[go: up one dir, main page]

JPH03113249A - Air-conditioning snow melting device - Google Patents

Air-conditioning snow melting device

Info

Publication number
JPH03113249A
JPH03113249A JP24994689A JP24994689A JPH03113249A JP H03113249 A JPH03113249 A JP H03113249A JP 24994689 A JP24994689 A JP 24994689A JP 24994689 A JP24994689 A JP 24994689A JP H03113249 A JPH03113249 A JP H03113249A
Authority
JP
Japan
Prior art keywords
heat exchanger
snow melting
refrigerant
solenoid valve
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24994689A
Other languages
Japanese (ja)
Inventor
Yorio Yoshida
吉田 順雄
Yoshikatsu Suzuki
鈴木 義克
Tomomasa Takeshita
竹下 倫正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Tohoku Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Tohoku Electric Power Co Inc
Priority to JP24994689A priority Critical patent/JPH03113249A/en
Publication of JPH03113249A publication Critical patent/JPH03113249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE:To prevent capability of heating and defrosting in winter when there is no snow accumulation from being lowered by providing a snow melting heat exchanger connected via a solenoid valve among refrigerant passages of a room heat exchanger in a refrigeration circuit, a snow melting panel connected to a secondary side of said snow melting heat exchanger via a refrigerant circulation pump, and a room heat exchanger solenoid valve. CONSTITUTION:High temperature high pressure gas refrigerant discharged from a compressor 1 passes through a four-way valve 2 and diverges to the side of a room heat exchanger 3 and to the side of a snow melting heat exchanger 8, one entering the room heat exchanger 3 after passing through a solenoid valve 13 to heat the inside of a room. High pressure fluid refrigerant more cooled than room air is reduced in its pressure by a throttling device 5 after passing through a solenoid valve 14 and enters an outdoor heat exchanger 4 and is sucked into the compressor 1. The other of the diverging gas enters the snow melting heat exchanger 8 after passing a solenoid valve 15. It exchanges there heat with a nonfreezing liquid circulated by a pump 10 with high pressure fluid refrigerant, and further flows in a snow melting panel 12 to melt snow. On the other hand, the high pressure fluid refrigerant enters the throttling device 5 after passing through a solenoid valve 16 into lowe pressure gas/liquid mixed refrigerant, and enters the outdoor heat exchange 4. It is further vaporized and is sucked into the compressor 1.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、積雪の融解及び室内の冷暖房を行う冷暖房
融雪装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heating and cooling snow melting device that melts accumulated snow and cools and heats indoor rooms.

[従来の技術] 第7図及び第8図は、従来の冷暖房融雪装置の冷媒回路
図、及び同装置の家屋への据付図である。
[Prior Art] FIGS. 7 and 8 are a refrigerant circuit diagram of a conventional snow melting device for air conditioning and heating, and a diagram of how the device is installed in a house.

同図において、1は圧縮機、2は四方弁、3は室内熱交
換器、4は室外熱交換器、5は絞り装置、6は室内送風
機、7は室外送風機、8は圧縮機lの吐出側と四方弁2
間に一次側を接続した融雪用熱交換器であり、これらは
冷媒配管9により閉ループに接続することで冷媒回路を
構成している。
In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is an outdoor heat exchanger, 5 is a throttle device, 6 is an indoor blower, 7 is an outdoor blower, and 8 is the discharge of compressor l. Side and four-way valve 2
This is a snow melting heat exchanger with a primary side connected between them, and these are connected in a closed loop through refrigerant piping 9 to form a refrigerant circuit.

また、融雪用熱交換器8の二次側には不凍液循環ポンプ
10及び配管11を介して融雪パネル12が接続されて
いる。
Further, a snow melting panel 12 is connected to the secondary side of the snow melting heat exchanger 8 via an antifreeze circulation pump 10 and piping 11.

第8図において、30は家屋であり、その屋根部には融
雪パネル12が設置されている。また、31は第7図に
示す圧縮機1.四方弁2.室外熱交換器4、その送風機
7及び融雪用熱交換器8゜循環ポンプ10を組込んだ装
置本体部であり、これは屋外に設置されている。
In FIG. 8, 30 is a house, and a snow melting panel 12 is installed on the roof of the house. 31 is the compressor 1 shown in FIG. Four-way valve 2. This is a device main body that incorporates an outdoor heat exchanger 4, its blower 7, a snow melting heat exchanger 8, and a circulation pump 10, and is installed outdoors.

次に動作について説明する。Next, the operation will be explained.

第7図において、実線の矢印は暖房運転時及び融雪運転
時の冷媒の流れを示し、破線の矢印は冷房運転時の冷媒
の流れを示す。
In FIG. 7, solid line arrows indicate the flow of refrigerant during heating operation and snow melting operation, and broken line arrows indicate the flow of refrigerant during cooling operation.

まず、融雪運転時において、圧縮機1で高温高圧となっ
た冷媒ガスは融雪用熱交換器8に入る。
First, during snow melting operation, refrigerant gas that has become high temperature and high pressure in the compressor 1 enters the snow melting heat exchanger 8.

この融雪用熱交換器9では、その−次側を流れる高温高
圧の冷媒ガスと、二次側を流れる不凍液との間で熱交換
が行われるため、不凍液は冷媒ガスの凝縮熱に依って加
熱される。加熱された不凍液は循環ポンプ10により融
雪パネル12に送られ、融雪パネル12上に積もった雪
を融かすことにより除雪する。そして、融雪用熱交換器
8で凝縮された冷媒液は四方弁2を通して室内熱交換器
3に送られる。
In this snow melting heat exchanger 9, heat exchange is performed between the high-temperature, high-pressure refrigerant gas flowing on the downstream side and the antifreeze flowing on the secondary side, so the antifreeze is heated by the heat of condensation of the refrigerant gas. be done. The heated antifreeze is sent to the snow melting panel 12 by the circulation pump 10, and the snow accumulated on the snow melting panel 12 is melted and removed. The refrigerant liquid condensed in the snow melting heat exchanger 8 is sent to the indoor heat exchanger 3 through the four-way valve 2.

しかし、融雪運転時は送風m6が停止しているため、冷
媒液は室内熱交換器3を素通りし、絞り装置6で減圧さ
れた後、室外熱交換器4に入る。
However, since the air blower m6 is stopped during the snow melting operation, the refrigerant liquid passes through the indoor heat exchanger 3 and enters the outdoor heat exchanger 4 after being depressurized by the expansion device 6.

室内熱交換器4では外気熱エネルギを吸収して蒸発し、
冷媒ガスとなって圧縮機1に入り、再び高温高圧の冷媒
ガスとなる。
The indoor heat exchanger 4 absorbs outside air heat energy and evaporates it.
The refrigerant gas enters the compressor 1 and becomes high-temperature, high-pressure refrigerant gas again.

暖房運転時は、循環ポンプ10の運転を停止し、室内送
風機6を運転することにより暖房を行う。
During heating operation, the circulation pump 10 is stopped and the indoor blower 6 is operated to perform heating.

また、冷房運転時は、四方弁2を破線の状態に切り換え
て冷媒回路の冷媒の流れを第7図の破線矢印方向にする
ことにより冷房を行う。そして、日射が極度に強くない
限り、循環ポンプlOを運転し、これにより融雪パネル
12を放熱器として機能させれば、効率のよい冷房運転
ができる。
Also, during cooling operation, cooling is performed by switching the four-way valve 2 to the state shown by the broken line to direct the flow of refrigerant in the refrigerant circuit in the direction of the broken line arrow in FIG. As long as the solar radiation is not extremely strong, efficient cooling operation can be achieved by operating the circulation pump IO and thereby causing the snow melting panel 12 to function as a radiator.

[発明が解決しようとする課題] 上述のような従来の冷暖房融雪装置では、圧縮機1から
吐出された高温高圧の冷媒ガスは常に融雪用熱交換器8
を通過する構成になっているため、積雪がない冬場の暖
房、除霜時にも圧縮機1からの高温高圧ガスは融雪用熱
交換器8で熱交換された後、室内熱交換器3及び室外熱
交換器4へ送られることになり、その結果、暖房能力が
低下してしまう。
[Problems to be Solved by the Invention] In the conventional air-conditioning/heating/snow melting device as described above, the high temperature and high pressure refrigerant gas discharged from the compressor 1 is always transferred to the snow melting heat exchanger 8.
Because of the structure, even during heating and defrosting in winter when there is no snow, the high-temperature, high-pressure gas from the compressor 1 is heat exchanged in the snow melting heat exchanger 8, and then transferred to the indoor heat exchanger 3 and the outdoor. It will be sent to the heat exchanger 4, and as a result, the heating capacity will decrease.

また、融雪負荷と暖房負荷が同時に発生した場合、融雪
能力及び暖房能力が共に低下してしまう問題があった。
Furthermore, when snow melting load and heating load occur simultaneously, there is a problem in that both snow melting capacity and heating capacity decrease.

この発明は上記のような問題点を解決するためになされ
たもので、積雪のない冬場における暖房及び除霜の能力
低下を防止し、効率的な運転を可能にした冷暖房融雪装
置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and aims to provide an air-conditioning/heating/snow melting device that prevents a decrease in heating and defrosting performance in winter when there is no snow and enables efficient operation. purpose.

[課題を解決するための手段] この発明に係る冷暖房融雪装置は、圧縮機、四方弁、室
内熱交換器、絞り装置、室外熱交換器を閉ループに接続
してなる冷媒回路と、前記冷媒回路の室内熱交換器の四
方弁との冷媒通路及び絞り装置との冷媒通路間に冷媒の
流れを開閉する電磁弁を介して接続した融雪用熱交換器
と、前記融雪用熱交換器の二次側に冷媒循環ポンプを介
して接続した融雪パネルと、前記室内熱交換器への冷媒
の流れを開閉する電磁弁とを備えてなるものである。
[Means for Solving the Problems] An air conditioning/heating/snow melting device according to the present invention includes a refrigerant circuit in which a compressor, a four-way valve, an indoor heat exchanger, a throttle device, and an outdoor heat exchanger are connected in a closed loop, and the refrigerant circuit. A snow melting heat exchanger connected via a solenoid valve that opens and closes the flow of refrigerant between the refrigerant passage with the four-way valve of the indoor heat exchanger and the refrigerant passage with the throttling device, and the secondary of the snow melting heat exchanger. It is equipped with a snow melting panel connected to the side via a refrigerant circulation pump, and a solenoid valve that opens and closes the flow of refrigerant to the indoor heat exchanger.

また、この発明は、上記構成の冷暖房融雪装置に、室内
の吹出温度を検出する温度センサ、及びこの温度センサ
により検出された吹出空気温度が設定値以下の時動作さ
れる補助暖房装置を付加してなるものである。
Further, the present invention adds a temperature sensor that detects the indoor air temperature and an auxiliary heating device that is activated when the air temperature detected by the temperature sensor is below a set value to the air conditioning/heating/snow melting device configured as described above. That's what happens.

[作 用] この発明においては、室内熱交換器の電磁弁及び融雪用
熱交換器の電磁弁と、四方弁とを、冷房。
[Function] In this invention, the solenoid valve of the indoor heat exchanger, the solenoid valve of the snow melting heat exchanger, and the four-way valve are used for cooling.

暖房、融雪、融雪+暖房、及び除霜の各運転モードに応
じて切換えると、冷媒回路の冷媒系路が上記各運転に適
合した流れに変化することになる。
When the mode is switched according to each operation mode of heating, snow melting, snow melting + heating, and defrosting, the refrigerant path of the refrigerant circuit changes to a flow suitable for each of the above operations.

従って、各運転モードにおける熱ロスがなくなり、効率
的な運転が可能になる。
Therefore, heat loss in each operation mode is eliminated, allowing efficient operation.

また、この発明においては、温度センサにより検出され
る室内への吹出空気温度が設定値以下になると補助暖房
装置が動作し、融雪負荷に関係なく高温風を室内に吹出
し、室内空気を加熱することになる。従って、融雪と暖
房の両負荷が生じた時の暖房能力の低下を防止できる。
In addition, in this invention, when the temperature of the air blown into the room detected by the temperature sensor falls below a set value, the auxiliary heating device operates, blowing high-temperature air into the room regardless of the snow melting load, and heating the indoor air. become. Therefore, it is possible to prevent the heating capacity from decreasing when both snow melting and heating loads occur.

[実施例] 以下、この発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

第1図乃至第5図は、この発明の一実施例を示す冷暖房
融雪装置の構成図であり、第1図は冷房時、第2図は暖
房時、第3図は融雪時、第4図は融雪・暖房時、第5図
は除霜時の系統図を示す。
1 to 5 are configuration diagrams of an air-conditioning/heating/snow melting device showing one embodiment of the present invention, in which FIG. 1 is for cooling, FIG. 2 is for heating, FIG. 3 is for snow melting, and FIG. 4 is for snow melting. shows the system diagram during snow melting and heating, and Figure 5 shows the system diagram during defrosting.

同図において、第7図と同一の部分には同一符号を付し
て説明すると、冷凍サイクル用冷媒回路は、圧縮機1.
四方弁2.室内熱交換器3.室外熱交換器4.絞り装置
5を配管9により閉ループに接続することで構成されて
いる。そして、四方弁2と室内熱交換器3間を結ぶ冷媒
通路と、室内熱交換器3と絞り装置5間を結ぶ冷媒通路
には、電磁弁13.14がそれぞれ直列に接続されてい
る。
In this figure, the same parts as those in FIG.
Four-way valve 2. Indoor heat exchanger 3. Outdoor heat exchanger4. The throttle device 5 is connected in a closed loop through a pipe 9. Electromagnetic valves 13 and 14 are connected in series to the refrigerant passage connecting the four-way valve 2 and the indoor heat exchanger 3 and the refrigerant passage connecting the indoor heat exchanger 3 and the expansion device 5, respectively.

また、融雪用熱交換器8の一次側の一端は、四方弁2と
電磁弁13との接続点に電磁弁15を介して配管9aに
より接続され、さらに−次側の他端は、絞り装置5と電
磁弁14との接続点に電磁弁16を介して配管9bによ
り接続されている。
Further, one end of the primary side of the snow melting heat exchanger 8 is connected to the connection point between the four-way valve 2 and the solenoid valve 13 via a piping 9a via the solenoid valve 15, and the other end of the next side is connected to a throttle device. 5 and the solenoid valve 14 via a solenoid valve 16 via a pipe 9b.

融雪用熱交換器8の二次側には、第7図と同様に配管1
1によって融雪用の不凍液循環ポンプ10及び融雪パネ
ル12が直列に接続されている。
On the secondary side of the snow melting heat exchanger 8, there is a pipe 1 as shown in FIG.
1, an antifreeze circulation pump 10 for snow melting and a snow melting panel 12 are connected in series.

次に、上記のように構成された本実施例の動作について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

第1図に示す冷房運転時は、循環ポンプ10を停止し、
電磁弁13.14を開に、電磁弁15゜16を閉にし、
そして四方弁2を第1図に示す接続状態に切換える。か
かる状態で圧縮機1を駆動すると、冷媒は第1図の矢印
方向に流れる。即ち、圧縮機1から吐出高温高圧のガス
冷媒は四方弁2を経て室外熱交換器4に入り、ここで室
外送風機7により通風される外気により冷却され凝縮す
ることによって高圧の液冷媒となる。この液冷媒は絞り
装置5を通過することにより減圧されて低圧の気液混合
冷媒となり、電磁弁14を経て室内熱交換器3に入る。
During the cooling operation shown in FIG. 1, the circulation pump 10 is stopped,
Open solenoid valves 13 and 14, close solenoid valves 15 and 16,
Then, the four-way valve 2 is switched to the connected state shown in FIG. When the compressor 1 is driven in this state, the refrigerant flows in the direction of the arrow in FIG. That is, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and enters the outdoor heat exchanger 4, where it is cooled by the outside air ventilated by the outdoor blower 7 and condensed to become a high-pressure liquid refrigerant. This liquid refrigerant is depressurized by passing through the expansion device 5 and becomes a low-pressure gas-liquid mixed refrigerant, which enters the indoor heat exchanger 3 via the solenoid valve 14 .

ここで室内送風機6により送風される室内空気により加
熱され蒸発して低圧のガス冷媒となる。これにより室内
空気は冷却され、室内を冷房する。
Here, it is heated by the indoor air blown by the indoor blower 6 and evaporates, becoming a low-pressure gas refrigerant. This cools the indoor air and cools the room.

一方、室内空気と熱交換器された低圧のガス冷媒は電磁
弁13及び四方弁2を経て圧縮機1に吸入され、再び高
温高圧のガス冷媒となる。
On the other hand, the low-pressure gas refrigerant that has been heat exchanged with the indoor air is sucked into the compressor 1 through the solenoid valve 13 and the four-way valve 2, and becomes high-temperature and high-pressure gas refrigerant again.

次に暖房運転する場合の動作を第2図について述べる。Next, the operation during heating operation will be described with reference to FIG.

この場合は、ポンプ10を停止し、電磁弁13゜14を
閉じ、電[15,16を開き、かつ四方弁2を第2図に
示す接続状態に切換える。かかる状態で圧縮機1を駆動
すると、冷媒は第2図の矢印方向に流れる。即ち、圧縮
機1から吐出された高温高圧のガス冷媒は四方弁2.電
磁弁13を経て室内熱交換器3に入り、室内送風機6に
より通風される室内空気により冷却されて高圧の液冷媒
となる。この時、室内空気は冷媒によって加熱され、室
内の暖房を行う。また、高圧の液冷媒は電磁弁14を経
て絞り装置5により減圧され、低圧の気液混合冷媒とな
って室外熱交換器4に入る。ここで室外送風機7により
通風される室外空気と熱交換して蒸発し、低圧のガス冷
媒となり、さらに四方弁2を経て圧縮機1に吸入される
In this case, the pump 10 is stopped, the solenoid valves 13 and 14 are closed, the electric currents 15 and 16 are opened, and the four-way valve 2 is switched to the connected state shown in FIG. When the compressor 1 is driven in this state, the refrigerant flows in the direction of the arrow in FIG. That is, the high temperature and high pressure gas refrigerant discharged from the compressor 1 is passed through the four-way valve 2. The refrigerant enters the indoor heat exchanger 3 via the electromagnetic valve 13 and is cooled by indoor air ventilated by the indoor blower 6, becoming a high-pressure liquid refrigerant. At this time, the indoor air is heated by the refrigerant to heat the room. Further, the high-pressure liquid refrigerant is depressurized by the expansion device 5 through the electromagnetic valve 14 and enters the outdoor heat exchanger 4 as a low-pressure gas-liquid mixed refrigerant. Here, it exchanges heat with the outdoor air ventilated by the outdoor blower 7 and evaporates, becoming a low-pressure gas refrigerant, which is further sucked into the compressor 1 via the four-way valve 2.

次に融雪運転時の動作を第3図について述べる。Next, the operation during snow melting operation will be described with reference to FIG.

この場合は、ポンプ10を運転し、室内送風機6を停止
させ、かつ電磁弁13.14を閉に、電磁15.16を
開にし、四方弁2を第3図に示す接続状態に切換える。
In this case, the pump 10 is operated, the indoor blower 6 is stopped, the solenoid valves 13.14 are closed, the solenoid valves 15.16 are opened, and the four-way valve 2 is switched to the connected state shown in FIG.

かかる状態で圧縮機lを駆動すると、冷媒は第3図の矢
印方向に流れる。
When the compressor 1 is driven in this state, the refrigerant flows in the direction of the arrow in FIG.

即ち、圧縮機1から吐出された高温高圧のガス冷媒は四
方弁2及び電磁弁15を経て融雪用熱交換器8に入る。
That is, the high temperature and high pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and the solenoid valve 15 and enters the snow melting heat exchanger 8.

ここでポンプlOにより循環される不凍液と熱交換する
ことで冷却され高圧の液冷媒となる。また、ガス冷媒の
凝縮熱で加熱された不凍液は融雪パネル12内を流れる
ことで、該融雪パネル12上に積もった雪を融解する。
Here, it is cooled by exchanging heat with the antifreeze fluid circulated by the pump IO, and becomes a high-pressure liquid refrigerant. Furthermore, the antifreeze heated by the heat of condensation of the gas refrigerant flows through the snow melting panel 12 to melt the snow accumulated on the snow melting panel 12.

一方、高圧の液冷媒は電磁弁16を経て絞り装置5によ
り減圧され、低圧の気液混合冷媒となって室外熱交換器
4に入る。ここで、室外送風機7により通風される室外
空気と熱交換されて蒸発し、低圧のガス冷媒となる。こ
のガス冷媒は四方弁2を経て圧縮機1に吸入され、再び
高温高圧のガス冷媒に圧縮される。
On the other hand, the high-pressure liquid refrigerant passes through the electromagnetic valve 16 and is reduced in pressure by the throttle device 5, and enters the outdoor heat exchanger 4 as a low-pressure gas-liquid mixed refrigerant. Here, it exchanges heat with the outdoor air ventilated by the outdoor blower 7 and evaporates, becoming a low-pressure gas refrigerant. This gas refrigerant is sucked into the compressor 1 through the four-way valve 2, and is again compressed into high-temperature, high-pressure gas refrigerant.

次に融雪及び暖房運転時の動作を第4図について述べる
。゛この場合は、ポンプ10を運転し、かつ送風機6.
7も運転状態に保持すると共に、電磁弁13〜16を開
にし、四方弁2を第4図に示す接続状態に切換える。か
かる状態で圧縮機1を駆動すると、冷媒は第4図の矢印
方向に流れる。
Next, the operations during snow melting and heating operation will be described with reference to FIG.゛In this case, the pump 10 is operated and the blower 6.
7 is also maintained in the operating state, the solenoid valves 13 to 16 are opened, and the four-way valve 2 is switched to the connected state shown in FIG. When the compressor 1 is driven in this state, the refrigerant flows in the direction of the arrow in FIG.

即ち、圧縮機1から吐出された高温高圧のガス冷媒は四
方弁2を経て室内熱交換器3側と融雪用熱交換器8側と
の2方向へ分流する。このうち、一方は電磁弁13を経
て室内熱交換器3に入り、室内送風機6により通風され
る室内空気により冷却され高圧の液冷媒となる。そして
ガス冷媒の凝縮熱により加熱された室内空気は室内を暖
房する。
That is, the high temperature and high pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and is divided into two directions: the indoor heat exchanger 3 side and the snow melting heat exchanger 8 side. One of the refrigerants enters the indoor heat exchanger 3 through the solenoid valve 13, is cooled by indoor air ventilated by the indoor blower 6, and becomes a high-pressure liquid refrigerant. The indoor air heated by the heat of condensation of the gas refrigerant heats the room.

また、上記の高圧の液冷媒は電磁弁14を経て絞り装置
5により減圧され低圧の気液混合冷媒となって室外熱交
換器4に入る。ここで、室外送風機7により通風される
室外空気により加熱され蒸発して低圧のガス冷媒となり
、さらに四方弁2を経て圧縮機1が吸入される。
Further, the high-pressure liquid refrigerant passes through the electromagnetic valve 14 and is depressurized by the expansion device 5 to become a low-pressure gas-liquid mixed refrigerant and enters the outdoor heat exchanger 4. Here, the outdoor air ventilated by the outdoor blower 7 heats and evaporates the refrigerant into a low-pressure gas refrigerant, which is then sucked into the compressor 1 via the four-way valve 2 .

また、分流ガス冷媒の他方は電磁弁15を経て融雪用熱
交換器8に入る。ここで、ポンプ10により循環される
不凍液と熱交換することで、冷媒され高圧の液冷媒とな
る。そして、ガス冷媒の凝縮熱で加熱された不凍液は融
雪パネル12内を流れることによって、該融雪パネル1
2上に積もった雪を融解する。
The other part of the divided gas refrigerant passes through the electromagnetic valve 15 and enters the snow melting heat exchanger 8 . Here, by exchanging heat with the antifreeze fluid circulated by the pump 10, the refrigerant becomes a high-pressure liquid refrigerant. The antifreeze heated by the condensation heat of the gas refrigerant flows through the snow melting panel 12.
2. Melt the snow that has piled up on top.

一方、上記高圧の液冷媒は電磁弁16を経て絞り装置5
に入り減圧されて低圧の気液混合冷媒となる。この気液
混合冷媒は室外熱交換器4に入り、室外送風機7により
通風される室外空気と熱交換されて蒸発し、低圧のガス
冷媒となり、四方弁2を経て圧縮機1に吸入される。
On the other hand, the high-pressure liquid refrigerant passes through the solenoid valve 16 to the throttle device 5.
The refrigerant enters the tank and is depressurized to become a low-pressure gas-liquid mixed refrigerant. This gas-liquid mixed refrigerant enters the outdoor heat exchanger 4, exchanges heat with the outdoor air ventilated by the outdoor blower 7, evaporates, becomes a low-pressure gas refrigerant, and is sucked into the compressor 1 via the four-way valve 2.

次に除霜運転時の動作を第5図について述べる。Next, the operation during defrosting operation will be described with reference to FIG.

この場合は、ポンプ10及び室外送風機7を運転し、室
外送風機7を停止し、さらに電磁弁13゜14を閉に、
電磁弁15.16を開にすると共に、四方弁2を第5図
に示す接続状態に切換える。かかる状態で圧縮機lを駆
動すると、冷媒は第5図の矢印方向に流される。
In this case, operate the pump 10 and the outdoor blower 7, stop the outdoor blower 7, and close the solenoid valves 13 and 14.
The solenoid valves 15 and 16 are opened, and the four-way valve 2 is switched to the connected state shown in FIG. When the compressor 1 is driven in this state, the refrigerant is caused to flow in the direction of the arrow in FIG.

即ち、暖房時、融雪時及び融雪+暖房時に室外空気温度
が低下すると、室外熱交換器4の表面に着霜が生じるた
め、冷凍サイクルは除霜運転に入る。これに伴い圧縮機
lから吐出された高温高圧のガス冷媒は四方弁2を経て
室外熱交換器4に入り、室外熱交換器4を加熱すること
で、その表面に付着した霜を溶融する。また、室外熱交
換器4を加熱することで冷媒された高温高圧のガス冷媒
は高圧の液冷媒となる。この高圧液冷媒は絞り装置5で
減圧され、低圧の気液混合冷媒となって融雪用熱交換器
8に入る。ここで、低圧の気液混合冷媒はポンプ10に
より循環される不凍液と熱交換して蒸発し、低圧のガス
冷媒となり、電磁弁15及び四方弁2を経て圧縮機1に
吸入される。
That is, when the outdoor air temperature decreases during heating, snow melting, and snow melting + heating, frost forms on the surface of the outdoor heat exchanger 4, so the refrigeration cycle enters a defrosting operation. Along with this, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and enters the outdoor heat exchanger 4, heating the outdoor heat exchanger 4 and melting the frost attached to its surface. In addition, the high-temperature, high-pressure gas refrigerant refrigerated by heating the outdoor heat exchanger 4 becomes a high-pressure liquid refrigerant. This high-pressure liquid refrigerant is depressurized by the expansion device 5, becomes a low-pressure gas-liquid mixed refrigerant, and enters the snow melting heat exchanger 8. Here, the low-pressure gas-liquid mixed refrigerant exchanges heat with the antifreeze fluid circulated by the pump 10 and evaporates, becoming a low-pressure gas refrigerant, which is sucked into the compressor 1 via the electromagnetic valve 15 and the four-way valve 2.

上述のような本実施冷凍サイクルにあっては、冷媒回路
中に電磁弁13〜16及び四方弁2を組込み、これら電
磁弁13〜16及び四方弁2を冷房、暖房、融雪、融雪
+暖房、除霜の各運転モードに応じて切換え、冷媒の流
れを変えると共に、従来のように圧縮機1の吐出側に融
雪用熱交換器8を直結する方式になっていないため、各
運転モードにおける熱ロスがなくなり、効率的な運転が
可能になり、暖房能力、除霜能力も向上できる。
In the present refrigeration cycle as described above, the solenoid valves 13 to 16 and the four-way valve 2 are incorporated in the refrigerant circuit, and these solenoid valves 13 to 16 and the four-way valve 2 are used for cooling, heating, snow melting, snow melting + heating, In addition to changing the flow of refrigerant according to each defrosting operation mode, the heat exchanger 8 for snow melting is not directly connected to the discharge side of the compressor 1 as in the past, so the heat exchanger in each operation mode is Loss is eliminated, efficient operation becomes possible, and heating capacity and defrosting capacity can also be improved.

また、融雪+暖房時は、圧縮機1からの高温高圧ガス冷
媒を暖房系と融雪系に振り分けて流すようにしたので、
暖房と融雪の再運転時の能力を向上できる。
In addition, during snow melting and heating, the high-temperature, high-pressure gas refrigerant from compressor 1 is distributed to the heating system and the snow melting system.
The ability to restart heating and snow melting can be improved.

第6図は、この発明による冷暖房融雪装置の他の実施例
を示す構成図である。
FIG. 6 is a configuration diagram showing another embodiment of the air conditioning/heating/snow melting device according to the present invention.

図において、17は室内機であり、第1図に示す室内熱
交換器3及び送風機6を備えている。室内機17の吹出
口17aには、吹出空気温度を検出する温度センサ18
が取り付けられている。また、19は室内機17に組付
けたヒータ等の補助暖房装置、20はリモートコントロ
ーラである。
In the figure, 17 is an indoor unit, which is equipped with the indoor heat exchanger 3 and the blower 6 shown in FIG. A temperature sensor 18 is installed at the outlet 17a of the indoor unit 17 to detect the temperature of the outlet air.
is installed. Further, 19 is an auxiliary heating device such as a heater assembled to the indoor unit 17, and 20 is a remote controller.

21は第1図に示す圧縮機1.四方弁2.室内熱交換器
4.送風機7.絞り装置5及び電磁弁13〜16を内蔵
する室外機であり、この室外機21と室内機17間は冷
媒配管9により接続されている。また、22は第1図に
示す融雪用熱交換器8及びポンプ10を有する融雪ユニ
ットで、この融雪ユニット22と融雪パネル12間は配
管9a。
21 is the compressor 1 shown in FIG. Four-way valve 2. Indoor heat exchanger4. Blower 7. This is an outdoor unit incorporating a throttle device 5 and electromagnetic valves 13 to 16, and the outdoor unit 21 and the indoor unit 17 are connected by a refrigerant pipe 9. Further, 22 is a snow melting unit having a snow melting heat exchanger 8 and a pump 10 shown in FIG. 1, and a pipe 9a is connected between this snow melting unit 22 and the snow melting panel 12.

9bにより接続されている。23は融雪パネル12に取
り付けた降雪センサである。
9b. 23 is a snowfall sensor attached to the snow melting panel 12.

上記構成の実施例において、融雪+暖房運転時は、温度
センサ18により室外機17の吹出空気温度を検出し、
吹出空気温度をリモートコントローラ20内の制御部に
取り込み、吹出空気温度が設定値以下になったことを制
御部が判断した時、補助暖房装置19を運転させる。こ
れにより、融雪負荷の有無に関係なく、室内に高温風を
吹出し、室内を快適に暖房し得るほか、暖房能力及び融
雪能力の低下を防止できる。
In the embodiment with the above configuration, during the snow melting + heating operation, the temperature sensor 18 detects the temperature of the air blown from the outdoor unit 17,
The temperature of the blown air is taken into a control unit in the remote controller 20, and when the control unit determines that the temperature of the blown air has become below a set value, the auxiliary heating device 19 is operated. Thereby, regardless of the presence or absence of a snow melting load, high-temperature air can be blown into the room to comfortably heat the room, and a decrease in heating capacity and snow melting capacity can be prevented.

[発明の効果] 以上のように、この発明によれば、冷媒回路中に冷房、
暖房、融雪、融雪+暖房、除霜の各運転モードに応じて
冷媒の流れを変える電磁弁及び四方弁を組込んだ構成に
したので、各運転モードにおける熱ロスが排除され効率
的な運転が可能になると共に、積雪がない冬場の暖房能
力、除霜能力を向上できるという効果がある。
[Effects of the Invention] As described above, according to the present invention, cooling,
The structure incorporates a solenoid valve and a four-way valve that change the flow of refrigerant according to each operation mode: heating, snow melting, snow melting + heating, and defrosting, so heat loss in each operation mode is eliminated and efficient operation is achieved. This has the effect of improving heating capacity and defrosting capacity in winter when there is no snowfall.

また、融雪士暖房運転時に室内機の吹出温度が設定値以
下になった時、補助暖房装置を運転できる構成にしたの
で、暖房能力が低下するのを防止できる。
Moreover, since the configuration is such that the auxiliary heating device can be operated when the blowout temperature of the indoor unit falls below a set value during the snow melter heating operation, it is possible to prevent the heating capacity from decreasing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図はこの発明による冷暖房融雪装置の一実
施例を示すもので、第1図は暖房運転時の構成図、第2
図は冷房運転時の構成図、第3図は融雪運転時の構成図
、第4図は融雪+暖房運転時の構成図、第5図は除霜運
転時の構成図である。 第6図はこの発明による冷暖房融雪装置の他の実施例を
示す構成図である。 第7図は従来の冷暖房融雪装置の構成図、第8図は同装
置の据付図である。 ■・・・圧縮機、2・・・四方弁、3・・・室内熱交換
器、4・・・室外熱交換器、5・・・絞り装置、6・・
・室内送風機、7・・・室外送風機、8・・・融雪用熱
交換器、10・・・ポンプ、12・・・融雪パネル、1
3〜16・・・電磁弁、18・・・温度センサ、19・
・・補助暖房装置。 なお、図中同一符号は同一または相当部分を示す。
Figures 1 to 5 show an embodiment of an air conditioning/heating snow melting device according to the present invention. Figure 1 is a configuration diagram during heating operation;
3 is a configuration diagram during cooling operation, FIG. 3 is a configuration diagram during snow melting operation, FIG. 4 is a configuration diagram during snow melting + heating operation, and FIG. 5 is a configuration diagram during defrosting operation. FIG. 6 is a block diagram showing another embodiment of the cooling/heating/snow melting device according to the present invention. FIG. 7 is a configuration diagram of a conventional air-conditioning/heating snow melting device, and FIG. 8 is an installation diagram of the same device. ■... Compressor, 2... Four-way valve, 3... Indoor heat exchanger, 4... Outdoor heat exchanger, 5... Throttle device, 6...
・Indoor blower, 7...Outdoor blower, 8...Snow melting heat exchanger, 10...Pump, 12...Snow melting panel, 1
3-16...Solenoid valve, 18...Temperature sensor, 19.
...Auxiliary heating device. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、四方弁、室内熱交換器、絞り装置、室外
熱交換器を閉ループに接続してなる冷媒回路と、前記冷
媒回路の室内熱交換器の四方弁との冷媒通路及び絞り装
置との冷媒通路間に冷媒の流れを開閉する電磁弁を介し
て接続した融雪用熱交換器と、前記融雪用熱交換器の二
次側に冷媒循環ポンプを介して接続した融雪パネルと、
前記室内熱交換器への冷媒の流れを開閉する電磁弁とを
備えたことを特徴とする冷暖房融雪装置。
(1) A refrigerant circuit formed by connecting a compressor, a four-way valve, an indoor heat exchanger, a throttling device, and an outdoor heat exchanger in a closed loop, and a refrigerant passage and a throttling device between the four-way valve of the indoor heat exchanger in the refrigerant circuit. a snow melting heat exchanger connected via a solenoid valve that opens and closes the flow of refrigerant between the refrigerant passages of the snow melting heat exchanger, and a snow melting panel connected to the secondary side of the snow melting heat exchanger via a refrigerant circulation pump;
An air conditioning/heating/snow melting device comprising: a solenoid valve that opens and closes a flow of refrigerant to the indoor heat exchanger.
(2)圧縮機、四方弁、室内熱交換器、絞り装置、室外
熱交換器を閉ループに接続してなる冷媒回路と、前記冷
媒回路の室内熱交換器の四方弁との冷媒通路及び絞り装
置との冷媒通路間に冷媒の流れを開閉する電磁弁を介し
て接続した融雪用熱交換器と、前記融雪用熱交換器の二
次側に冷媒循環ポンプを介して接続した融雪パネルと、
前記室内熱交換器への冷媒の流れを開閉する電磁弁と、
室内への吹出温度を検出する温度センサと、前記温度セ
ンサで検出された吹出空気温度が設定値以下の時動作し
て室内吹出空気を加熱する補助暖房装置とを備えたこと
を特徴とする冷暖房融雪装置。
(2) A refrigerant circuit formed by connecting a compressor, a four-way valve, an indoor heat exchanger, a throttling device, and an outdoor heat exchanger in a closed loop, and a refrigerant passage and a throttling device between the four-way valve of the indoor heat exchanger in the refrigerant circuit. a snow melting heat exchanger connected via a solenoid valve that opens and closes the flow of refrigerant between the refrigerant passages of the snow melting heat exchanger, and a snow melting panel connected to the secondary side of the snow melting heat exchanger via a refrigerant circulation pump;
a solenoid valve that opens and closes the flow of refrigerant to the indoor heat exchanger;
A heating and cooling system characterized by comprising: a temperature sensor that detects the temperature of air blown into the room; and an auxiliary heating device that operates when the temperature of the blown air detected by the temperature sensor is below a set value and heats the air blown into the room. Snow melting equipment.
JP24994689A 1989-09-26 1989-09-26 Air-conditioning snow melting device Pending JPH03113249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24994689A JPH03113249A (en) 1989-09-26 1989-09-26 Air-conditioning snow melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24994689A JPH03113249A (en) 1989-09-26 1989-09-26 Air-conditioning snow melting device

Publications (1)

Publication Number Publication Date
JPH03113249A true JPH03113249A (en) 1991-05-14

Family

ID=17200533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24994689A Pending JPH03113249A (en) 1989-09-26 1989-09-26 Air-conditioning snow melting device

Country Status (1)

Country Link
JP (1) JPH03113249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002695A (en) * 2006-06-20 2008-01-10 Daikin Ind Ltd Heat pump equipment
WO2015068293A1 (en) * 2013-11-08 2015-05-14 三菱電機株式会社 Outdoor unit
CN105546875A (en) * 2016-01-30 2016-05-04 山东创尔沃热泵技术股份有限公司 Integrated system for air-cooled heat pump units

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002695A (en) * 2006-06-20 2008-01-10 Daikin Ind Ltd Heat pump equipment
WO2015068293A1 (en) * 2013-11-08 2015-05-14 三菱電機株式会社 Outdoor unit
GB2535831A (en) * 2013-11-08 2016-08-31 Mitsubishi Electric Corp Outdoor unit
JP5989260B2 (en) * 2013-11-08 2016-09-07 三菱電機株式会社 Outdoor unit
GB2535831B (en) * 2013-11-08 2020-02-19 Mitsubishi Electric Corp Air-conditioning outdoor unit with snow protection
CN105546875A (en) * 2016-01-30 2016-05-04 山东创尔沃热泵技术股份有限公司 Integrated system for air-cooled heat pump units

Similar Documents

Publication Publication Date Title
CN111256290B (en) Heat pump air conditioner
KR100821728B1 (en) Air conditioning system
JPH03236570A (en) Air-conditioner
JP3324420B2 (en) Refrigeration equipment
JPH07120085A (en) Air conditioner
JPH074794A (en) Air-conditioning equipment
JPH08159621A (en) Air conditioner
JPH03113249A (en) Air-conditioning snow melting device
JPH09119754A (en) Air conditioner
KR101100009B1 (en) Air conditioning system
JP2001201217A (en) Air conditioner
CN214501455U (en) Air conditioner
JPH05340643A (en) Air conditioner
JPH10253188A (en) Air conditioner
JPH04136669A (en) Multi-room air conditioner
JPH07117323B2 (en) Air conditioner
JP2001174089A (en) Multiple-chamber-type air-conditioner
JPH06213478A (en) Air-conditioning machine
JPH02223778A (en) Defrosting device for air-conditioning machine
JP2001330347A (en) Air conditioner
JPS60598Y2 (en) Separate air conditioner/heater
JP4186399B2 (en) Heat pump air conditioner
JPH0429345Y2 (en)
JPH0510191Y2 (en)
JPH01127870A (en) Air conditioner