JPH03115578A - Method for coating powder particle - Google Patents
Method for coating powder particleInfo
- Publication number
- JPH03115578A JPH03115578A JP1253173A JP25317389A JPH03115578A JP H03115578 A JPH03115578 A JP H03115578A JP 1253173 A JP1253173 A JP 1253173A JP 25317389 A JP25317389 A JP 25317389A JP H03115578 A JPH03115578 A JP H03115578A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- supplied
- quartz tube
- gaseous
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical Vapour Deposition (AREA)
- Ceramic Products (AREA)
- Glanulating (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Carbon And Carbon Compounds (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粉末粒子のコーティング方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for coating powder particles.
S i 3 N a * S i Cr A j!
s O3で代表されるセラミックスは一触に焼結体とし
て産業上利用されるが、これ等の焼結体を形成する際に
、上記の純粋なセラミック粉末を成形、加熱するのみで
は、焼結体は形成されないことは周知の事実である。S i 3 N a * S i Cr A j!
Ceramics represented by sO3 are used industrially as sintered bodies, but when forming these sintered bodies, simply molding and heating the pure ceramic powder described above does not allow sintering. It is a well-known fact that a body is not formed.
そこで、このような材料を焼結させるために焼結助剤を
添加し、例えば5isNnではY2O。Therefore, in order to sinter such materials, sintering aids are added, such as Y2O in 5isNn.
・A l t Osを、sicでは84Cを添加し、ま
たAI、O!は焼結時の結晶粒粗大化を抑制するために
MgOを添加し、更にWCを焼結する際はバインダーと
してCOが一最的に用いられている。・Al t Os is added, 84C is added in sic, and AI, O! MgO is added to suppress crystal grain coarsening during sintering, and CO is most commonly used as a binder when sintering WC.
このように、粉末粒子の焼結は、それぞれ助剤を添加す
る必要があるので、そのプロセス及び管理が煩雑であり
、また助剤を添加するために焼結材料本来の特性を損う
ことが多い。As described above, sintering of powder particles requires the addition of auxiliary agents, making the process and management complicated, and adding auxiliary agents may impair the original properties of the sintered material. many.
そこで、焼結材料粉末粒子の表面に焼結を促進する物質
、又は焼結体の特性を向上させる物質をコーティングす
ることが行われている。Therefore, the surface of the sintered material powder particles is coated with a substance that promotes sintering or a substance that improves the properties of the sintered body.
粉末粒子表面のコーティング技術に関しては流動JiC
VD法が一部試みられているが、コーティング速度が遅
く能率が悪く、またコーティング条件が厳しく未だ実用
的ではない。Regarding powder particle surface coating technology, fluid JiC
Some attempts have been made to use the VD method, but the coating speed is slow, the efficiency is low, and the coating conditions are severe, making it still impractical.
更に、めっき法もあるが流動層CVD法と同様な欠点が
ある。Furthermore, although there is a plating method, it has the same drawbacks as the fluidized bed CVD method.
本発明は、このような事情に鑑みて提案されたもので、
コーティング速度が速く、コーティング材料の範囲が広
い、能率及び適用性に優れた粉末粒子のコーティング方
法を提供することを目的とする。The present invention was proposed in view of these circumstances, and
It is an object of the present invention to provide a method for coating powder particles with high coating speed, a wide range of coating materials, and excellent efficiency and applicability.
(課題を解決するための手段〕
そのために本発明はプラズマ発生用のガスが充満された
耐熱管を囲繞するコイルに高周波電流を通電してプラズ
マを発生させる第1工程と、上記耐熱管内に金属ハロゲ
ン化物蒸気と炭化水素ガス、窒素ガス又はアンモニアガ
スのうちの少なくとも1種のガスを供給する第2工程と
、上記耐熱管内に粉末粒子を供給しそれに上記金属ハロ
ゲン化物の金属と炭素又は窒素のうちの少なくとも1種
の元素との化合物をコーティングする第3工程とよりな
ることを特徴とする。(Means for Solving the Problems) To this end, the present invention includes a first step of generating plasma by passing a high-frequency current through a coil surrounding a heat-resistant tube filled with a gas for plasma generation, and a step of generating plasma in the heat-resistant tube. a second step of supplying halide vapor and at least one gas selected from hydrocarbon gas, nitrogen gas, or ammonia gas; supplying powder particles into the heat-resistant tube; It is characterized by comprising a third step of coating a compound with at least one of the elements.
プラズマ発生用のガスが充満された耐熱管を囲繞するコ
イルに高周波電流を通電してプラズマを発生させる第1
工程により、耐熱管内を高温で活性なプラズマ雰囲気と
することができる。The first step is to generate plasma by passing a high-frequency current through a coil that surrounds a heat-resistant tube filled with gas for plasma generation.
Through this process, a high temperature and active plasma atmosphere can be created inside the heat-resistant tube.
また、上記耐熱管内に金属ハロゲン化物蒸気と炭化水素
ガス、窒素ガス又はアンモニアガスのうちの少なくとも
1種のガスを供給する第2工程により、コーテイング物
質を気体状態で上記耐熱管内へ供給することができる。Further, the second step of supplying metal halide vapor and at least one gas selected from hydrocarbon gas, nitrogen gas, and ammonia gas into the heat-resistant tube allows the coating material to be supplied in a gaseous state into the heat-resistant tube. can.
更に、上記耐熱管内に粉末粒子を供給し、それに上記金
属ハロゲン化物の金属と炭素又は窒素のうちの少なくと
も1種の元素との化合物をコーティングする第3工程に
より、金属炭化物。Furthermore, a third step of supplying powder particles into the heat-resistant tube and coating the powder particles with a compound of the metal of the metal halide and at least one element selected from carbon and nitrogen produces a metal carbide.
金属窒化物又は金属炭窒化物を粉末粒子に迅速にコーテ
ィング、することができる。Metal nitrides or metal carbonitrides can be rapidly coated onto powder particles.
本発明の一実施例を図面について説明すると、第1図縦
断面図において、■は高周波it流を流す竪コイルで、
それは高周波発生器2と電気的に接続されている。3は
コイル1に内挿された石英管で、それは図示省略の二重
壁構造により水冷されることができる。4は石英管3の
上端部に付設されたノズル構造で、図示省略の冷却水路
により水冷される。An embodiment of the present invention will be explained with reference to the drawings. In the vertical cross-sectional view of FIG.
It is electrically connected to the high frequency generator 2. 3 is a quartz tube inserted into the coil 1, which can be water-cooled by a double wall structure (not shown). Reference numeral 4 denotes a nozzle structure attached to the upper end of the quartz tube 3, which is water-cooled by a cooling channel (not shown).
5はノズル構造 4の央部に上下方向に貫設されたキャ
リヤーガス導入孔である。6は石英管3の上部内面とノ
ズル構造4との間に形成されたすき間、7はすき間6の
上端部に接続されたシールドガス導入部、8は石英管3
の下端に接続された直立方体状の粉末補集室、9は粉末
補集室8の底面に設置された粉末捕集皿、lOは粉末補
集室8の端面上部に接続された排気口である。Reference numeral 5 denotes a carrier gas introduction hole that extends vertically through the center of the nozzle structure 4. 6 is a gap formed between the upper inner surface of the quartz tube 3 and the nozzle structure 4, 7 is a shield gas introduction part connected to the upper end of the gap 6, and 8 is the quartz tube 3
9 is a powder collection tray installed on the bottom of the powder collection chamber 8, and lO is an exhaust port connected to the upper end of the powder collection chamber 8. be.
このようなatにおいて、まず、第1工程として、シー
ルドガス導入部7に図示省略のガス容器からアルゴンA
「を4Qj!/sinの流量で供給するとともに、キャ
リヤーガス導入孔5に図示省略の粉末供給装置を介して
同じくアルゴンを317w1nの流量で供給し、その結
果石英管3内にアルゴンガスが充満したのち、高周波発
生器2を作動してプラズマを発生させ、高周波出力を2
0KWまで上昇させるとともに、石英管3.ノズル構造
4に冷却水を循環する。In such an AT, first, as a first step, argon A is introduced into the shield gas introduction section 7 from a gas container (not shown).
was supplied at a flow rate of 4Qj!/sin, and argon was also supplied at a flow rate of 317w1n to the carrier gas introduction hole 5 via a powder supply device (not shown), and as a result, the quartz tube 3 was filled with argon gas. Afterwards, the high frequency generator 2 is activated to generate plasma, and the high frequency output is increased to 2.
While increasing the power to 0KW, the quartz tube 3. Cooling water is circulated through the nozzle structure 4.
次に第2工程として、シールドガス導入 部7から水素
H3を51/sinの流量で供給しながら高周波出力を
50KWまで上昇させ、プラズマが安定したのち、図示
省略の塩化チタン発生器から80℃に保温した塩化チタ
ンTiCj!。Next, in the second step, hydrogen H3 is supplied from the shielding gas inlet 7 at a flow rate of 51/sin while the high frequency output is increased to 50 KW, and after the plasma is stabilized, the temperature is increased to 80°C from a titanium chloride generator (not shown). Heat-retaining titanium chloride TiCj! .
溶液をアルゴン3J/+winの流量キャリヤーガスで
シールドガス導入部7から石英管3内に供給するととも
に、窒素ガスN2を流[t21/sinでシールドガス
導入部7から同様に石英管3内に供給する。The solution is supplied into the quartz tube 3 from the shield gas introduction part 7 with a carrier gas of argon at a flow rate of 3 J/+win, and nitrogen gas N2 is supplied into the quartz tube 3 from the shield gas introduction part 7 at a flow rate of t21/sin. do.
更に第3工程として、粒度が5μm以下の炭化けい素s
i c、粉末を図示省略の刑未供給装置によってキャ
リヤーガス導入孔5から3g/sinの供給速度で石英
管3内に供給すると、そこで、2TiclJ+ l’J
、+ 2 Ht→2TiN + 4HC1の反応が行わ
れ炭化けい素粒子の表面に窒化チタンTiNがコーティ
ングされたのち、粉末補集室8内の粉末捕集皿9上に炭
化けい素粒子が堆積する。Furthermore, as a third step, silicon carbide s with a particle size of 5 μm or less is
i c, When the powder is supplied into the quartz tube 3 from the carrier gas introduction hole 5 at a supply rate of 3 g/sin by an unillustrated non-supply device, there, 2 TiclJ + l'J
, + 2 Ht → 2TiN + 4HC1 reaction is performed to coat the surface of the silicon carbide particles with titanium nitride TiN, and then the silicon carbide particles are deposited on the powder collection pan 9 in the powder collection chamber 8. .
そこで、所定量の炭化けい素粉末が補集できたならば、
塩化チタン溶液、窒素ガス、水素ガスの供給を停止し、
プラズマの出力を低下させプラズマ発生を停止し、その
後にアルゴンの供給を停止する。Therefore, if a predetermined amount of silicon carbide powder can be collected,
Stop the supply of titanium chloride solution, nitrogen gas, and hydrogen gas,
Plasma output is reduced to stop plasma generation, and then the supply of argon is stopped.
なお、補集した炭化けい素粒子の表面には、0、1〜0
.3μm厚さの窒化チタンが観察された。In addition, on the surface of the collected silicon carbide particles, 0, 1 to 0
.. A 3 μm thick titanium nitride was observed.
また、供給する粉末を炭化けい素の代わりに窒化けい素
SiN4とするにともできる。更に、塩化チタンの代わ
りに四塩化けい素5iCj4窒素の代わりにメタンCH
,を供給すれば粒子表面に炭化けい素″がコーティング
できる。そして、塩化チタンT i C1g 、アンモ
ニアN Hsを供給することにより窒化チタンのコーテ
ィングが可能であり、塩化チタン、窒素及びメタンCH
aを供給すれば炭窒化チタンTlCNのコーティングも
可能である。It is also possible to use silicon nitride SiN4 instead of silicon carbide as the powder to be supplied. Furthermore, silicon tetrachloride is used instead of titanium chloride, methane CH is used instead of nitrogen,
By supplying titanium chloride T i C1g and ammonia N Hs, coating of titanium nitride is possible, and titanium chloride, nitrogen and methane CH
If a is supplied, coating of titanium carbonitride TlCN is also possible.
このような方法によれば、粉末粒子の表面に金属炭化物
、金属窒化物又は金属炭窒化物を能率的にコーティング
することができるので、下記効果が奏せられる。According to such a method, the surfaces of the powder particles can be efficiently coated with metal carbide, metal nitride, or metal carbonitride, so that the following effects can be achieved.
(1) 粉末粒子のコーティング速度が速いので、粉
末焼結能率が高く、従って焼結費が低減する。(1) Since the coating speed of the powder particles is fast, the powder sintering efficiency is high, and therefore the sintering cost is reduced.
(2) コーティング材料の制約が少ないので、適用
範囲が広く、従って実用性が増加する。(2) Since there are fewer restrictions on coating materials, the range of application is wide, and therefore the practicality is increased.
(3) 粉末粒子の焼結に焼結助剤を必要としないの
で、焼結工程が簡単になり、従って省力化が可能となる
。(3) Since no sintering aid is required for sintering the powder particles, the sintering process is simplified and labor can be saved.
(4) 粉末粒子の焼結に焼結助剤を必要としないの
で、焼結体の結晶粒の成長が抑制でき、従って焼結体の
機械的特性及び耐食性が向上する。(4) Since no sintering aid is required for sintering the powder particles, the growth of crystal grains in the sintered body can be suppressed, thereby improving the mechanical properties and corrosion resistance of the sintered body.
要するに本発明によれば、プラズマ発生用のガスが充満
された耐熱管を囲繞するコイルに高周波電流を通電して
プラズマを発生させる第1工程と、上記耐熱管内に金属
ハロゲン化物蒸気と炭化水素ガス、窒素ガス又はアンモ
ニアガスのうちの少なくとも1種のガスを供給する第2
工程と、上記耐熱管内に粉末粒子を供給しそれに上記金
属ハロゲン化物の金属と炭素又は窒素のうちの少なくと
も1種の元素との化合物をコーティングする第3工程と
よりなることにより、コーティング速度が速く、コーテ
ィング材料の範囲が広い、能率及び適用性に優れた粉末
粒子のコーティング方法を得るから、本発明は産業工種
めて有益なものである。In short, according to the present invention, the first step is to generate plasma by passing a high frequency current through a coil surrounding a heat-resistant tube filled with gas for plasma generation, and to supply metal halide vapor and hydrocarbon gas in the heat-resistant tube. , a second supplying at least one gas selected from nitrogen gas and ammonia gas.
and a third step of supplying powder particles into the heat-resistant tube and coating it with a compound of the metal of the metal halide and at least one element of carbon or nitrogen, thereby increasing the coating speed. The present invention is of particular benefit to the industrial sector because it provides a method for coating powder particles with high efficiency and applicability, with a wide range of coating materials.
第1図は本発明の一実施例を示す縦断面図である。
1・・・コイル、2・・・高周波発生器、3・・・石英
管、4・・・ノズル構造、5・・・キャリヤーガス導入
孔、6・・・すき間、7・・・シールドガス導入部、8
・・・粉末補集室、
・・・粉末捕集皿、
■
0・・・排気口、FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Coil, 2... High frequency generator, 3... Quartz tube, 4... Nozzle structure, 5... Carrier gas introduction hole, 6... Gap, 7... Shield gas introduction Part, 8
...Powder collection chamber, ...Powder collection tray, ■0...Exhaust port,
Claims (1)
コイルに高周波電流を通電してプラズマを発生させる第
1工程と、上記耐熱管内に金属ハロゲン化物蒸気と炭化
水素ガス,窒素ガス又はアンモニアガスのうちの少なく
とも1種のガスを供給する第2工程と、上記耐熱管内に
粉末粒子を供給しそれに上記金属ハロゲン化物の金属と
炭素又は窒素のうちの少なくとも1種の元素との化合物
をコーティングする第3工程とよりなることを特徴とす
る粉末粒子のコーティング方法。A first step of generating plasma by passing a high-frequency current through a coil surrounding a heat-resistant tube filled with a gas for plasma generation, and a step of generating plasma in the heat-resistant tube with metal halide vapor and hydrocarbon gas, nitrogen gas, or ammonia gas. a second step of supplying at least one of the gases, and a second step of supplying powder particles into the heat-resistant tube and coating them with a compound of the metal of the metal halide and at least one element of carbon or nitrogen. A method for coating powder particles, characterized by comprising three steps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1253173A JPH03115578A (en) | 1989-09-28 | 1989-09-28 | Method for coating powder particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1253173A JPH03115578A (en) | 1989-09-28 | 1989-09-28 | Method for coating powder particle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03115578A true JPH03115578A (en) | 1991-05-16 |
Family
ID=17247553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1253173A Pending JPH03115578A (en) | 1989-09-28 | 1989-09-28 | Method for coating powder particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03115578A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7678429B2 (en) | 2002-04-10 | 2010-03-16 | Dow Corning Corporation | Protective coating composition |
US7893182B2 (en) | 2003-10-15 | 2011-02-22 | Dow Corning Corporation | Manufacture of resins |
US8859056B2 (en) | 2005-05-12 | 2014-10-14 | Dow Corning Ireland, Ltd. | Bonding an adherent to a substrate via a primer |
US11697880B2 (en) | 2016-08-16 | 2023-07-11 | Seram Coatings As | Thermal spraying of ceramic materials comprising metal or metal alloy coating |
-
1989
- 1989-09-28 JP JP1253173A patent/JPH03115578A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7678429B2 (en) | 2002-04-10 | 2010-03-16 | Dow Corning Corporation | Protective coating composition |
US7893182B2 (en) | 2003-10-15 | 2011-02-22 | Dow Corning Corporation | Manufacture of resins |
US8859056B2 (en) | 2005-05-12 | 2014-10-14 | Dow Corning Ireland, Ltd. | Bonding an adherent to a substrate via a primer |
US11697880B2 (en) | 2016-08-16 | 2023-07-11 | Seram Coatings As | Thermal spraying of ceramic materials comprising metal or metal alloy coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3368914A (en) | Process for adherently depositing a metal carbide on a metal substrate | |
JPH01251725A (en) | semiconductor manufacturing equipment | |
JPH02203932A (en) | Method and apparatus for producing ultrafine particles | |
JP2003515676A (en) | Method of manufacturing functional layer using plasma radiation source | |
JPS63182297A (en) | Aggregate diamond | |
US20100203253A1 (en) | Plasma system and method of producing a functional coating | |
JPH03115578A (en) | Method for coating powder particle | |
JPS58158915A (en) | Thin film producing device | |
JP3005639B2 (en) | Method of depositing microcrystalline solid particles from gas phase by chemical vapor deposition | |
JP6948091B2 (en) | Vapor deposition equipment | |
JP2801485B2 (en) | Composite and method for producing the same | |
KR100249825B1 (en) | Chemical vapor deposition of copper thin film by organometallic compound precursor | |
JPS61139667A (en) | Formation of thin silicon carbide film | |
KR101859116B1 (en) | Methods for coating surface of iron-based alloy and products with high corrosion resistance and high conductivity manufactured thereby | |
JPH0772352B2 (en) | Chemical vapor deposition apparatus and chemical vapor deposition method | |
US7300890B1 (en) | Method and apparatus for forming conformal SiNx films | |
JP4032178B2 (en) | Method for manufacturing silicon nitride sprayed film | |
JPS60116776A (en) | CVD equipment | |
JPH0364475A (en) | Method for sealing porous body | |
JPH08225394A (en) | Method for carrying out vapor phase synthesis of diamond | |
JPS6057507B2 (en) | Manufacturing equipment and method for manufacturing ultra-hard high-purity silicon nitride | |
JPS60248880A (en) | Method and device for coating by glow discharge | |
JPH0361372A (en) | Thin film forming device | |
JPS62278194A (en) | diamond synthesis equipment | |
JP2023004175A (en) | Gallium nitride layer manufacturing device and gallium nitride layer manufacturing method |