JPH03108699A - Radiation beam transmitting window and attachment of radiation beam transmitting thin film to the same - Google Patents
Radiation beam transmitting window and attachment of radiation beam transmitting thin film to the sameInfo
- Publication number
- JPH03108699A JPH03108699A JP1244992A JP24499289A JPH03108699A JP H03108699 A JPH03108699 A JP H03108699A JP 1244992 A JP1244992 A JP 1244992A JP 24499289 A JP24499289 A JP 24499289A JP H03108699 A JPH03108699 A JP H03108699A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- synchrotron radiation
- radiation transmitting
- spherical
- window
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 113
- 230000005855 radiation Effects 0.000 title claims abstract description 26
- 239000010408 film Substances 0.000 claims abstract description 31
- 230000005469 synchrotron radiation Effects 0.000 claims description 116
- 238000000034 method Methods 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 229910052790 beryllium Inorganic materials 0.000 description 4
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000001015 X-ray lithography Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70808—Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70866—Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
Landscapes
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Atmospheric Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Particle Accelerators (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、シンクロトロン放射光を用いて、超LSI
等の回路パターンをウェハ等の被露光板状物に転写せし
める露光装置の放射光透過窓及び該窓への放射光透過薄
膜の取付方法に関する。[Detailed Description of the Invention] [Industrial Application Field] This invention uses synchrotron radiation to
The present invention relates to a radiation-transmitting window of an exposure apparatus for transferring a circuit pattern such as the above onto a plate-like object to be exposed such as a wafer, and a method of attaching a radiation-transmitting thin film to the window.
半導体(LSI)の高集積化技術の進歩に伴い、マスク
上のパターンをレジストの付着したウェハ等の上に転写
する半導体リソグラフィ装置でも、軟X線を含むシンク
ロトロン放射光の利用が注目されるようになったに
の放射光は、第11図に示されるように、高真空の電子
蓄積リング(30)内で光速に近い速さの電子を偏向磁
石(31)の磁界により曲げた時に電子軌道の接線方向
に放射される電磁波であるが、平行性が良く、且つ強い
軟X線が得られるため、線幅がサブミクロンクラスにな
る超LSIのマスクパターンを上記露光板状物に転写す
るX線露光装置の次期X線源として期待されている。With advances in highly integrated semiconductor (LSI) technology, the use of synchrotron radiation, including soft X-rays, is attracting attention in semiconductor lithography equipment, which transfers patterns on masks onto wafers with attached resist. As shown in Figure 11, this synchrotron radiation is produced when electrons with a speed close to the speed of light are bent by the magnetic field of a deflection magnet (31) in a high vacuum electron storage ring (30). The electromagnetic waves are emitted in the tangential direction of the orbit, but they have good parallelism and can produce strong soft X-rays, so the VLSI mask pattern with a submicron line width is transferred onto the exposure plate. It is expected to be the next generation X-ray source for X-ray exposure equipment.
該シンクロトロン放射光を用いる実際の露光装置では、
電子蓄積リング(30)から発した放射光がビームライ
ン(3)を通って転写装置(4)内に導かれ、その内部
でX線マスク(図示なし)やウェハ駆動ステージ(図示
なし)等の各種装置を用いてマスクパターンを被露光板
状物の表面(この場合はウェハの上に′f1.rIIさ
れたレジス1−)に転写する構成となっている。In an actual exposure apparatus using the synchrotron radiation,
Synchrotron radiation emitted from the electron storage ring (30) is guided through the beam line (3) into the transfer device (4), where an X-ray mask (not shown), a wafer drive stage (not shown), etc. The structure is such that a mask pattern is transferred onto the surface of a plate-like object to be exposed (in this case, a resist 1- formed on a wafer by 'f1.rII) using various devices.
このうち、ビームライン(3)内部は、電子蓄積リング
(30)内の高度の真空状態に悪影響を及ぼさないよう
にするため真空に保たれ、他方、転写装置(4)は、マ
スクの温度上昇を抑えるため、その周りをチャンバ(4
0)で囲んで内部を大気や他のガス雰囲気(放射光減衰
作用の小さいヘリウムガス等)で満たしている。そこで
シンクロトロン放射光を放射する放射光源側(図では電
子蓄積リング(30)及びビームライン(3))と転写
装置(4)との間には、放射光路途中に放射光源側の高
真空域と転写装置(4)側の雰囲気とを隔て且つ放射光
の一部を透過可能なベリリウム薄膜等の放射光透過薄膜
(1)が設けられている。Of these, the inside of the beam line (3) is kept in vacuum to avoid adversely affecting the high vacuum state in the electron storage ring (30), while the transfer device (4) is In order to suppress the
0), and the inside is filled with air or other gas atmosphere (such as helium gas, which has a small effect of attenuating radiation light). Therefore, between the synchrotron radiation source side that emits synchrotron radiation light (electron storage ring (30) and beam line (3) in the figure) and the transfer device (4), there is a high vacuum area on the synchrotron radiation source side in the middle of the synchrotron radiation path. A radiation-transmitting thin film (1) such as a beryllium thin film is provided which separates the atmosphere from the transfer device (4) side and allows a part of the radiation to pass through.
第12図は、このような放射光透過薄膜(1)の取付け
られた放射光透過窓の従来例を示す断面図である。同図
に示すように、ビームライン(3)の真空フランジ(2
2)等からなる窓枠にスペーサ(23)を介して平板状
の放射光透過薄膜(1)の端部側が取付けられ、更にそ
の上から止めフランジ(24)等の窓枠材をクランプし
ている。FIG. 12 is a sectional view showing a conventional example of a synchrotron radiation transmitting window to which such a synchrotron radiation transmitting thin film (1) is attached. As shown in the figure, the vacuum flange (2) of the beam line (3)
The end side of the flat radiation-transmitting thin film (1) is attached to the window frame made of 2) etc. via the spacer (23), and the window frame material such as the stop flange (24) is further clamped from above. There is.
放射光の照射によってマスクパターンの露光を行なう場
合に、実用的なスループットを得るためには、放射光透
過薄膜(1)の膜厚を薄くして放射光の減衰をできるだ
け低くしなければならない。When a mask pattern is exposed by irradiation with synchrotron radiation, in order to obtain a practical throughput, the thickness of the synchrotron radiation transmitting thin film (1) must be made as thin as possible to reduce the attenuation of the radiation as much as possible.
しかし、放射光源側空間と転写装置(4)のチャンバ(
40)内界囲気との間にはかなりの圧力差があるため、
放射光透過薄膜(1)の膜厚が薄くなると、上記放射光
透過窓の構成では、該薄膜(1)がその半径方向中心部
を中心に放射光源側に膨出することとなり、それにより
第12図に示すように、この薄膜(1)に大きな引張り
応力が掛ることになる。However, the synchrotron radiation source side space and the transfer device (4) chamber (
40) Because there is a considerable pressure difference between the inner environment and the surrounding air,
When the thickness of the synchrotron radiation transmitting thin film (1) becomes thinner, in the structure of the synchrotron radiation transmitting window described above, the thin film (1) bulges toward the synchrotron radiation source side around its radial center. As shown in Figure 12, a large tensile stress is applied to this thin film (1).
そのため、転写装置のチャンバ(40)側雰囲気を減圧
状態に保持することで対応せざるを得す、減圧設備の増
強及び減圧状態の維持・制御を行なう必要性を生じ、放
射光透過率のアップによる放射光リングラフィのスルー
プット向上を相殺することにもなりかねないものであっ
た。Therefore, it is necessary to maintain the atmosphere on the side of the chamber (40) of the transfer device in a reduced pressure state, and it becomes necessary to strengthen the reduced pressure equipment and maintain and control the reduced pressure state, thereby increasing the radiation transmittance. This could potentially offset the throughput improvement of synchrotron phosphorography.
本発明は従来技術の以上のような問題に鑑み創案された
ものであって、放射光透過窓に取付けられる放射光透過
薄膜自身の構造に改良を加えて、転写装置側が大気圧雰
囲気下でも露光処理ができ、且つ薄膜化による放射光透
過率のアップを達成できるようにしようとするものであ
り、併せてそのような改良の加えられた放射光透過薄膜
の放射光透過窓への装着方法についても提案するもので
ある。The present invention was devised in view of the above-mentioned problems of the prior art, and it improves the structure of the synchrotron radiation transmitting thin film itself attached to the synchrotron radiation transmitting window, so that the transfer device side can perform exposure even under atmospheric pressure atmosphere. The purpose is to improve the radiation transmittance through processing and thinning of the film, and also to describe a method for attaching such an improved radiation transmitting thin film to a radiation transmitting window. It is also proposed.
そのため本発明の放射光透過窓は、第1図に示すように
、放射光透過薄膜(1)を放射光源側に突出する球面状
にすることで、放射光源側と転写装置(4)側の圧力差
によって放射光透過薄膜(1)に作用する引張り応力に
も耐えられるようにするものである。Therefore, as shown in FIG. 1, the synchrotron radiation transmitting window of the present invention has a synchrotron radiation transmitting thin film (1) in a spherical shape that protrudes toward the synchrotron radiation source side, so that This makes it possible to withstand the tensile stress that acts on the synchrotron radiation transmitting thin film (1) due to pressure differences.
このように放射光透過薄膜(1)を球面状に成形して用
いると、該薄膜(1)には次式に示す引張り応力σのみ
が掛る。When the radiation-transmitting thin film (1) is formed into a spherical shape and used in this way, only the tensile stress σ expressed by the following equation is applied to the thin film (1).
但し、P:圧 力
R:球面曲率半径
t:膜厚み
従って、膜厚しが薄くてもそれに対応した球面曲率半径
Rを選ぶことにより、任意の引張り応力 σ にするこ
とができる。However, P: pressure R: radius of spherical curvature t: film thickness Therefore, even if the film thickness is thin, by selecting the corresponding radius of spherical curvature R, the tensile stress σ can be set to an arbitrary value.
但し、球面状にした放射光透過薄膜(1)の膜厚tがど
の位置においても等しい場合、第2図に示すように、放
射光源側から入射して該放射光透過薄膜(1)中を透過
直進するシンクロトロン放射光は平行光であるため、該
直進方向における膜中の各透過距離X工・・・xnは、
膜中央部が一番小さく、膜層縁端に近づく程次第に太き
くなる。従って放射光の減衰率も膜層縁端に向かう程大
きなものとなる。However, if the thickness t of the spherical synchrotron radiation transmitting thin film (1) is the same at every position, as shown in FIG. Since synchrotron radiation light that travels straight through is parallel light, each transmission distance in the film in the straight direction is
It is smallest at the center of the membrane and gradually becomes thicker as it approaches the edges of the membrane layer. Therefore, the attenuation rate of the emitted light also increases toward the edge of the film layer.
本発明では、放射光透過薄膜(1)の耐引張り応力特性
を高めるために単に球面状にするだけでなく、転写装置
(4)側で得られる放射光強度が略どの位置においても
等しくなるようにするため、第1図に示すように、放射
光透過薄膜(1)の球面状の中央部Cを中心にその周り
で膜厚tが次第に薄くなるよう(to > tz >
tz )に成形し、これによって放射光の前記膜中透過
距離Xがどの位置でも等しくなるようにしている。この
ように放射光の膜中透過距離Xがどの位置でも等しくな
るようにする膜厚成形の具体的構成としては、第3図に
示すように、放射光透過薄膜(1)の球面内側曲率半径
Riと外側曲率ROとを同一にする(Ri=Ro)と共
に、これらの曲率半径中心点m0およびmiを同一線C
上で偏心せしめるようにすれば良い。更にもし、この放
射光透過薄膜(1)がベリリウム等の金属で構成される
ならば、該薄膜(1)を球面状に成形し、且つ薄膜(1
)の膜厚を上述のようにコントロールすることは、蒸着
法によって簡単に実現できる。In the present invention, in order to improve the tensile stress resistance of the synchrotron radiation transmitting thin film (1), it is not only made into a spherical shape, but also so that the synchrotron radiation intensity obtained on the transfer device (4) side is approximately equal at any position. In order to achieve this, as shown in Fig. 1, the film thickness t is gradually thinned around the spherical center C of the synchrotron radiation transmitting thin film (1) (to > tz >
tz), so that the transmission distance X of the emitted light through the film is the same at any position. As shown in Fig. 3, the specific configuration for forming the film thickness so that the transmission distance X of the synchrotron radiation through the film is the same at every position is as follows: Set Ri and outer curvature RO to be the same (Ri=Ro), and set these curvature radius center points m0 and mi to the same line C
All you have to do is make it eccentric at the top. Furthermore, if this synchrotron radiation transmitting thin film (1) is made of metal such as beryllium, the thin film (1) is formed into a spherical shape, and the thin film (1) is made of a metal such as beryllium.
) can be easily controlled by the vapor deposition method as described above.
又、上記0式によれば、球面曲率半径Rを小さくすれば
する程、放射光透過薄膜(1)に掛かる引張り応力 σ
を小さくすることができる。Furthermore, according to the above equation 0, the smaller the radius of curvature R of the spherical surface is, the more the tensile stress σ applied to the synchrotron radiation transmitting thin film (1) increases.
can be made smaller.
一方、上述のような各部分の膜厚を異ならしめる薄膜成
形がなされた場合、球面曲率半径Rが小さければ小さい
程、薄膜(1)外周部の厚みt′ が薄くなってしまい
、ここでの応力は0式より逆に増えることになる。そこ
で本発明者はこの球面曲率半径Rの最適値を求めた。On the other hand, when a thin film is formed with different film thicknesses in each part as described above, the smaller the radius of spherical curvature R, the thinner the thickness t' of the outer peripheral part of the thin film (1) becomes. The stress will increase, contrary to the equation 0. Therefore, the inventors of the present invention determined the optimum value of this radius of curvature R of the spherical surface.
即ち、第4図より。That is, from Figure 4.
更に、該合力Fにより膜外周部に作用する反力F′は、
F’=πDXt’XσX sinθ ・・・・・・・・
・・・・・・・■但し、πDXt’:周面積
sinθ 二方向
00式の釣合いより
(D−)” πXP= πDXt’ X a X5in
O−−■この0式に0式を代入して
倒し、D:放射光透過薄膜の口径
又、薄膜(1)外周部の厚みt′は、
t’ =t−cos(1・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・■そして転写装置(
4)側の圧力をPとして、該圧力Pにより薄膜(1)に
係る合力Fは、dσmax
該0式から 二〇と置けば、
dθ
となり、
cos2θ=o 、−、θ=「(=45°)という
ことになる。Furthermore, the reaction force F' that acts on the membrane outer periphery due to the resultant force F is: F'=πDXt'XσX sinθ
・・・・・・・ ■However, πDXt': Circumferential area sin θ From the two-way equation 00 balance (D-)" πXP= πDXt' X a X5in
O--■Substituting equation 0 into this equation 0 and substituting it, D: Aperture of the synchrotron radiation transmitting thin film, and thickness t' of the outer periphery of the thin film (1), t' = t-cos (1...・・・・・・・・・・・・
・・・・・・・・・・・・・・・・■And the transfer device (
4) side pressure is P, the resultant force F applied to the thin film (1) due to the pressure P is dσmax If we set 20 from the 0 equation, we get dθ, cos2θ=o, −, θ=”(=45° )It turns out that.
これを上記0式に代入し、薄膜(1)の口径りと球面曲
率半径Rとの関係で示せば、
となるため、球面曲率半径Rの最適値はこの関係式から
求めることができる。Substituting this into the above equation 0 and expressing the relationship between the aperture of the thin film (1) and the radius of spherical curvature R, the following is obtained. Therefore, the optimum value of the radius of spherical curvature R can be found from this relational expression.
尚、第5図に示すように、窓枠(2)に矩形の開口部(
2a)を設けて、そこに転写装置(4)側から薄膜(1
)の球面状突出面を露出せしめる窓構成の場合は、該開
口部(2a)の対角線の長さ Qを上記薄膜(1)の口
径りとして1球面曲率半径Rの最適値を求めれば良い。Furthermore, as shown in Fig. 5, a rectangular opening (
2a), and a thin film (1) is placed there from the transfer device (4) side.
), the optimum value of the radius of curvature R of one spherical surface may be determined by setting the diagonal length Q of the opening (2a) as the diameter of the thin film (1).
更に、第2乃至第4発明は、球面状に成形された放射光
透過薄膜(1)を放射光透過窓の窓枠(2)に取付ける
場合の取付性方法を堤供するものである。Furthermore, the second to fourth inventions provide an attachment method for attaching a spherically shaped radiation-transmitting thin film (1) to a window frame (2) of a radiation-transmitting window.
即ち、第1発明によって放射光透過薄膜(1)の形状を
球面状にすることで膜面に作用する引張り応力を低減化
できるようになったとしても、これを放射光透過窓の窓
枠(2)のクランプ部分に実際に取付ける段になって、
第12図の従来例に示されるように、フランジ面等のよ
うな垂直面に該放射光透過薄膜(1)の端部側を挾持さ
せた場合、この放射光透過薄膜(1)はそのクランプ部
分で放射光源側に折れ曲がり、そこに曲げ応力が発生す
ることになる。そこで第2乃至第4発明はこのような球
面状にした放射光透過薄膜(1)の取付方法につき、更
に改良を加え、上述のような局所的な応力の発生を避け
、膜面全体に均一な応力(引張り応力)が掛るようにし
たものである。That is, even if the first invention makes it possible to reduce the tensile stress acting on the film surface by making the synchrotron radiation transmitting thin film (1) spherical in shape, it is possible to reduce the tensile stress acting on the film surface by making the synchrotron radiation transmitting thin film (1) spherical. When it comes to actually attaching it to the clamp part of 2),
As shown in the conventional example in FIG. 12, when the end side of the synchrotron radiation transmitting thin film (1) is clamped between vertical surfaces such as flange surfaces, It bends toward the radiation source side at a portion, and bending stress is generated there. Therefore, the second to fourth inventions further improve the method of attaching such a spherical synchrotron radiation transmitting thin film (1), thereby avoiding the generation of local stress as described above, and uniformly distributing it over the entire surface of the film. This is so that a certain stress (tensile stress) is applied.
第2発明の取付方法は、第6図に示すように、放射光透
過薄膜(1)をクランプする窓枠(2)につき、転写装
置(4)側にテーパ面(20)を形成し、該テーパ面(
20)に沿わせて放射光透過薄膜(1)の球面状突出面
を接触させ、該薄膜(1)端部側を窓枠(2)にクラン
プするようにしたものである。As shown in FIG. 6, the mounting method of the second invention is to form a tapered surface (20) on the transfer device (4) side of the window frame (2) for clamping the synchrotron radiation transmitting thin film (1). Tapered surface (
20), the spherical protruding surface of the synchrotron radiation transmitting thin film (1) is brought into contact with the thin film (1), and the end side of the thin film (1) is clamped to the window frame (2).
第3発明の取付方法は、第7図に示すように、放射光透
過薄膜(1)の球面状の曲率に合わせて球面座(21)
を窓枠(2)の転写装置(4)側に形成し、該放射光透
過薄膜(1)の端部側をこの球面座(21)に接着せし
めている。As shown in FIG. 7, the mounting method of the third invention is to attach a spherical seat (21) in accordance with the spherical curvature of the synchrotron radiation transmitting thin film (1).
is formed on the transfer device (4) side of the window frame (2), and the end side of the radiation-transmitting thin film (1) is adhered to this spherical seat (21).
第4発明の取付方法は、第8図に示すように、放射光透
過薄膜(1)の端部側が放射光透過窓の窓枠(2)とな
るように一体成形されて該窓枠(2)と共に放射光透過
薄膜(1)が形成されるようにしたものである。As shown in FIG. 8, the mounting method of the fourth invention is such that the end side of the synchrotron radiation transmitting thin film (1) is integrally molded to form the window frame (2) of the synchrotron radiation transmitting window. ), and a radiation-transmitting thin film (1) is formed together with the radiation-transmitting thin film (1).
以下、第2発明に係る放射光透過窓における放射光透過
薄膜の取付方法の実施例を示し、本発明の放射光透過窓
の具体的構成につき説明する。Hereinafter, an embodiment of a method for attaching a radiation-transmitting thin film in a radiation-transmitting window according to the second invention will be shown, and a specific configuration of the radiation-transmitting window of the invention will be described.
第9図は第2発明の取付方法により放射光透過薄膜(1
)の取付けられた放射光透過窓の構成を示す縦断面図で
ある。FIG. 9 shows a radiation-transmitting thin film (1
) is a vertical cross-sectional view showing the structure of the radiation transmitting window attached.
この放射光透過薄膜(1)はベリリウム製で、蒸着法に
より球面状に成形され、しかもその膜厚が、球面状の中
央部Cを中心にその周りで次第に薄くなるように形成さ
れている。This radiation-transmitting thin film (1) is made of beryllium and is formed into a spherical shape by vapor deposition, and the film thickness is formed to gradually become thinner around the spherical center C.
更にこの薄膜(1)の周側部は、図中A、A’点で接す
る球面接線方向に延出せしめられており、球面状部分と
一体的に形成された円錐台形状の放射状延出部(1a)
が設けられている。Furthermore, the peripheral side of this thin film (1) is made to extend in the direction of the spherical surface that touches points A and A' in the figure, and has a truncated cone-shaped radial extension that is integrally formed with the spherical part. Part (1a)
is provided.
本実施例では、放射光透過窓の窓枠(2)につき、転写
装置(4)側にテーパ面(20)を形成すると共に、該
テーパ面(20)に前記放射状延出部(1a)が面接触
し、且つこの放射状延出部(1a)端部側が押え金具(
50)によって窓枠(2)に固定されている。In this embodiment, a tapered surface (20) is formed on the transfer device (4) side of the window frame (2) of the synchrotron radiation transmitting window, and the radially extending portion (1a) is formed on the tapered surface (20). surface contact, and the end side of this radial extension part (1a) is a presser metal fitting (
50) is fixed to the window frame (2).
このように本実施例では、放射光透過薄膜(])の放射
光源側高真空域と転写装置(4)側チャンバ雰囲気とを
隔てている部分が、放射光源側に突出する球面状の形状
を有しているため、膜面に作用する引張り応力を小さく
でき、従ってその膜厚を薄くして放射光透過率を上げて
も問題を生じることがない。又、上述のように膜厚各部
を調整しているため、前記薄膜(1)の放射光透過位置
によって、該放射光強度に大きな差を生じることもない
。As described above, in this embodiment, the part of the synchrotron radiation transmitting thin film ( ) that separates the high vacuum region on the synchrotron radiation source side and the chamber atmosphere on the transfer device (4) side has a spherical shape protruding toward the synchrotron radiation source side. Because of this, the tensile stress acting on the film surface can be reduced, and therefore, no problem will occur even if the film thickness is reduced to increase the radiation transmittance. Further, since the film thickness is adjusted at each part as described above, there is no large difference in the intensity of the emitted light depending on the position of the emitted light transmitted through the thin film (1).
更に、本実施例に示された放射光透過薄膜(1)の取付
方法によれば、球面状の該薄膜(1)の側面(本実施例
では放射状延出部(la) )が窓枠(2)のテーパ面
(20)に面接触し、その端部側だけが該窓枠(2)に
固定されるため、膜面には均一な引張り応力が作用する
だけで、局所的に他の応力が発生することを避けること
ができる。そればかりか、この放射光透過薄膜(1)に
は前述のように放射状延出部(1a)が一体的に設けら
れているため、A−A’点を通る膜断面積に比べB−B
’点を通る膜断面積の方が大きくなり、押え金具(50
)で押えられるB、B’点では引張り応力が更に緩和さ
れることになる。Further, according to the method of attaching the synchrotron radiation transmitting thin film (1) shown in this example, the side surface (radially extending portion (la) in this example) of the spherical thin film (1) is attached to the window frame ( 2), and only the end side is fixed to the window frame (2), so only a uniform tensile stress acts on the membrane surface, and other local The generation of stress can be avoided. Moreover, since the synchrotron radiation transmitting thin film (1) is integrally provided with the radial extension part (1a) as described above, the cross-sectional area of the film passing through the point A-A' is compared to the cross-sectional area of the film passing through the point A-A'.
' The cross-sectional area of the membrane passing through the point becomes larger, and the presser metal fitting (50
), the tensile stress is further relaxed at points B and B'.
第10図は第2発明の取付方法により放射光透過薄膜(
1)の取付けられた放射光透過窓の他の実施例を示す縦
断面図である。FIG. 10 shows a radiation-transmitting thin film (
1) is a vertical cross-sectional view showing another embodiment of the attached radiation light transmitting window; FIG.
本実施例では、放射光透過薄膜(1)自身の構成につき
、放射状延出部(1a)を設けていない点を除き、前記
実施例と同じであるので、その詳細は省略する。In this example, the structure of the radiation-transmitting thin film (1) itself is the same as that of the previous example except that the radial extension part (1a) is not provided, so the details thereof will be omitted.
ここでは、窓枠(29)に形成されるテーパ面を、放射
光透過薄膜(1)の球面状の曲率に合わせて形成される
球面座(20a)とし、該球面座(20a)に薄膜(1
)の球面状突出面を面接触させており、更にその反対側
から前記曲率に合わせて形成されたR状面(51a)を
有する裏当金(51)を当てて、放射光透過薄膜(1)
の端部側を前記窓枠(2)に固定している。Here, the tapered surface formed on the window frame (29) is a spherical seat (20a) formed to match the spherical curvature of the synchrotron radiation transmitting thin film (1), and the thin film (20a) is attached to the spherical seat (20a). 1
) is brought into surface contact with the spherical protruding surface of the radiant light transmitting thin film (1 )
The end side of is fixed to the window frame (2).
このように、球面座(20a)を設けて球面状の放射光
透過薄膜(1)をそこに接触させ、その端部側全体をそ
こに固定すれば、面接触している部分全体で放射光透過
薄膜(1)端部側周縁をクランプすることになり、該膜
面に局所的な応力を発生せずに1強力なりランプ力を得
ることができることになる。In this way, if the spherical seat (20a) is provided, the spherical synchrotron radiation transmitting thin film (1) is brought into contact with it, and the entire end side is fixed there, the synchrotron radiation will be transmitted through the entire surface contact area. By clamping the periphery of the end of the transparent thin film (1), a lamp force of about 1 strength can be obtained without generating local stress on the film surface.
以上詳述したように本発明の構成を有する放射光透過窓
によれば、そこに取付けられる放射光透過薄膜の構造を
球面状にしたため、たとえ膜面を薄くしても、放射光源
側の高真空域と転写装置側のチャンバ内雰囲気との間の
大きな圧力差に対し十分に耐えられるようになる。その
ため、放射光透過率を高めて放射光りソグラフィのスル
ープットを向上せしめることができるようになると共に
、前記チャンバ内雰囲気の圧力を大気圧程度にしておく
ことが可能となり、減圧設備の増強の必要性がなくなる
等、優れた効果を有している。又このように放射光透過
薄膜を球面状にしても、その膜厚が薄膜中央部を中心に
その周りで次第に薄くなるように成形しであるため、平
行な放射光が膜中を透過する時の減衰率はどの膜位置に
おいても同じになり。As described in detail above, according to the synchrotron radiation transmitting window having the structure of the present invention, since the synchrotron radiation transmitting thin film attached thereto has a spherical structure, even if the film surface is made thin, the height on the synchrotron radiation source side is It becomes possible to sufficiently withstand a large pressure difference between the vacuum region and the atmosphere inside the chamber on the transfer device side. Therefore, it is possible to increase the synchrotron radiation transmittance and improve the throughput of synchrotron radiation lithography, and it is also possible to maintain the pressure of the atmosphere inside the chamber at about atmospheric pressure, which eliminates the need for reinforcement of decompression equipment. It has excellent effects such as eliminating Furthermore, even if the synchrotron radiation transmitting thin film is made into a spherical shape, the thickness of the film is formed so that it gradually becomes thinner around the center of the thin film, so when parallel synchrotron radiation passes through the film, The attenuation rate of is the same at any membrane position.
その結果、透過した放射光の強度はどの位置においても
略等しくなる。As a result, the intensity of the transmitted radiation light is approximately equal at any position.
更に、第2乃至第4の放射光透過薄膜の取付方法によれ
ば、局所的な応力の発生を避けながら、球面状の放射光
透過薄膜を放射光透過窓の窓枠に取付けることができ、
そのため薄膜クランプ部での破断等を防止することが可
能となる。Furthermore, according to the second to fourth methods for attaching a synchrotron radiation transmitting thin film, the spherical synchrotron radiation transmitting thin film can be attached to the window frame of the synchrotron radiation transmitting window while avoiding the generation of local stress.
Therefore, it is possible to prevent breakage at the thin film clamp portion.
第1図は本発明の基本構成を示す断面図、第2図は放射
光透過薄膜の膜厚と放射光透過距離の関係を示す説明図
、第3図は放射光透過薄膜の最適膜面形状を示す断面図
、第4図は放射光透過薄膜の球面曲率半径の最適値を求
めるために便宜的にその膜面形状を示した断面図、第5
図は窓枠の矩形開口部に球面状の放射光透過薄膜を露出
せしめてそこに取付けた状態を示す斜視図、第6図は第
2発明に係る放射光透過薄膜の取付方法を示す説明図、
第7図は第3発明に係る放射光透過薄膜の取付方法を示
す説明図、第8図は第4発明に係る放射光透過薄膜の取
付方法を示す説明図、第9図は第2発明方法により球面
状の放射光透過薄膜が取付けられた放射光透過窓の一実
施例を示す断面図、第10図は同じく第2発明法により
球面状の放射光透過薄膜が取付けられた放射光透過窓の
他の実施例を示す断面図、第11図はシンクロトロン放
射光を用いたX線リソグラフィの概略を示す説明図、第
12図は従来の放射光透過窓の構造を示す断面図である
。
図中、(1)は放射光透過薄膜、(2)は窓枠、(20
)はテーパ面、(20a) (21)は球面座、(3)
はビームライン、(4)は転写装置を各示す。
1!IFiA
第
4
図
第
図
第
11
図
第
2
図
?n
0
手続補正書
平成元年10月lb日Fig. 1 is a sectional view showing the basic configuration of the present invention, Fig. 2 is an explanatory diagram showing the relationship between the thickness of the synchrotron radiation transmitting thin film and the synchrotron radiation transmission distance, and Fig. 3 is the optimum film surface shape of the synchrotron radiation transmitting thin film. 4 is a sectional view showing the film surface shape for convenience in order to find the optimum value of the radius of spherical curvature of the synchrotron radiation transmitting thin film.
The figure is a perspective view showing a state in which a spherical synchrotron radiation transmitting thin film is exposed and attached to a rectangular opening of a window frame, and FIG. 6 is an explanatory diagram showing a method for attaching a synchrotron radiation transmitting thin film according to the second invention. ,
FIG. 7 is an explanatory diagram showing a method of attaching a synchrotron radiation transmitting thin film according to the third invention, FIG. 8 is an explanatory diagram showing a method of attaching a synchrotron radiation transmitting thin film according to the fourth invention, and FIG. 9 is an explanatory diagram showing a method of attaching a synchrotron radiation transmitting thin film according to the fourth invention. FIG. 10 is a cross-sectional view showing an embodiment of a synchrotron radiation transmitting window to which a spherical synchrotron radiation transmitting thin film is attached, and FIG. 11 is an explanatory diagram showing an outline of X-ray lithography using synchrotron radiation, and FIG. 12 is a sectional view showing the structure of a conventional radiation transmitting window. In the figure, (1) is a synchrotron radiation transmitting thin film, (2) is a window frame, and (20
) is a tapered surface, (20a) (21) is a spherical seat, (3)
(4) shows the beam line, and (4) shows the transfer device. 1! IFiA Figure 4 Figure 11 Figure 2 Figure 2? n 0 Procedural amendment dated October lb, 1989
Claims (8)
ビームラインと転写装置との間に設置され、放射光源側
の高真空域と転写装置側のチャンバ雰囲気とを隔て且つ
該シンクロトロン放射光を透過せしめる放射光透過薄膜
が設けられた放射光透過窓において、該放射光透過薄膜
を放射光源側に突出する球面状にすると共に、この放射
光透過薄膜の球面状の中央部を中心にその周りで膜厚が
次第に薄くなるように成形したことを特徴とする放射光
透過窓。(1) Installed between the beam line that extracts synchrotron radiation from the synchrotron radiation source side and the transfer device, separating the high vacuum area on the synchrotron radiation source side from the chamber atmosphere on the transfer device side, and transmitting the synchrotron radiation light. In a synchrotron radiation transmitting window provided with a synchrotron radiation transmitting thin film, the synchrotron radiation transmitting thin film is formed into a spherical shape that protrudes toward the synchrotron radiation source side, and the synchrotron radiation transmitting thin film has a spherical shape around the central part of the synchrotron radiation transmitting thin film. A synchrotron radiation transmitting window characterized by being formed so that the film thickness gradually becomes thinner.
膜の球面内側曲率半径と外側曲率半径を同一にすると共
に、これらの曲率半径中心点を同一線上で偏心せしめ、
該放射光透過薄膜の球面状の中央部を中心にその周りで
膜厚が次第に薄くなるように成形したことを特徴とする
特許請求の範囲第1項記載の放射光透過窓。(2) In the synchrotron radiation transmitting window described in the preceding paragraph, the inner radius of curvature and the outer radius of curvature of the spherical surface of the synchrotron radiation transmitting thin film are made the same, and the center points of these radii of curvature are eccentrically arranged on the same line,
2. The synchrotron radiation transmitting window according to claim 1, wherein the synchrotron radiation transmitting thin film is formed so that the film thickness becomes gradually thinner around the spherical center of the synchrotron radiation transmitting thin film.
過窓において、放射光透過薄膜の口径Dに対し、該薄膜
の球面曲率半径Rが下式 を満たすことを条件として、放射光透過薄膜を球面状に
成形することを特徴とする特許請求の範囲第1項乃至第
2項記載の放射光透過窓。 ▲数式、化学式、表等があります▼(3) In the synchrotron radiation transmitting window according to claims 1 and 2, the radial radiation is 3. The radiation light transmitting window according to claim 1, wherein the light transmitting thin film is formed into a spherical shape. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
射光透過薄膜を放射光透過窓に取付ける場合に、該放射
光透過窓の窓枠につき、転写装置側にテーパ面を形成し
、前記放射光透過薄膜の球面状突出面を該テーパ面に接
触させて、この放射光透過薄膜の端部側を前記窓枠に固
定することを特徴とする放射光透過窓における放射光透
過薄膜の取付方法。(4) When attaching the spherical synchrotron radiation transmitting thin film according to claims 1 to 3 to a synchrotron radiation transmitting window, a tapered surface is formed on the transfer device side of the window frame of the synchrotron radiation transmitting window. and the spherical protruding surface of the synchrotron radiation transmitting thin film is brought into contact with the tapered surface, and the end side of the synchrotron radiation transmitting thin film is fixed to the window frame. How to attach the thin film.
の取付方法において、放射光透過薄膜の周側部をその球
面接線方向に延出せしめて放射状延出部を設けると共に
、この放射状延出部をテーパ面に接触せしめ、且つ放射
状延出部の端部側を窓枠に固定することを特徴とする特
許請求の範囲第4項記載の放射光透過窓における放射光
透過薄膜の取付方法。(5) In the method for attaching a synchrotron radiation transmitting thin film in a synchrotron radiation transmitting window described in the preceding paragraph, the circumferential side portion of the synchrotron radiation transmitting thin film is extended in the direction of its spherical surface to provide a radially extending portion, and the radially extending portion is provided. 5. A method for attaching a radiation-transmitting thin film to a radiation-transmitting window according to claim 4, wherein the radially extending portion is brought into contact with the tapered surface, and the end portion of the radially extending portion is fixed to the window frame.
る放射光透過薄膜の取付方法において、該放射光透過窓
の窓枠につき、転写装置側に形成されるテーパ面を、放
射光透過薄膜の球面状の曲率に合わせて形成される球面
座とし、該放射光透過薄膜の球面状突出面をこの球面座
に接触させると共に、その反対側から前記曲率に合わせ
て形成されたR状面を有する 裏当金を当ててこの放射光透過薄膜の端部側を前記窓枠
に固定することを特徴とする特許請求の範囲第4項記載
の放射光透過窓における放射光透過薄膜の取付方法。(6) In the method for attaching a synchrotron radiation transmitting thin film in a synchrotron radiation transmitting window as set forth in claim 4, a tapered surface formed on the transfer device side of the window frame of the synchrotron radiation transmitting window is attached so that the synchrotron radiation transmits through the window. A spherical seat formed to match the spherical curvature of the thin film, with the spherical protruding surface of the radiation transmitting thin film in contact with the spherical seat, and an R-shaped surface formed from the opposite side to match the curvature. A method for attaching a synchrotron radiation transmitting thin film in a synchrotron radiation transmitting window according to claim 4, characterized in that the end side of the synchrotron radiation transmitting thin film is fixed to the window frame by applying a backing metal having a .
射光透過薄膜を放射光透過窓に取付ける場合に、該放射
光透過窓の窓枠につき、転写装置側に、放射光透過薄膜
の球面状の曲率に合わせて球面座を形成し、該放射光透
過薄膜の端部側をこの球面座に接着せしめることを特徴
とする放射光透過窓における放射光透過薄膜の取付方法
。(7) When attaching the spherical synchrotron radiation transmitting thin film according to claims 1 to 3 to a synchrotron radiation transmitting window, the synchrotron radiation transmitting thin film is attached to the transfer device side on the window frame of the synchrotron radiation transmitting window. A method for attaching a synchrotron radiation transmitting thin film to a synchrotron radiation transmitting window, characterized in that a spherical seat is formed in accordance with the spherical curvature of the thin film, and an end side of the synchrotron radiation transmitting thin film is adhered to the spherical seat.
射光透過薄膜を放射光透過窓に取付ける場合に、該放射
光透過薄膜の端部側が放射光透過窓の窓枠となるように
一体成形されて該窓枠と共に形成されたことを特徴とす
る放射光透過窓における放射光透過薄膜の取付方法。(8) When the spherical synchrotron radiation transmitting thin film according to claims 1 to 3 is attached to a synchrotron radiation transmitting window, the end side of the synchrotron radiation transmitting thin film becomes the window frame of the synchrotron radiation transmitting window. A method for attaching a radiation-transmitting thin film to a radiation-transmitting window, characterized in that the radiation-transmitting thin film is formed integrally with the window frame as described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1244992A JPH0834132B2 (en) | 1989-09-22 | 1989-09-22 | Radiation transmitting window and method of attaching radiation transmitting thin film in radiation transmitting window |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1244992A JPH0834132B2 (en) | 1989-09-22 | 1989-09-22 | Radiation transmitting window and method of attaching radiation transmitting thin film in radiation transmitting window |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03108699A true JPH03108699A (en) | 1991-05-08 |
JPH0834132B2 JPH0834132B2 (en) | 1996-03-29 |
Family
ID=17126971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1244992A Expired - Lifetime JPH0834132B2 (en) | 1989-09-22 | 1989-09-22 | Radiation transmitting window and method of attaching radiation transmitting thin film in radiation transmitting window |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0834132B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH065200U (en) * | 1991-12-12 | 1994-01-21 | 石川島播磨重工業株式会社 | Window device for emitting SOR light in synchrotron |
US6289076B1 (en) | 1997-05-06 | 2001-09-11 | Sumitomo Heavy Industries, Ltd. | Transmission system for synchrotron radiation light |
-
1989
- 1989-09-22 JP JP1244992A patent/JPH0834132B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH065200U (en) * | 1991-12-12 | 1994-01-21 | 石川島播磨重工業株式会社 | Window device for emitting SOR light in synchrotron |
US6289076B1 (en) | 1997-05-06 | 2001-09-11 | Sumitomo Heavy Industries, Ltd. | Transmission system for synchrotron radiation light |
US6289077B1 (en) | 1997-05-06 | 2001-09-11 | Sumitomo Heavy Industries, Ltd. | Transmission system for synchrotron radiation light |
US6295334B1 (en) | 1997-05-06 | 2001-09-25 | Sumitomo Heavy Industries, Ltd. | Transmission system for synchrotron radiation light |
Also Published As
Publication number | Publication date |
---|---|
JPH0834132B2 (en) | 1996-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4158141A (en) | Process for channeling ion beams | |
US4887282A (en) | Method and apparatus for changing the imaging scale in X-ray lithograph | |
JPH0515057B2 (en) | ||
JPH03108699A (en) | Radiation beam transmitting window and attachment of radiation beam transmitting thin film to the same | |
JPS59101833A (en) | X-ray exposure device | |
JPH10242033A (en) | Mask retainer, aligner, device manufacturing method and mask structure body | |
US5790630A (en) | Radiation window and radiation system using the same | |
JPH03155116A (en) | Synchrotron radiation light exposure device and its exposure | |
JPH10511810A (en) | Exit window for beamline for X-ray lithography | |
US5548625A (en) | Method for parallel multiple field processing in X-ray lithography | |
US6171760B1 (en) | Lithographic method utilizing charged particle beam exposure and fluorescent film | |
JPH0527080B2 (en) | ||
JPH0638392B2 (en) | Surface treatment device using synchrotron radiation | |
JP2012241779A (en) | Vacuum connecting device, charged-particle beam drawing device, and method of mounting exhaust device on the charged-particle beam drawing device | |
JPH0587013B2 (en) | ||
US4899355A (en) | X-ray lithography system | |
JPH03215800A (en) | X-ray exposing method | |
JPS6122344A (en) | Transfer method of mask pattern | |
JPS59148336A (en) | x-ray mask | |
JP2004158681A (en) | Mask, aligner and exposure method | |
JPH06132206A (en) | Pattern forming method | |
JPS6170721A (en) | X-ray exposure device | |
JPH03120714A (en) | X-ray exposure device | |
JPS63250099A (en) | X-ray exposure device | |
JPH0526188B2 (en) |