JPH03113244A - Air-conditioning device - Google Patents
Air-conditioning deviceInfo
- Publication number
- JPH03113244A JPH03113244A JP25272489A JP25272489A JPH03113244A JP H03113244 A JPH03113244 A JP H03113244A JP 25272489 A JP25272489 A JP 25272489A JP 25272489 A JP25272489 A JP 25272489A JP H03113244 A JPH03113244 A JP H03113244A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- amount
- heat
- refrigerant
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004378 air conditioning Methods 0.000 title description 4
- 239000003507 refrigerant Substances 0.000 claims abstract description 66
- 238000010438 heat treatment Methods 0.000 claims abstract description 31
- 238000001816 cooling Methods 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 10
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 230000017525 heat dissipation Effects 0.000 abstract description 2
- 230000007423 decrease Effects 0.000 description 16
- 230000005855 radiation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は冷暖房装置の冷媒サイクルに関するものである
。DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a refrigerant cycle for a heating and cooling system.
従来の技術
従来、熱源側冷媒サイクルと利用側冷媒サイクルに分離
した冷暖房装置の冷媒サイクルは特開昭62−2389
51号公報に示されておシ第2図のように構成されてい
た。第2図において、1は圧縮機、2は熱源側四方弁、
3は熱源側熱交換器、4は冷房用減圧装置、6は暖房用
減圧装置、6は暖房時冷房用減圧装置4t−閉成する逆
止弁、7は冷房時暖房用減圧装置6を閉成する逆止弁、
8は第1補助熱交換器でこれらを環状に連接し、熱源側
冷媒サイクIL/を形成している。9は第2補助熱交換
器で第1補助熱交換器8と熱交換するように一体に形成
されている。1oは冷媒量調整タンクで冷房時と暖房時
の冷媒量を調整している。11は冷媒搬送装置で冷房時
と暖房時で冷媒の流出方向が反対となる可逆特性をもっ
ておシ、これらは熱源側ユニツ)aに収納されている。Conventional technology Conventionally, the refrigerant cycle of air conditioning equipment separated into a heat source side refrigerant cycle and a user side refrigerant cycle was disclosed in Japanese Patent Application Laid-Open No. 62-2389.
It was disclosed in Japanese Patent No. 51 and was constructed as shown in Figure 2. In Fig. 2, 1 is a compressor, 2 is a four-way valve on the heat source side,
3 is a heat source side heat exchanger, 4 is a pressure reducing device for cooling, 6 is a pressure reducing device for heating, 6 is a check valve that closes the cooling pressure reducing device 4t during heating, and 7 is a pressure reducing device for heating 6 that is closed during cooling. check valve,
8 is a first auxiliary heat exchanger which is connected in an annular manner to form a heat source side refrigerant cycle IL/. A second auxiliary heat exchanger 9 is integrally formed to exchange heat with the first auxiliary heat exchanger 8. 1o is a refrigerant amount adjustment tank that adjusts the amount of refrigerant during cooling and heating. Reference numeral 11 denotes a refrigerant conveying device which has a reversible characteristic such that the outflow direction of the refrigerant is opposite during cooling and heating, and is housed in the heat source side unit a).
12は利用側熱交換器で利用側ユニツ)bに収納され接
続配管Cr c/で熱源側ユニッ)aと接続されている
。Reference numeral 12 denotes a heat exchanger on the user side, which is housed in the user side unit)b and connected to the heat source side unit)a through a connecting pipe Crc/.
前記第2補助熱交換器9と冷媒量調整タンク10゜冷媒
搬送装置11.利用側熱交換器12および接続配管fi
環状に連続し利用側冷媒サイクルを形成している。The second auxiliary heat exchanger 9 and the refrigerant amount adjustment tank 10° refrigerant conveying device 11. Usage side heat exchanger 12 and connection piping fi
It is continuous in an annular shape and forms a user-side refrigerant cycle.
以上のように構成された冷暖房装置についてその動作を
説明する。The operation of the heating and cooling system configured as described above will be explained.
冷房運転時は図中実線矢印の冷媒サイクルとなシ、熱源
側冷媒サイクルでは、圧縮機1からの高温高圧ガスは四
方弁2を通り熱源側熱交換器3で放熱して凝縮液化し逆
止弁6を通って冷房用膨張弁4で減圧され第1補助熱交
換器8で蒸発して熱源側四方弁2を通9圧縮機1へ循環
する。この時利用側冷媒サイクルの第2補助熱交換器9
と前記第1補助熱交換器8が熱交換し、利用側冷媒サイ
クル内のガス冷媒が冷却されて液化し、冷媒量調整タン
ク1oを通って冷媒搬送装置11に送られ、この冷媒搬
送装置11によって接続配管cf通って利用側熱交換器
12へ送られて冷房して吸熱蒸発し、ガス化して接続配
管a’ k通って第2補助熱交換器9に循環することに
なる。During cooling operation, the refrigerant cycle shown by the solid line arrow in the figure is used.In the refrigerant cycle on the heat source side, high-temperature, high-pressure gas from the compressor 1 passes through the four-way valve 2, radiates heat in the heat exchanger 3 on the heat source side, condenses and liquefies, and is prevented from returning. It passes through the valve 6, is depressurized by the cooling expansion valve 4, is evaporated in the first auxiliary heat exchanger 8, and is circulated through the heat source side four-way valve 2 to the compressor 1. At this time, the second auxiliary heat exchanger 9 of the refrigerant cycle on the user side
The first auxiliary heat exchanger 8 exchanges heat, and the gas refrigerant in the user-side refrigerant cycle is cooled and liquefied, and is sent to the refrigerant conveyance device 11 through the refrigerant amount adjustment tank 1o. It is sent to the user-side heat exchanger 12 through the connecting pipe cf, where it is cooled, endothermically evaporated, gasified, and circulated through the connecting pipe a'k to the second auxiliary heat exchanger 9.
一方、暖房運転時においては、図中破線矢印の冷媒サイ
クルとなり、熱源側冷媒サイクルでは、圧縮機1からの
高温高圧冷媒は熱源側四方弁2から第1補助交換器8に
送られ、放熱して凝縮液化し、逆止弁7から暖房用減圧
装置5で減圧し、熱源側熱交換器3で吸熱蒸発し熱源側
四方弁2全通って圧縮機1へ循環する。この時利用側冷
媒サイクルの第2補助熱交換器9と前記第1補助熱交換
器8が熱交換し、利用側冷媒サイクル内の液冷媒が加熱
されてガス化し、接続配管C′を通って利用側熱交換器
12へ送られ、暖房して放熱液化し接続配管Cを通って
冷媒搬送装置11へ送られ、冷媒量調整タンク10から
第2補助熱交換器9へ循環する。On the other hand, during heating operation, the refrigerant cycle is indicated by the dashed arrow in the figure, and in the heat source side refrigerant cycle, the high temperature, high pressure refrigerant from the compressor 1 is sent from the heat source side four-way valve 2 to the first auxiliary exchanger 8, where it radiates heat. It is condensed and liquefied, the pressure is reduced through the check valve 7 by the heating pressure reducing device 5, it is endothermically evaporated in the heat source side heat exchanger 3, and is circulated through the heat source side four-way valve 2 to the compressor 1. At this time, the second auxiliary heat exchanger 9 of the user-side refrigerant cycle and the first auxiliary heat exchanger 8 exchange heat, and the liquid refrigerant in the user-side refrigerant cycle is heated and gasified, passing through the connecting pipe C'. The refrigerant is sent to the user side heat exchanger 12, heated and liquefied with heat radiation, and sent to the refrigerant conveying device 11 through the connection pipe C, and circulated from the refrigerant amount adjustment tank 10 to the second auxiliary heat exchanger 9.
発明が解決しようとする課題
しかしながら上記のような構成では、暖房運転の起動時
に熱源側冷媒サイクルの圧縮機と同時に冷媒搬送装置を
運転した場合、利用側冷媒サイクルのガス冷媒の一部が
冷媒搬送装置に流入し、冷媒搬送能力が低下する。従っ
て第2補助熱交換器での熱交換能力が低下して第1補助
熱交換器での熱交換能力つまり熱源側冷媒サイクルの放
熱凝縮能力が低下し、高圧圧力が上昇して圧縮機の運転
が停止する恐れがあった。Problems to be Solved by the Invention However, with the above configuration, if the refrigerant conveyance device is operated at the same time as the compressor of the heat source side refrigerant cycle at the start of heating operation, part of the gas refrigerant of the user side refrigerant cycle will be transferred to the refrigerant. This will flow into the equipment and reduce the refrigerant transport capacity. Therefore, the heat exchange capacity of the second auxiliary heat exchanger decreases, the heat exchange capacity of the first auxiliary heat exchanger, that is, the heat dissipation and condensation capacity of the heat source side refrigerant cycle decreases, and the high pressure increases, causing the compressor to operate. There was a risk that it would stop.
この問題点を解決するために圧縮機の能力を制御する方
法も考えられるが、複雑な構成となるとともにコスト的
にも高くなる欠点があった。In order to solve this problem, a method of controlling the capacity of the compressor has been considered, but this method has the drawbacks of requiring a complicated structure and increasing costs.
本発明は上記問題点に鑑み、簡単な構成で暖房運転の起
動時に冷媒搬送装置の搬送能力が低下しても、圧縮機の
運転が停止する恐れのない冷暖房装置を提供するもので
ある。In view of the above-mentioned problems, the present invention provides an air-conditioning and heating system that has a simple configuration and that does not cause the compressor to stop operating even if the transport capacity of the refrigerant transport system decreases at the start of heating operation.
課題を解決するための手段
上記問題点を解決するために、本発明の冷暖房装置は、
熱源側冷媒サイクルと、利用側冷媒サイクルと、暖房用
減圧装置と並列に設けた電磁弁と、前記冷媒搬送装置の
入口圧力と出口圧力の差圧を検出する差圧検出装置と、
この差圧検出装置で検出した差圧により前記電磁弁を開
成する制御装置とを備えたものである。Means for Solving the Problems In order to solve the above problems, the air conditioning system of the present invention includes:
a heat source side refrigerant cycle, a user side refrigerant cycle, a solenoid valve provided in parallel with a heating pressure reducing device, and a differential pressure detection device that detects a differential pressure between an inlet pressure and an outlet pressure of the refrigerant transfer device;
and a control device that opens the electromagnetic valve based on the differential pressure detected by the differential pressure detection device.
作 用
本発明は上記した構成によって、暖房運転の起動待所定
時間は、熱源側冷媒サイクルの能力が低下し、第1補助
熱交換器での熱交換熱量(放熱量ンが少なくなるので、
高圧圧力も低くすることができることとなる。According to the above-described configuration, the capacity of the heat source side refrigerant cycle decreases during the predetermined waiting time for starting the heating operation, and the heat exchange heat amount (heat radiation amount) in the first auxiliary heat exchanger decreases.
This means that the high pressure can also be lowered.
実施例
以下本発明の一実施例の冷暖房装置について、図面を参
照しながら説明する。第1図は本発明の実施例における
冷暖房装置の冷媒サイクルを示すものである。第1図に
おいて、13は暖房用減圧装置5と並列に設けられた電
磁弁、14は前記冷媒搬送装置11の入口圧力と出口圧
力の差圧を検出する差圧検出装置、15は差圧検出装置
14で検出した差圧により前記電磁弁を開成する制御装
置である。その他は前記従来例と同じであシ、ここでは
同一符号を用いて示し説明を省略する。またこの冷媒サ
イクルの動作についても前記従来例と同じであシ詳細は
省略するが、暖房運転時冷媒搬送装置11の入口圧力と
出口圧力の差圧が冷媒搬送量の低下により所定よル小さ
くなれば(例えば0.5KP/c++! ) 、差圧検
出装置14が作動し、制御装置15により前記電磁弁1
3を開成するようにしている。従って減圧量が低下して
熱源側熱交換器3の熱交換熱量(吸熱量)が低下し、第
1補助熱交換器8での熱交換熱量(放熱量)が少なくな
るので、高圧圧力も低くすることができる。EXAMPLE Hereinafter, a heating and cooling system according to an example of the present invention will be described with reference to the drawings. FIG. 1 shows a refrigerant cycle of a heating and cooling system according to an embodiment of the present invention. In FIG. 1, 13 is a solenoid valve installed in parallel with the heating pressure reducing device 5, 14 is a differential pressure detection device for detecting the differential pressure between the inlet pressure and the outlet pressure of the refrigerant conveying device 11, and 15 is a differential pressure detector. This is a control device that opens the electromagnetic valve based on the differential pressure detected by the device 14. The rest is the same as the conventional example, and the same reference numerals are used here to omit the explanation. The operation of this refrigerant cycle is also the same as that of the conventional example, and although the details are omitted, the differential pressure between the inlet pressure and the outlet pressure of the refrigerant conveying device 11 during heating operation becomes smaller by a predetermined amount due to a decrease in the amount of refrigerant conveyed. (for example, 0.5KP/c++!), the differential pressure detection device 14 is activated, and the control device 15 controls the solenoid valve 1.
I am trying to open 3. Therefore, the amount of pressure reduction decreases, the heat exchanged heat amount (heat absorption amount) of the heat source side heat exchanger 3 decreases, and the heat exchanged heat amount (heat radiation amount) in the first auxiliary heat exchanger 8 decreases, so the high pressure also decreases. can do.
以上のように本実施例によれば、熱源側冷媒サイクルと
、利用側冷媒サイクルと、暖房用減圧装置と並列に設け
た電磁弁と、冷媒搬送装置11の入口圧力と出口圧力の
差圧を検出する差圧検出装置と、この差圧検出装置で検
出した差圧により前記電磁弁を開成する制御装置とを備
えたので、暖房運転の起動待所定時間は冷媒搬送装置の
能力が低下しても、熱源側熱交換器の熱交換熱量(吸熱
量)が低下し、第1補助熱交換器での熱交換熱量(放熱
量)が少なくなるので、高圧圧力も低くすることができ
る。従って、暖房運転の起動時に、高圧圧力が上昇して
圧縮機が停止する恐れがなくなるものである。As described above, according to this embodiment, the differential pressure between the inlet pressure and outlet pressure of the heat source side refrigerant cycle, the user side refrigerant cycle, the electromagnetic valve provided in parallel with the heating pressure reducing device, and the refrigerant transfer device 11 is controlled. Since it is equipped with a differential pressure detection device that detects the pressure difference and a control device that opens the solenoid valve based on the differential pressure detected by the differential pressure detection device, the ability of the refrigerant conveying device decreases during the predetermined waiting time to start the heating operation. Also, since the heat exchange heat amount (heat absorption amount) of the heat source side heat exchanger decreases and the heat exchange heat amount (heat release amount) in the first auxiliary heat exchanger decreases, the high pressure can also be lowered. Therefore, there is no possibility that the compressor will stop due to a rise in high pressure when starting the heating operation.
発明の効果
以上のように本発明は、熱源側冷媒サイクルと、利用側
冷媒サイクルと、暖房用減圧装置と並列に設けた電磁弁
と、冷媒搬送装置の入口圧力と出口圧力の差圧を検出す
る差圧検出装置と、この差圧検出装置で検出した差圧に
より前記電磁弁を開成する制御装置とを備えたもので、
暖房運転の起動待所定時間は、熱源側熱交換器の熱交換
熱量(吸熱量)が低下し、第1補助熱交換器での熱交換
熱量(放熱量)が少なくなるので、高圧圧力も低くする
ことができる。従って起動時冷媒搬送装置の搬送能力が
低下しても、熱源側冷媒サイクルの高圧圧力が上昇して
圧縮機が停止する恐れがなく安定した運転をすることが
できる効果がある。Effects of the Invention As described above, the present invention detects the differential pressure between the inlet pressure and outlet pressure of the heat source side refrigerant cycle, the user side refrigerant cycle, the solenoid valve provided in parallel with the heating pressure reducing device, and the refrigerant conveyance device. and a control device that opens the solenoid valve based on the differential pressure detected by the differential pressure detection device,
During the predetermined time for starting heating operation, the heat exchange heat amount (heat absorption amount) of the heat source side heat exchanger decreases, and the heat exchange heat amount (heat release amount) of the first auxiliary heat exchanger decreases, so the high pressure is also low. can do. Therefore, even if the transport capacity of the refrigerant transport device decreases during startup, there is no risk that the high pressure in the heat source side refrigerant cycle will rise and the compressor will stop, and stable operation can be achieved.
第1図は本発明の一実施例における冷暖房装置の冷媒サ
イクル図、第2図は従来の冷暖房装置の冷媒サイクル図
である。
3・・・・・・熱源側熱交換器、3a・・・・・・熱源
側送風機、8・・・・・・第1補助熱交換器、9・・・
・・・第2補助熱交換器、11・・・・・・冷媒搬送装
置、12・・・・・・利用側熱交換器、13・・・・・
・電磁弁、14・・・・・・差圧検出装置、16・・・
・・・制御装置。FIG. 1 is a refrigerant cycle diagram of a heating and cooling system according to an embodiment of the present invention, and FIG. 2 is a diagram of a refrigerant cycle of a conventional heating and cooling system. 3... Heat source side heat exchanger, 3a... Heat source side blower, 8... First auxiliary heat exchanger, 9...
... Second auxiliary heat exchanger, 11 ... Refrigerant conveyance device, 12 ... User side heat exchanger, 13 ...
・Solenoid valve, 14...Differential pressure detection device, 16...
···Control device.
Claims (1)
房用減圧装置および第1補助熱交換器を環状に連接して
なる熱源側冷媒サイクルと、この第1補助熱交換器と一
体に形成し、熱交換する第2補助熱交換器と冷媒搬送装
置および利用側熱交換器を環状に連接した利用側冷媒サ
イクルと、前記暖房用減圧装置と並列に設けた電磁弁と
、冷媒搬送装置の入口圧力と出口圧力の差圧を検出する
差圧検出装置と、この差圧検出装置で検出した差圧によ
り前記電磁弁を開成する制御装置とを備えた冷暖房装置
。A heat source side refrigerant cycle formed by connecting a compressor, a four-way valve, a heat source side heat exchanger, a pressure reducing device for cooling, a pressure reducing device for heating, and a first auxiliary heat exchanger in an annular manner, and integrated with this first auxiliary heat exchanger. a user-side refrigerant cycle in which a second auxiliary heat exchanger for heat exchange, a refrigerant transport device, and a user-side heat exchanger are connected in an annular manner; a solenoid valve provided in parallel with the heating pressure reducing device; A heating and cooling device comprising: a differential pressure detection device that detects a differential pressure between an inlet pressure and an outlet pressure of the device; and a control device that opens the electromagnetic valve based on the differential pressure detected by the differential pressure detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25272489A JPH03113244A (en) | 1989-09-27 | 1989-09-27 | Air-conditioning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25272489A JPH03113244A (en) | 1989-09-27 | 1989-09-27 | Air-conditioning device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03113244A true JPH03113244A (en) | 1991-05-14 |
Family
ID=17241383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25272489A Pending JPH03113244A (en) | 1989-09-27 | 1989-09-27 | Air-conditioning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03113244A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5025150B1 (en) * | 1971-04-24 | 1975-08-21 | ||
JPS6457064A (en) * | 1987-08-28 | 1989-03-03 | Matsushita Refrigeration | Air conditioner |
-
1989
- 1989-09-27 JP JP25272489A patent/JPH03113244A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5025150B1 (en) * | 1971-04-24 | 1975-08-21 | ||
JPS6457064A (en) * | 1987-08-28 | 1989-03-03 | Matsushita Refrigeration | Air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03113244A (en) | Air-conditioning device | |
JPH03113242A (en) | Air-conditioning device | |
JPH03113243A (en) | Air-conditioning device | |
JPH03113245A (en) | Air-conditioning device | |
JPH0229536A (en) | Cooling and heating apparatus | |
JPH03113246A (en) | Air-conditioning device | |
JPH03113248A (en) | Air-conditioning device | |
JPH01306758A (en) | Coolor-heater | |
JPH03113229A (en) | Multi-chamber type cooling or heating device | |
JPS6230702Y2 (en) | ||
JPH01219452A (en) | Air conditioner | |
JP2512161B2 (en) | Air conditioner | |
JPH0157269B2 (en) | ||
JPH0229535A (en) | Cooling and heating apparatus | |
JPH0379964A (en) | Air conditioning apparatus | |
JP3108933B2 (en) | Multi-room air conditioner | |
JP3446159B2 (en) | Absorption type cold heat generator | |
JPH01225850A (en) | Cooler-heater | |
JPH0229534A (en) | Cooling and heating apparatus | |
JPH03260527A (en) | Airconditioning apparatus | |
JPH01234741A (en) | Multi-chamber type cooling and heating device | |
JPH02171531A (en) | Cooling and heating device | |
JPH02195132A (en) | Multi-room air cooling and heating device | |
JPH04268173A (en) | Cooling, heating and hot water feeding device | |
JPH01225846A (en) | Cooler-heater |