[go: up one dir, main page]

JPH03110157A - Production of laminated sheet - Google Patents

Production of laminated sheet

Info

Publication number
JPH03110157A
JPH03110157A JP1250120A JP25012089A JPH03110157A JP H03110157 A JPH03110157 A JP H03110157A JP 1250120 A JP1250120 A JP 1250120A JP 25012089 A JP25012089 A JP 25012089A JP H03110157 A JPH03110157 A JP H03110157A
Authority
JP
Japan
Prior art keywords
laminate
continuously
prepreg
laminated sheet
double belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1250120A
Other languages
Japanese (ja)
Inventor
Takeshi Ishikawa
武 石川
Sunao Ikoma
生駒 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1250120A priority Critical patent/JPH03110157A/en
Publication of JPH03110157A publication Critical patent/JPH03110157A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/034Organic insulating material consisting of one material containing halogen
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To produce a laminated sheet with excellent high frequency characteristics in a continuous technique and to improve dimensional stability by laminating prepregs made of a fluororesin porous sheet as a base material in layers while they are continuously transferred, feeding continuously them in a double belt, performing laminate molding thereof, cutting it into a specified dimension, performing aftercuring thereof and thereafter quenching it. CONSTITUTION:A prepreg 1 is prepd. in continuous lengths by using a porous sheet of a fluororesin as a base material. The prepregs 1 are continuously fed through guide rolls 6 and are continuously put in layers by means of laminating rolls 7. While a laminate 5 wherein the prepregs 1 and if necessary, a metal foil 10 are put in layers is continuously transferred, it is preheated and continuously introduced in a double belt 2. The laminate 5 is passed through the double belt 2 and heat-pressed by means of press-heating apparatus 11 between upper and lower endless belts 3 and 4 to obtain a laminated sheet A. The laminated sheet A cut in a specified dimension is introduced in an aftercuring oven to perform aftercuring thereof and the laminated sheet A is quenched just after it is taken out of the aftercuring oven.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、プリント配線板として用いられる積層板の連
続工法による製造方法に関するものである。
The present invention relates to a method for manufacturing a laminated board used as a printed wiring board by a continuous method.

【従来の技術1 積層板は通常、紙や〃ラス布などを基材としてこれに熱
硬化性樹脂を含浸乾燥することによってプリプレグを調
製すると共に、このプリプレグを所定の定寸法に切断し
、この定寸法に切断した複数枚のプリプレグ及び必要に
応じて銅箔などの金属箔を重ね、これをプレス装置にプ
レートを介して10〜14ffi重ねてセットし、上下
の熱盤によって所定時間加熱加圧する多段積層成形をお
こなうことによって、製造がおこなわれている。しかし
、このように多段積層成形で積層板を製造する場合は、
バッチ作業となるために作業能率が悪く、生産性に多大
の問題を有する。 このために、本出願人によって積層板を連続工法で製造
する方法が特開昭60−189439号公報等によって
提供されている。すなわち、複数枚の長尺のプリプレグ
を重ねて連続的に送りつつ、必要に応じてさらに長尺の
金属箔を重ね、そしてこれをダブルベルトに連続的に通
してダブルベルトによって加熱加圧することによって、
積層板を連続して成形することができるようにしたもの
である。この方法によれば、連続した成形作業で積層板
を製造できるために生産能率がパッチ作業の多段積層成
形よりも飛躇的に向、上する。 【発明が解決しようとする課題】 一方、電子工業や通信、コンピュータなこの分野におい
て使用される周波数は高周波の領域にシフトされており
、このような高周波領域で用いられるプリント配線板の
積層板においては、信号の伝播遅延を短くするうえで誘
電率がより小さいことが要求されている。このためにこ
のような高周波特性が優れた積層板を得るために、積層
板を構成する樹脂、すなわちプリプレグの樹脂として周
波数特性に優れた例えば特許出願公表昭61−5004
34号のような芳香族ポリイソシアネートなどを用いる
ことがなされているが、高周波特性に優れた樹脂は一般
に高温(場合によっては250〜300℃)で長時間(
場合によっては1〜2時間)成形をおこなう必要がある
。 しかし、プリプレグを連続的にダブルベルトに通して加
熱加圧成形する場合には、高温で長時間成形を持続させ
ることができないために、このような高周波特性が優れ
た樹脂を用いて調製したプリプレグを使用して上記のよ
うなダブルベルトによる連続工法で積層板を製造するこ
とはできないものであり、高周波特性に優れた積層板を
連続工法で製造することは困難であるというのが現状で
ある。 本発明は上記の点に鑑みて為されたものであり、高周波
特性に優れた積層板を連続工法で製造することができ、
加えて寸法安定性を高めることができる積層板の製造方
法を提供することを目的とするものである。 [ff題を解決するための手段] 本発明に係る積層板の製造方法は、フッ素樹脂多孔質シ
ートを基材として調製した長尺のプリプレグ1を連続的
に送りつつ所要枚数のこのプリプレグ1,1・・・を重
ね合わせ、これをダブルベルト2に連続して送り込んで
積層成形し、所定寸法に切断した後にアフターキュアー
すると共に77ターキエアー後に急冷することを特徴と
するものである。 以下本発明の詳細な説明する。 プリプレグ1は基材に樹脂のワニスを含浸させて乾燥す
ることによって、長尺のものとして調製される。本発明
においてはこの基材として、フッ素樹脂(ポリテトラフ
ルオロエチレン)の多孔質シートを用いるものである。 7ツ#、樹脂多孔質シートは77素樹脂のシートに平均
粒径が1μ以下程度の小孔を多数設けて多孔質に形成し
たものであり、例えば日東電工株式会社から市販されて
いるものを用いることができる。このシートはこのよう
に小孔を設けた多孔質であるために、紙やガラス布など
と同様に熱硬化性樹脂ワニスに浸漬させることによって
熱硬化性樹脂ワニスを良好に浸透させ、従来の紙やガラ
ス布を基材として用いる場合と同様の工法で容易にプリ
プレグ1を調製することができる。また本発明において
、フッ素樹脂多孔質シートに含浸させるり(脂としては
任意のものを用いることができるが、特にエポキシ樹脂
などの熱硬化性樹脂が好ましい。 そして第1図に示すように、このプリプレグ1をロール
状に巻いたものから巻き外して所定枚数を〃イドロール
6を経由させ連続的に送り、重ねロール7によって各プ
リプレグ1を連続的に重ね合わせる。一方、銅箔などの
金属M10も長尺に形成してロール状に巻いておき、こ
れを巻き外して上記の重ね合わせたプリプレグ1の最外
層の外面に重ね合わせる。両面金属箔張り積層板を製造
する場合には、2枚の金属M10を用いて重ね合わせた
プリプレグ1の雨量外層に重ねるようにし、また片面金
属箔張り積層板を製造する場合には、一方の最外層にの
み金属9i10を重ねるようにすると共に他方の最外層
にはフッ素樹脂フィルム等の150℃以上の温度に耐え
ると共に高周波特性が高いフィルムを重ねるようにする
。ここで、金属?i10は接着剤を塗布したものや、ア
ルミニウムキャリヤーと極薄銅箔との組み合わせになっ
ている箔など任意のものを使用することができるもので
ある。 このように複数枚のプリプレグ1及び必要に応じて金属
?i10を重ねた積層物5を連続して送りつつ、この積
層物5を予備加熱してプリプレグ1に含まれる樹脂を溶
融状態にした後に、ドラム9によって連続駆動される上
下のエンドレスベルト3.4によって構成されるダブル
ベルト2に積層物5を連続して導入する。このように予
備加熱をおこなうにあたっては、積層物5を上下の高周
波印加電極8,8間に通して無圧下または接触圧下で誘
電加熱することによっておこなうのが好ましい。誘電加
熱すると加熱温度はプリプレグ1の表面部よりもむしろ
内部で高くなり、電熱などを用いて外部加熱をする場合
のように表面部が高(加熱されてプリプレグ1の表面部
の樹脂の硬化反応が速(進行することがなく、ダブルベ
ルト2で加圧してもプリプレグ1内から気泡が抜は外ら
なくなって積層板にボイドが含まれるというようなこと
を低減することができるのである。そして積層物5をダ
ブルベルト2に通して上下のエンドレスベル)3.4間
で積層物5を加圧するにあたって、各エンドレスベルト
3,4内には熱盤などの加圧加熱装置11.11が配設
してあって、この加圧加熱装置11によって積層物5を
加熱加圧できるようにしてあり、プリプレグ1の樹脂を
硬化させると共に複数枚のプリプレグ1及び金属箔10
を積層接着させるものである。加圧は20kg/am2
〜30kg/c+a2程度以下の低圧でおこなわれるも
のであり、場合によっては接触圧でおこなわれることも
ある。このようにして積層された積層体はダブルベルト
2の駆動に伴って連続して導出されるものであり、〃イ
ドローラ12に導いて切断数13で切断することによっ
て、定寸法となった金属箔張りの積層板Aを得ることが
できるものである。 上記のようにして連続工法で積層成形するにあたって、
プリプレグ1の基材となる77素樹脂多孔性シートは、
その素材であるフッ素?、41脂が低い誘電率を有して
高周波特性が優れているために、高い高周波特性を有し
ているものであり、含浸させる樹脂として高周波特性が
優れたものを使用する必要なく、エポキシ樹脂など積層
板に一般に使用されるものを用いても、高周波特性の高
い積層板Aを製造することができる。従って高い高周波
数特性を有する樹脂を用いる場合のような、高温で長時
間の成形をおこなう必要がなくなり、従来から使用され
ているダブルベルト2を用いた連続工法をそのまま用い
て高周波特性の高い積層板Aを製造することが可能にな
るのである。 しかし、ダブルベルト2を用いた連続工法では低圧加圧
(場合によって接触圧程度)で短時間の加熱しかおこな
えないために、熱不足による樹脂の硬化が不十分な場合
があって積層板Aの寸法安定性は多段積層成形で製造し
たものには及ばず、反り等の変形が大きく生じるおそれ
がある。そこで、本発明ではダブルベルト2で連続成形
した後に所定寸法に切断した積層板Aをアフターキュア
ー炉に導入し、アフターキュアーをおこなうと共に、さ
らにこのようにしてアフターキュアーをした積層板Aを
アフターキュアー炉から取り出した直後に急冷するよう
にしている。アフターキュアーをおこなうことによって
積層板Aの一樹脂の熱不足を補って積層板Aの寸法安定
性を高めることができ、さらにアフターキュアー後に急
冷することによりて積層板Aの樹脂の結晶性を高めて積
層板Aの寸法安定性を一層向上させることができるので
ある。 アフターキュアーをおこなうにあたって加熱温度は、ダ
ブルベルト2による加熱温度より10〜50℃程度低い
温度に設定するのが好ましく、加熱時間はダブルベルト
2による成形時間と同じ程度が好ましい。また、アフタ
ーキュアー後の急冷は水中(水温は約25℃程度の室温
)に積層板Aを浸漬させることによっておこなうことが
好ましく、60℃以下に冷却されたのちに水中から取り
出すようにするのが好ましい。 ■実施例】 以下本発明を実施例によって具体的に説明する。 及(涯 エポキシ当量520のブロム化エポキシ樹脂を520重
量部、ジシアンジアミドを9重量部、2−エチル−4−
メチルイミグゾールを0.5重量部それぞれ配合し、こ
れを溶剤に溶解してエポキシ樹脂ワニスを得た。この)
ニスの160℃でのデルタイムは10分であった。そし
て基材として日東電工株式会社製ポリテトラプルオロエ
チレン多孔貿シート(厚さ50μ、気孔率85%、平均
孔径0,6μ)を用い、上記エポキシ樹脂ワニスを含浸
して乾燥することによって、樹脂含量が50重量%、1
60℃でのデルタイムが180秒のプリプレグを得た。 次ぎに、このプリプレグを用いて第1図に示す連続工法
で積層板の製造をおこなった。すなわち、プリプレグ1
0枚を重ねると共にその上下に厚さ0.035mmの銅
箔を重ね、発振周波数13.56MHzの高周波誘電加
熱装置を用いて積層物の中央部の温度が120〜125
℃になるように加熱し、プリプレグの樹脂を溶融状態に
して0.1m/分の速度で回転しているダブルベルトに
導入し、圧力25 kg/ 0m2、温度170℃の条
件で20分間ダブルベルトに通すことによって積層成形
をおこない、さらにlmX1mの寸法に切断することに
よって両面銅張りの積層板を得た。 次にこのように切断した直後の積層板を150℃のアフ
ターキュアー炉に20分間入れて、アフターキュアーを
おこなった。このようにアフターキュアー炉に入れて2
0分を経過した後、積層板をアフターキュアー炉から取
り出してそのま*25℃の水中に入れて急冷し、積層板
が60℃まで冷却された時点で水中から取り出した。 駁1燵り 上記実施例と同様にしてダブルベルトによる連続工法で
両面銅張りの積層板を成形し、これを17ターキエアー
しないで室温下に放置して放冷させて比較例1とした。 雌焚に影 上記実施例と同様にしてダブルベルトによる連続工法で
両面銅張りの積層板を成形し、これを実施例と同様にし
てアフターキュアーし、アフターキュアー炉から取り出
した積層板を室温下に放置して放冷したものを比較例2
とした。 比11医」− 上記実施例で用いたエポキシ樹脂ワニスを205g/m
”のガラス布に含浸させて乾燥することによって、樹脂
含量が45重量%、160℃でのデルタイムが180℃
のプリプレグを得た。このプリプレグを1m×1鎗の定
寸法に切断し、これを8枚重ね合わせると共に上下にさ
らに厚み0.035a+mの銅箔を重ね、これを厚さ1
.5e+mのステンレスプレートの間に挟むと共に多段
式油圧プレスの熱盤間に挿入し、170℃で25分間加
熱加圧して多段積層成形をおこなうことによって、両面
銅張りの積層板を得た。 上記実施例及び比較例1乃至3の積層板につ(%で、J
IS  C6481に基づいて誘電率を測定した。また
、寸法安定性を測定するために、各積層板の対角線での
最大反り変形量を計測した。これらの結果を次表に示す
。 表の結果にみられるように、プリプレグの基材としてフ
ッ素樹脂多孔質シートを用−・た実施例のものは、基材
としてプラス布を用いた比較例3のものよりも誘電率が
低く、高周波特性に優れることが確認される。*た実施
例のものはアフターキュアーをおこなうと共に急冷をお
こなうことによって、アフターキュアーをおこなわない
比較例1のものよりも寸法安定性を大幅に高めることが
でき、アフター坪エアーをおこなっても急冷をしない比
較例2のものより寸法安定性を高めることができること
が確認される。 【発明の効果] 上述のように本発明にあっては、フッ素樹脂多孔質シー
トを基材として調製した長尺のプリプレグを連続的に送
りつつ所要枚数のこのプリプレグを重ね合わせ、これを
ダブルベルトに連続して送り込んで積層成形するように
したので、プリプレグの基材となる77素樹脂多孔質シ
ートは低い誘電率を有して高周波特性が優れでおり、含
浸させる樹脂として高周波特性が優れたものを使用する
必要なくエポキシ樹脂など積層板に一般に使用されるも
のを用いても、高周波特性の高い積層板をs!!造する
ことができるものであり、高温で長時間の成形をおこな
う必要な〈従来から使用されている連続工法をそのまま
用いて高周波特性の高い積層板を製造することができる
ものである。しかも積層成形して所定寸法に切断した後
にアフターキュアーすると共にアフターキュアー後に急
冷するようにしたので、アフターキュアーで積層板内の
樹脂の熱不足を補うと共に急冷で積層板内の樹脂の結晶
化を高めることができ、積層板の寸法安定性を高めるこ
とができるものである。
[Prior art 1] Laminated boards are usually prepared by preparing prepreg by impregnating and drying a thermosetting resin using paper or lath cloth as a base material, and cutting this prepreg into predetermined dimensions. Layer multiple sheets of prepreg cut to a fixed size and metal foil such as copper foil if necessary, set this in a press machine with a plate stacked 10 to 14 ffi, and heat and press for a predetermined time using upper and lower heating plates. Manufacture is carried out by multi-stage lamination molding. However, when manufacturing laminates by multi-stage lamination molding like this,
Since it is a batch operation, the work efficiency is poor and there are many problems in productivity. For this purpose, the present applicant has proposed a method of manufacturing a laminate using a continuous method, such as in Japanese Patent Laid-Open No. 189439/1983. In other words, multiple sheets of long prepreg are piled up and continuously fed, and if necessary, a long metal foil is piled up, and this is continuously passed through a double belt and heated and pressurized by the double belt. ,
This allows the laminated plates to be formed continuously. According to this method, since the laminate can be manufactured in a continuous molding operation, the production efficiency is significantly improved compared to multi-stage lamination molding using a patch operation. [Problems to be Solved by the Invention] On the other hand, the frequencies used in the fields of electronics, communications, and computers have been shifted to high frequency regions, and in the laminated boards of printed wiring boards used in such high frequency regions, is required to have a smaller dielectric constant in order to shorten signal propagation delay. For this reason, in order to obtain such a laminate with excellent high frequency characteristics, a resin constituting the laminate, that is, a prepreg resin, which has excellent frequency characteristics, such as a patent application published in 1988-5004, has been developed.
Aromatic polyisocyanates such as No. 34 have been used, but resins with excellent high frequency properties are generally used at high temperatures (250 to 300°C in some cases) for long periods of time (
In some cases, it may be necessary to perform molding for 1 to 2 hours. However, when the prepreg is continuously passed through a double belt and molded under heat and pressure, it is impossible to sustain the molding for a long time at high temperatures. It is not possible to manufacture laminates using the above-mentioned continuous method using double belts, and the current situation is that it is difficult to manufacture laminates with excellent high frequency characteristics using the continuous method. . The present invention has been made in view of the above points, and it is possible to manufacture a laminate with excellent high frequency characteristics by a continuous method,
In addition, it is an object of the present invention to provide a method for manufacturing a laminate that can improve dimensional stability. [Means for solving the ff problem] The method for manufacturing a laminate according to the present invention includes continuously feeding a long prepreg 1 prepared using a porous fluororesin sheet as a base material, and manufacturing a required number of prepregs 1, 1... are piled up, continuously fed into the double belt 2 for laminated molding, cut into predetermined dimensions, after-cured, and rapidly cooled after being exposed to 77 Turkey Air. The present invention will be explained in detail below. The prepreg 1 is prepared as a long prepreg by impregnating a base material with a resin varnish and drying it. In the present invention, a porous sheet of fluororesin (polytetrafluoroethylene) is used as the base material. 7#, resin porous sheet is a sheet of 77 resin made porous by providing many small pores with an average particle size of about 1μ or less, for example, the one commercially available from Nitto Denko Corporation. Can be used. Because this sheet is porous with small pores, it can be dipped in thermosetting resin varnish in the same way as paper or glass cloth, allowing the thermosetting resin varnish to penetrate well, making it more durable than conventional paper. Prepreg 1 can be easily prepared using the same method as when using glass cloth as a base material. In addition, in the present invention, the fluororesin porous sheet is impregnated (any resin can be used, but thermosetting resins such as epoxy resins are particularly preferred. Prepreg 1 is unwound from a roll and a predetermined number of sheets are continuously fed through idle roll 6, and each prepreg 1 is continuously overlapped by stacking roll 7.Meanwhile, metal M10 such as copper foil is also It is formed into a long length and wound into a roll, which is then unwound and superimposed on the outer surface of the outermost layer of the above-mentioned superimposed prepreg 1. When producing a double-sided metal foil-clad laminate, two sheets of Metal M10 is used to overlap the outer layer of prepreg 1, and when producing a single-sided metal foil-clad laminate, metal 9i10 is applied only to the outermost layer of one side, and the outermost layer of the other A film such as a fluororesin film that can withstand temperatures of 150°C or more and has high high frequency properties is layered on top of the film.Metal i10 is a film coated with adhesive or a combination of aluminum carrier and ultra-thin copper foil. Any material such as a combination of foils can be used. In this way, while continuously feeding the laminate 5 in which a plurality of prepregs 1 and, if necessary, metal ?i10 are stacked, this After preheating the laminate 5 to melt the resin contained in the prepreg 1, the laminate 5 is continuously applied to a double belt 2 composed of upper and lower endless belts 3.4 that are continuously driven by a drum 9. Preheating is preferably carried out by dielectrically heating the laminate 5 under no pressure or under contact pressure by passing the laminate 5 between the upper and lower high-frequency application electrodes 8, 8. Dielectric heating increases the heating temperature. is higher inside the prepreg 1 rather than at the surface, and when heating externally using electric heat, the surface is high (heated and the curing reaction of the resin on the surface of the prepreg 1 progresses quickly). This prevents air bubbles from being removed from the prepreg 1 even when pressurized by the double belt 2, and it is possible to reduce the occurrence of voids in the laminate. In order to pressurize the laminate 5 between the upper and lower endless bells 3 and 4 through the belt 2, a pressurizing and heating device 11.11 such as a heating plate is disposed within each endless belt 3, 4. The laminate 5 can be heated and pressurized by this pressurizing/heating device 11, and the resin of the prepreg 1 is cured and the plurality of prepregs 1 and metal foils 10 are cured.
This is a method for laminating and bonding. Pressure is 20kg/am2
It is carried out at a low pressure of ~30 kg/c+a2 or less, and in some cases it is carried out at a contact pressure. The laminated body thus laminated is continuously drawn out as the double belt 2 is driven, and is guided to the idle roller 12 and cut with 13 cuts to form a metal foil of a fixed size. It is possible to obtain a laminate A with a high tension. When performing laminated molding using the continuous method as described above,
The 77-base resin porous sheet that serves as the base material of prepreg 1 is
Fluorine, the material? , 41 resin has a low dielectric constant and excellent high frequency properties, so it has high high frequency properties, so there is no need to use a resin with excellent high frequency properties as the impregnating resin, and epoxy resin It is also possible to manufacture the laminate A with high high frequency characteristics even by using materials commonly used for laminates, such as the following. This eliminates the need for long-term molding at high temperatures, which is required when using resin with high high-frequency characteristics, and allows lamination with high high-frequency characteristics by using the conventional continuous method using double belts 2. This makes it possible to manufacture plate A. However, in the continuous construction method using double belt 2, heating can only be performed for a short time with low pressure (at least contact pressure in some cases), so the curing of the resin may be insufficient due to insufficient heat, and the laminate A The dimensional stability is not as good as that produced by multi-stage lamination molding, and there is a risk of significant deformation such as warping. Therefore, in the present invention, the laminate A that has been continuously formed using the double belt 2 and then cut into a predetermined size is introduced into an after-cure furnace to perform after-curing. I try to quickly cool it down immediately after taking it out of the furnace. By performing after-curing, the dimensional stability of laminate A can be improved by compensating for the lack of heat in one of the resins in laminate A, and furthermore, by rapidly cooling after after-curing, the crystallinity of the resin in laminate A can be increased. Therefore, the dimensional stability of the laminate A can be further improved. In performing after-cure, the heating temperature is preferably set to a temperature approximately 10 to 50° C. lower than the heating temperature by the double belt 2, and the heating time is preferably about the same as the forming time by the double belt 2. Further, it is preferable to rapidly cool the laminate A after the after-cure by immersing it in water (at a room temperature of about 25°C), and it is preferable to take it out of the water after it has been cooled to 60°C or less. preferable. [Examples] The present invention will be specifically explained below using Examples. (520 parts by weight of a brominated epoxy resin with an epoxy equivalent of 520, 9 parts by weight of dicyandiamide, 2-ethyl-4-
0.5 parts by weight of methyl imiguzole was added and dissolved in a solvent to obtain an epoxy resin varnish. this)
The del time of the varnish at 160°C was 10 minutes. Then, using a polytetrafluoroethylene porous sheet (thickness 50μ, porosity 85%, average pore diameter 0.6μ) manufactured by Nitto Denko Corporation as a base material, the resin was impregnated with the above epoxy resin varnish and dried. Content is 50% by weight, 1
A prepreg with a del time of 180 seconds at 60°C was obtained. Next, using this prepreg, a laminate was manufactured using the continuous construction method shown in FIG. That is, prepreg 1
Copper foils with a thickness of 0.035 mm were placed on top and bottom of the 0 sheets, and the temperature at the center of the laminate was raised to 120 to 125 using a high frequency dielectric heating device with an oscillation frequency of 13.56 MHz.
℃, the prepreg resin is melted and introduced into a double belt rotating at a speed of 0.1 m/min, and the double belt is heated for 20 minutes at a pressure of 25 kg/0 m2 and a temperature of 170 ℃. Laminate molding was carried out by passing through the laminate, and the laminate was further cut into a size of 1 m x 1 m to obtain a laminate plate with copper cladding on both sides. Next, the laminate immediately after being cut in this way was placed in an after-cure oven at 150° C. for 20 minutes to perform after-curing. Put it in the after cure furnace like this 2
After 0 minutes had elapsed, the laminate was taken out of the after-cure furnace and placed directly in *25°C water for quenching, and when the laminate had cooled to 60°C, it was taken out of the water. Comparative Example 1 was obtained by molding a double-sided copper-clad laminate using the continuous method using double belts in the same manner as in the above example, and leaving it at room temperature for 17 days to cool without applying Turkish air. A double-sided copper-clad laminate was formed using a continuous method using double belts in the same manner as in the above example, and after-cured in the same manner as in the example.The laminate taken out from the after-cure furnace was heated at room temperature. Comparative Example 2
And so. 205g/m of the epoxy resin varnish used in the above example
By impregnating it into glass cloth and drying it, the resin content is 45% by weight and the del time at 160℃ is 180℃.
prepreg was obtained. This prepreg was cut into a fixed size of 1 m x 1 spear, and 8 sheets were stacked on top of each other, and copper foil with a thickness of 0.035 a + m was layered on top and bottom, and this was layered with a thickness of 1 m.
.. A laminate plate with double-sided copper cladding was obtained by sandwiching it between 5e+m stainless steel plates and between hot plates of a multistage hydraulic press, heating and pressing at 170° C. for 25 minutes to perform multistage lamination molding. Regarding the laminates of the above Examples and Comparative Examples 1 to 3 (in %, J
Dielectric constant was measured based on IS C6481. In addition, in order to measure dimensional stability, the maximum amount of warp deformation in the diagonal line of each laminate was measured. These results are shown in the table below. As seen in the results in the table, the dielectric constant of Example 3, which used a porous fluororesin sheet as the prepreg base material, was lower than that of Comparative Example 3, which used plus cloth as the base material. It is confirmed that it has excellent high frequency characteristics. *By performing after-curing and rapid cooling, the dimensional stability of the example shown in Example 1 was significantly improved compared to that of Comparative Example 1, which did not perform after-curing. It is confirmed that the dimensional stability can be improved compared to that of Comparative Example 2, which does not. [Effects of the Invention] As described above, in the present invention, a long prepreg prepared using a porous fluororesin sheet as a base material is continuously fed, a required number of prepregs are overlapped, and the prepreg is stacked with a double belt. Since the porous sheet of 77 resin, which is the base material of the prepreg, has a low dielectric constant and excellent high frequency properties, the resin used as the impregnating resin has excellent high frequency properties. Even if you use materials commonly used for laminates, such as epoxy resin, you can create laminates with high high frequency characteristics! ! It is possible to manufacture laminates with high high frequency characteristics using the conventional continuous method that requires long-term molding at high temperatures. Moreover, after curing the laminated molding and cutting it to the specified size, we performed after-curing and rapidly cooled it, so the after-cure compensates for the lack of heat in the resin inside the laminate, and the rapid cooling prevents the crystallization of the resin inside the laminate. It is possible to increase the dimensional stability of the laminate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる装置の概略図であり、1はプリ
プレグ、2はダブルベルト、Aは積層板である。
FIG. 1 is a schematic diagram of the apparatus used in the present invention, in which 1 is a prepreg, 2 is a double belt, and A is a laminate.

Claims (1)

【特許請求の範囲】[Claims] (1)フッ素樹脂多孔質シートを基材として調製した長
尺のプリプレグを連続的に送りつつ所要枚数のこのプリ
プレグを重ね合わせ、これをダブルベルトに連続しで送
り込んで積層成形し、所定寸法に切断した後にアフター
キュアーすると共にアフターキュアー後に急冷すること
を特徴とする積層板の製造方法。
(1) Continuously feed a long prepreg prepared using a porous fluororesin sheet as a base material, stack the required number of prepregs, and then feed them continuously through a double belt to form a layered sheet to form a predetermined size. A method for manufacturing a laminate, which comprises performing after-curing after cutting and rapidly cooling after the after-curing.
JP1250120A 1989-09-26 1989-09-26 Production of laminated sheet Pending JPH03110157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1250120A JPH03110157A (en) 1989-09-26 1989-09-26 Production of laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1250120A JPH03110157A (en) 1989-09-26 1989-09-26 Production of laminated sheet

Publications (1)

Publication Number Publication Date
JPH03110157A true JPH03110157A (en) 1991-05-10

Family

ID=17203121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1250120A Pending JPH03110157A (en) 1989-09-26 1989-09-26 Production of laminated sheet

Country Status (1)

Country Link
JP (1) JPH03110157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8474366B2 (en) 2007-08-13 2013-07-02 Federal-Mogul Corporation Piston with a skirt having oil flow slots and method of construction thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8474366B2 (en) 2007-08-13 2013-07-02 Federal-Mogul Corporation Piston with a skirt having oil flow slots and method of construction thereof

Similar Documents

Publication Publication Date Title
JPS6042566B2 (en) Method for continuously manufacturing electrical laminated insulation boards or metal foil clad laminates
JPS63267524A (en) Method and apparatus for manufacturing metal clad laminated sheet
JPH03110157A (en) Production of laminated sheet
JPH03110158A (en) Production of laminated sheet
JP2001260241A (en) Method for manufacturing laminate sheet
JPH01272416A (en) Manufacture of prepreg
JP3611506B2 (en) Laminate manufacturing method
JPH0476784B2 (en)
JPH03110159A (en) Production of laminated sheet
JPH03110155A (en) Production of laminated sheet
JPH03110151A (en) Production of laminated sheet
JPH03110154A (en) Production of laminated sheet
JPH03110156A (en) Production of laminated sheet
JP2001150623A (en) Method of manufacturing laminated sheet
JPH03110153A (en) Production of laminated sheet
JPH03110152A (en) Production of laminated sheet
JPH04323034A (en) Manufacture of laminated board
JPH03110162A (en) Production of laminated sheet
JPH09239898A (en) Prepreg for manufacturing metal foil-plated laminated board
JPH02218195A (en) Manufacture of copper-clad laminated sheet
JP2733346B2 (en) Manufacturing method of laminated board
JPH01215516A (en) Manufacture of metallic foil plated laminated sheet
JPH02226796A (en) Manufacture of very thin base material copper clad laminated board
JPH03110161A (en) Production of laminated sheet
JPH04348936A (en) Manufacture of laminated sheet