltage V of No. 5 is read, and then in step 72, the oxygen concentration [02]k is calculated from this output voltage V based on the relationship shown in FIG.

次いでステップ73では第8図に示す関係に基いて補正
係数Hを求めると共にこの補正係数Hを[0□]kに乗
算することによって排気ガス中の実際の酸素濃度[0□
コ。が算出される。次いでステップ74ではこの[02
]。を用いて次式により吸入空気の残存率Fが計算され
る。
Next, in step 73, a correction coefficient H is determined based on the relationship shown in FIG. 8, and by multiplying this correction coefficient H by [0□]k, the actual oxygen concentration [0□]
Ko. is calculated. Next, in step 74, this [02
]. The residual rate F of the intake air is calculated using the following equation.

F= 1−[02]。/[02]1 なお、前述したように[0□]1はほぼ21重量%であ
る。
F=1-[02]. /[02]1 As mentioned above, [0□]1 is approximately 21% by weight.

次いでステップ75では機関冷却水温等による補正係数
Cが計算され、次いでステップ76では次式に基いて実
際の燃料噴射時間TAUが計算される。
Next, in step 75, a correction coefficient C based on the engine cooling water temperature, etc. is calculated, and then in step 76, the actual fuel injection time TAU is calculated based on the following equation.

TAU =に・TP−F−C 〔発明の効果〕 2サイクル内燃機関において機関シリンダ内の実際の空
燃比を確実に目標空燃比に維持することができる。
TAU = TP-F-C [Effects of the Invention] In a two-stroke internal combustion engine, the actual air-fuel ratio in the engine cylinder can be reliably maintained at the target air-fuel ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は発明の構成図、第2図は2サイクル内燃機関の
全体図、第3図はエアブラスト弁の拡大側面断面図、第
4図は給排気弁の開弁期間、エアブラスト弁の開弁期間
等を示す線図、第5図は基本燃料噴射時間を示す図、第
6図は酸素温度センサの出力電圧を示す線図、第7図は
補正係数Hを示す線図、第8図は補正係数Hを示す図、
第9図は燃料噴射時間を計算するためのフローチャート
である。 5・・・給気弁、      7・・・排気弁、9・・
・エアブラスト弁、25・・・酸素濃度センサ。
Fig. 1 is a block diagram of the invention, Fig. 2 is an overall view of a two-stroke internal combustion engine, Fig. 3 is an enlarged side sectional view of an air blast valve, and Fig. 4 shows the opening period of the air supply and exhaust valves, and the opening period of the air blast valve. 5 is a diagram showing the basic fuel injection time, 6 is a diagram showing the output voltage of the oxygen temperature sensor, 7 is a diagram showing the correction coefficient H, 8 is a diagram showing the valve opening period, etc. The figure shows the correction coefficient H.
FIG. 9 is a flowchart for calculating fuel injection time. 5...Air supply valve, 7...Exhaust valve, 9...
・Air blast valve, 25...Oxygen concentration sensor.

Claims (1)

【特許請求の範囲】[Claims] 排気ガス中の酸素濃度を検出する酸素濃度センサと、酸
素濃度センサにより検出された酸素濃度と排気ガス中の
実際の酸素濃度との機関運転状態に応じた関係を予め記
憶している記憶手段と、記憶手段に記憶された関係に基
いて酸素濃度センサにより検出された酸素濃度から実際
の酸素濃度を求める酸素濃度算出手段と、実際の酸素濃
度に基いて機関シリンダ内に残存する吸入空気の残存率
を計算する残存率計算手段と、吸入空気の残存率に基い
て機関シリンダ内の実際の空燃比が目標空燃比となるよ
うに燃料噴射時間を定める噴射時間計算手段とを具備し
た2サイクル内燃機関の燃料噴射制御装置。
an oxygen concentration sensor that detects the oxygen concentration in the exhaust gas; and a storage means that stores in advance a relationship between the oxygen concentration detected by the oxygen concentration sensor and the actual oxygen concentration in the exhaust gas according to the engine operating state. , an oxygen concentration calculation means for calculating the actual oxygen concentration from the oxygen concentration detected by the oxygen concentration sensor based on the relationship stored in the storage means; and residual intake air remaining in the engine cylinder based on the actual oxygen concentration. and an injection time calculation means for determining the fuel injection time so that the actual air-fuel ratio in the engine cylinder becomes the target air-fuel ratio based on the residual ratio of intake air. Engine fuel injection control device.
JP1252392A 1989-09-29 1989-09-29 Fuel injection control device for two-cycle internal combustion engine Expired - Fee Related JP2518057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1252392A JP2518057B2 (en) 1989-09-29 1989-09-29 Fuel injection control device for two-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1252392A JP2518057B2 (en) 1989-09-29 1989-09-29 Fuel injection control device for two-cycle internal combustion engine

Publications (2)

Publication Number Publication Date
JPH03117643A true JPH03117643A (en) 1991-05-20
JP2518057B2 JP2518057B2 (en) 1996-07-24

Family

ID=17236689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1252392A Expired - Fee Related JP2518057B2 (en) 1989-09-29 1989-09-29 Fuel injection control device for two-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JP2518057B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263083A (en) * 2006-03-30 2007-10-11 Nissan Motor Co Ltd Control device and control method of internal combustion engine
JP2007263082A (en) * 2006-03-30 2007-10-11 Nissan Motor Co Ltd Control device and control method of internal combustion engine
US10914246B2 (en) 2017-03-14 2021-02-09 General Electric Company Air-fuel ratio regulation for internal combustion engines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263083A (en) * 2006-03-30 2007-10-11 Nissan Motor Co Ltd Control device and control method of internal combustion engine
JP2007263082A (en) * 2006-03-30 2007-10-11 Nissan Motor Co Ltd Control device and control method of internal combustion engine
JP4655980B2 (en) * 2006-03-30 2011-03-23 日産自動車株式会社 Control device and control method for internal combustion engine
US10914246B2 (en) 2017-03-14 2021-02-09 General Electric Company Air-fuel ratio regulation for internal combustion engines

Also Published As

Publication number Publication date
JP2518057B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
CA2217824A1 (en) Method for determining the air mass flow into the cylinders of an internal combustion engine with the aid of a model
JPH07332120A (en) Multi-cylinder engine
EP0719913B1 (en) Two-cycle stroke engine with catalytic exhaust gas purification
US6397830B1 (en) Air-fuel ratio control system and method using control model of engine
US4957089A (en) Fuel injection control system for a two-cycle engine
US5690074A (en) Fuel injection control system for internal combustion engines
US5570674A (en) Evaporative emission control system for internal combustion engines
US5462031A (en) Air-to-fuel ratio control unit for internal combustion engine
JPH03117643A (en) Fuel injection control device for two-cycle internal combustion engine
US4598678A (en) Intake system of an internal combustion engine
JP2518058B2 (en) Fuel injection control device for two-cycle internal combustion engine
JP2522409B2 (en) Fuel injection control device for two-cycle internal combustion engine
US7013215B2 (en) Method for determining the charge of an activated carbon container in a tank ventilation system
JP2689696B2 (en) Fuel injection control device for two-cycle internal combustion engine
JPH03117648A (en) Fuel injection control device for two cycle internal combustion engine
JP2887979B2 (en) In-cylinder internal combustion engine
JP3059748B2 (en) Air blast valve control device
JPH02241941A (en) Air-fuel ratio control device of two-cycle internal combustion engine
JPH05280390A (en) Two-cycle engine control device
JPH07301135A (en) Air-fuel ratio control device for engine
JP3559811B2 (en) Combustion control device for two-cycle engine
JPH0240041A (en) Fuel injection control device for 2-cycle direct injection engine
JP2536936Y2 (en) Intake control device for internal combustion engine
JP3007374B2 (en) Fuel injection device for internal combustion engine
JPH0741883Y2 (en) Evaporative fuel discharge device for two-cycle internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees