[go: up one dir, main page]

JPH03107458A - Method for forming film on inside surface of plastic container - Google Patents

Method for forming film on inside surface of plastic container

Info

Publication number
JPH03107458A
JPH03107458A JP24689289A JP24689289A JPH03107458A JP H03107458 A JPH03107458 A JP H03107458A JP 24689289 A JP24689289 A JP 24689289A JP 24689289 A JP24689289 A JP 24689289A JP H03107458 A JPH03107458 A JP H03107458A
Authority
JP
Japan
Prior art keywords
tank
plasma
inside surface
gas
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24689289A
Other languages
Japanese (ja)
Inventor
Keiichiro Sano
慶一郎 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP24689289A priority Critical patent/JPH03107458A/en
Publication of JPH03107458A publication Critical patent/JPH03107458A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To form the plasma-polymerized film having fluid impermeability and gas barrier property from a gaseous monomer on the inside surface of a plastic tank by subjecting the inside surface of the plastic tank to an ion bombardment pretreatment, then supplying the gaseous monomer and generating a plasma discharge between the electrodes in the tank. CONSTITUTION:The electrodes 601, 602 are disposed to face each other in the plastic tank 10 consisting of polyethylene, polypropylene, etc., and the inside of the tank is evacuated to a reduced pressure. An inert gas, such as He or Ar is supplied from a cylinder 607 into the tank and a high-frequency voltage is impressed to the two electrodes 601, 602 by a electric power source 608 to generate the glow discharge and to generate the plasma by the inert gas, by which the ion bombardment treatment is executed and the wettability and adhesiveness of the inside surface of the tank are improved. The atmosphere in the tank is then replaced with the gaseous monomer 611, such as tetrafluoroethylene and the plasma is generated in the same manner as mentioned above. The plasma-polymerized film from this gaseous monomer is thus formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、樹脂製容器の内面に被膜を形成する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a coating on the inner surface of a resin container.

〔従来の技術〕[Conventional technology]

樹脂製容器(たとえば、オートバイの燃料タンク)の内
面にバリヤ層を形成するため、特開昭56−81344
号公報に係る技術が提案されている。
For forming a barrier layer on the inner surface of a resin container (for example, a motorcycle fuel tank), Japanese Patent Application Laid-Open No. 56-81344
A technique related to the publication No. 1 has been proposed.

この技術においては、樹脂製容器の内面がプラズマ処理
され、これによって該容器を構成している樹脂の極性基
が活性化される。そして、この活性化によって接着性が
向上した容器内面にエポキシ樹脂がバリヤ層として被着
される。
In this technique, the inner surface of a resin container is subjected to plasma treatment, thereby activating the polar groups of the resin constituting the container. An epoxy resin is then applied as a barrier layer to the inner surface of the container, which has improved adhesiveness due to this activation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記エポキシ樹脂からなるバリヤ層は、可撓性および耐
衝撃性に劣る。このため、バリヤ層にクラックを生じて
バリヤ効果が損なわれるという不都合が発生する。
The barrier layer made of the epoxy resin has poor flexibility and impact resistance. This causes the disadvantage that cracks occur in the barrier layer and the barrier effect is impaired.

本発明の目的は、かかる従来技術の問題点に鑑み、可撓
性および耐衝撃性に優れた被膜を中空樹脂製容器内に形
成することができる方法を提供することにある。
SUMMARY OF THE INVENTION In view of the problems of the prior art, an object of the present invention is to provide a method capable of forming a coating having excellent flexibility and impact resistance inside a hollow resin container.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、樹脂製容器内にモノマガスまたはその混合
ガスを封入する工程と、プラズマ重合法によって上記ガ
スの重合被膜を上記容器の内面に形成する工程とが実施
される。
In the present invention, a step of sealing a monomer gas or a mixed gas thereof in a resin container, and a step of forming a polymer film of the gas on the inner surface of the container by plasma polymerization are carried out.

〔作用〕[Effect]

本発明に係る被膜形成方法によれば、中空樹脂製容器の
内面にプラズマ重合被膜が形成される。
According to the film forming method according to the present invention, a plasma polymerized film is formed on the inner surface of a hollow resin container.

〔実施例〕〔Example〕

以下、図面を参照しながら本発明の実施例について説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図には、いわゆるブロー成形法によって形成された
オートバイ用燃料タンク10の断面が示されている。な
お、この燃料タンク10の材料には、経済性および耐衝
撃性に優れた単層高密度ポリエチレンが使用されている
。そしてこのタンク10は、平均厚さが4 m+mて内
容量が10リットルである。
FIG. 1 shows a cross section of a motorcycle fuel tank 10 formed by a so-called blow molding method. The fuel tank 10 is made of single-layer high-density polyethylene, which is economical and has excellent impact resistance. This tank 10 has an average thickness of 4 m+m and an internal capacity of 10 liters.

上記タンク10をブロー成形法によって形成する場合に
は、まず第2図に示す如く、ダイスリット20より溶融
樹脂からなるパリソン30を押し出し、そののち左右の
金型40を合体させて、エア吹き込み口50をはさみ込
む態様でパリソン30の上下をピンチする。
When forming the tank 10 by the blow molding method, first, as shown in FIG. Pinch the top and bottom of the parison 30 in such a way as to pinch the parison 30.

ついでエア吹き込み口50よりエアを吹き込むことによ
って第3図に示すようにパリソン30を金型40内で膨
らませる。これにより、パリソン30が金型40の内面
に押圧され、その結果、タンク10が成形加工される。
Next, by blowing air through the air blowing port 50, the parison 30 is inflated within the mold 40 as shown in FIG. As a result, the parison 30 is pressed against the inner surface of the mold 40, and as a result, the tank 10 is molded.

第1図に示したプラズマ重合装置60は、上記のように
してブロー成形されたタンク10の内面にプラズ重合被
膜を形成するために使用される。
The plasma polymerization apparatus 60 shown in FIG. 1 is used to form a plasma polymerization coating on the inner surface of the tank 10 that has been blow-molded as described above.

このプラズマ重合装置60は、ガス流通用配管群の先端
部を前記空気吹き込み口50内に位置させ、また放電用
電極601,602をタンク10内に位置させている。
In this plasma polymerization apparatus 60, the tips of the gas distribution piping group are located within the air blowing port 50, and the discharge electrodes 601 and 602 are located within the tank 10.

この配管群と電極601゜602は、空気吹き込み口5
0を封止する図示していない支持体に支承されており、
したがって、この支持体を空気吹き込み口50に挿着す
ることによって、タンク10の密封と配管群等の位置決
めが同時に行なわれる。
This pipe group and electrodes 601 and 602 are connected to the air blowing port 5.
0 is supported on a support (not shown) that seals the
Therefore, by inserting this support into the air blowing port 50, the sealing of the tank 10 and the positioning of the piping group etc. are performed at the same time.

このプラズマ重合装置60によってプラズマ重合被膜を
タンク10の内面に形成する場合には、まず、排気コン
トロールバルブ603を開きタンク10内の圧力をポン
プ604 テ10−8Torrまで減圧する。
When forming a plasma polymerized film on the inner surface of the tank 10 using this plasma polymerization apparatus 60, first, the exhaust control valve 603 is opened and the pressure inside the tank 10 is reduced to 10-8 Torr using the pump 604.

づ なお、タンク10内の圧力は真空計605でモニタされ
る。
Note that the pressure inside the tank 10 is monitored by a vacuum gauge 605.

タンク10内の減圧後、コントロールバルブ606を開
いてボンベ607からタンク10内に前処理用の不活性
ガスを導入するとともに高周波電源608を作動させる
。なお、このとき、タンク10内の圧力は、バルブ60
6の調節によって10 ”Torrl、:保持される。
After the pressure inside the tank 10 is reduced, the control valve 606 is opened to introduce inert gas for pretreatment into the tank 10 from the cylinder 607, and at the same time, the high frequency power source 608 is activated. Note that at this time, the pressure inside the tank 10 is
10" Torrl: maintained by adjustment of 6.

上記高周波電源608としては、たとえば出力100W
、出力周波数13.56MHzのものが使用される。こ
の高周波電源608より出力される高周波は、マツチン
グボックス609を介して前記電極601.602間に
印加され、これに伴う電極601,602間でのグロー
放電によってタンク10内に上記不活性ガスのプラズマ
が発生する。
For example, the high frequency power supply 608 has an output of 100W.
, an output frequency of 13.56 MHz is used. The high frequency output from this high frequency power supply 608 is applied between the electrodes 601 and 602 via a matching box 609, and the accompanying glow discharge between the electrodes 601 and 602 causes the inert gas to be discharged into the tank 10. Plasma is generated.

この結果、タンク10の基材内面が前処理用不活性ガス
のプラズマ中でいわゆるイオンバードされ、これにより
該基材内面のぬれ性および接着性が改善される。このよ
うな、前処理を行ったのち後述のプラズマ重合被膜を形
成すれば、タンク内面に対する該被膜の密着性を強固に
することができる。
As a result, the inner surface of the base material of the tank 10 is subjected to so-called ion birding in the plasma of the inert gas for pretreatment, thereby improving the wettability and adhesion of the inner surface of the base material. By forming a plasma polymerized film, which will be described later, after such pretreatment, the adhesion of the film to the inner surface of the tank can be strengthened.

なおこの実施例では、上記不活性ガスによる前処理を5
分間行っている。
In this example, the pretreatment with the inert gas was performed for 50 minutes.
It's been going for a minute.

また、上記不活性ガスとして、ヘリウム、アルゴン、酸
素、窒素等の1種、もしくはそれらのうちの2種以上を
混合したものを使用している。
Further, as the inert gas, one of helium, argon, oxygen, nitrogen, etc., or a mixture of two or more thereof is used.

上記前処理が終了すると、コントロールバルブ606が
閉じられるとともに、電源608がオフされ、その後、
タンク10内の圧力はポンプ604で減圧される。そし
て、その圧力が1O−8Torrまで降下した時点でコ
ントロールバルブ610が開かれ、ボンベ611からモ
ノマガス(たとえばテトラフルオロエチレンのガスがタ
ンク10内に導入される。このとき、モノマガスの流量
はバルブ610の調節によってたとえば500C:C(
STP)/minに設定される。
When the above pretreatment is completed, the control valve 606 is closed and the power supply 608 is turned off, and then,
The pressure inside the tank 10 is reduced by a pump 604. Then, when the pressure drops to 10-8 Torr, the control valve 610 is opened, and monomer gas (for example, tetrafluoroethylene gas) is introduced into the tank 10 from the cylinder 611. At this time, the flow rate of the monomer gas is For example, 500C:C(
STP)/min.

かかる状態で電源608が作動され、これによってタン
ク10内にプラズマが生起される。このプラズマは、モ
ノマガスを活性化し、その結果、該モノマガスによるバ
リヤ性プラズマ重合被膜がタンク10の内面に形成され
る。
In this state, the power supply 608 is activated, thereby generating plasma within the tank 10. This plasma activates the monomer gas, and as a result, a barrier plasma polymerized film of the monomer gas is formed on the inner surface of the tank 10.

上記重合被膜を形成する処理が約10分間継続された時
点で電源608がオフされるとともにバルブ610が閉
じられる。その後、タンク10内の圧力はポンプ604
によって除々に減圧され、その圧力が再び10 =To
rrまで降下された時点でコントロールバルブ612が
開かれる。これに伴ないボンベ613から後処理用の不
活性ガスがタンク10内に導入され、そのさいタンク1
0内の圧力はバルブ612の調節によって10−ITo
rrに保持される。
When the process of forming the polymeric film continues for about 10 minutes, the power supply 608 is turned off and the valve 610 is closed. Thereafter, the pressure inside the tank 10 is reduced by the pump 604.
The pressure is gradually reduced by 10 = To
The control valve 612 is opened when the pressure is lowered to rr. Along with this, an inert gas for after-treatment is introduced into the tank 10 from the cylinder 613, and at that time, the tank 1
The pressure within 0 is adjusted to 10-ITo by adjusting the valve 612.
It is held in rr.

ここで、電源608が作動され、これにより上記プラズ
マ重合被膜が不活性ガスのプラズマ中におかれる。その
結果、上記重合被膜が架橋されて、該被膜が更に強固か
つ安定になる。
Power supply 608 is now activated, thereby placing the plasma polymerized coating in an inert gas plasma. As a result, the polymeric coating is crosslinked, making it stronger and more stable.

なお、上記後処理用の不活性ガスとしては、水素や希ガ
ス等の1種、もしくはそれらのうちの2種以上を混合し
たものが使用される。
In addition, as the inert gas for the above-mentioned post-processing, one type of hydrogen, rare gas, etc., or a mixture of two or more of them is used.

上記不活性ガスによる後処理が約5分間行なわれたのち
、電源60gがオフされるとともにバルブ612が閉じ
られる。その後、タンク10内は減圧され、その圧力が
1.0 、Torrまで降下した時点でポンプ604を
停止して、タンク10内を大気圧に戻す。
After the post-treatment with the inert gas is carried out for about 5 minutes, the power supply 60g is turned off and the valve 612 is closed. Thereafter, the pressure inside the tank 10 is reduced, and when the pressure drops to 1.0 Torr, the pump 604 is stopped to return the inside of the tank 10 to atmospheric pressure.

ついで、型開きを行なえば、内面に、液体、不透過性お
よびガスバリヤ性を有するプラズマ重合被膜が形成され
た樹脂製タンク10を得ることができる。
Then, by opening the mold, it is possible to obtain a resin tank 10 having a plasma polymerized coating having liquid, impermeability and gas barrier properties formed on the inner surface.

なお、被膜形成工程での未反応モノマガスおよび不活性
ガスは、真空ポンプ604を通して完全に回収されかつ
再利用される。
Note that unreacted monomer gas and inert gas in the film forming process are completely recovered and reused through the vacuum pump 604.

上記実施例では、金型4内のタンク10に被膜形成処理
を施こしているが、タンク10の気密性が高い場合には
、該タンク10を型40から取出したのち被膜形成処理
を施こしてもよい。
In the above embodiment, the film forming process is performed on the tank 10 inside the mold 4, but if the tank 10 is highly airtight, the film forming process is performed after the tank 10 is taken out from the mold 40. You can.

上記タンク10の基体を構成する樹脂の材料は特に限定
されず、ブロー成形によく用いられる一般的な有機高分
子化合物、たとえばポリエチレン、ポリプロピレン、ポ
リエチレンテレフタレート、ポリ塩化ビニル、ポリスチ
レン等を適用することができる。また、特開昭50−2
20738号に示す多層構造の樹脂をタンク基体材料と
して用いることも可能である。
The material of the resin constituting the base of the tank 10 is not particularly limited, and general organic polymer compounds often used in blow molding, such as polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polystyrene, etc., can be used. can. Also, JP-A-50-2
It is also possible to use the multilayered resin shown in No. 20738 as the tank base material.

一方、本発明に使用するプラズマ重合性モノマ(有機化
合物)も実施例に示したテトラフルオロエチレンに限定
されず、プラズマ重合により被膜を形成しえるものであ
ればあらゆるモノマを適用することができる。そして、
モノマ中に金属原子や、フッ素、ケイ素、リン、イオウ
等の炭素以外の原子が含まれている場合でも、何ら不都
合は生しない。そしてモノマは、1種もしくは2種以上
を併用してもよい。
On the other hand, the plasma polymerizable monomer (organic compound) used in the present invention is not limited to the tetrafluoroethylene shown in the examples, but any monomer that can form a film by plasma polymerization can be used. and,
Even if the monomer contains metal atoms or atoms other than carbon such as fluorine, silicon, phosphorus, sulfur, etc., no disadvantages arise. The monomers may be used alone or in combination of two or more.

モノマとして、フッ素化モノマや有機ケイ素化合物を適
用すれば、高い液体不透過性およびガスバリヤ性をタン
ク10に付与することができ、また有機ケイ素化合物お
よびヨウ素、臭素等のアクセプタ分子や金属原子を含む
モノマを使用すれば、タンク10に帯電防止効果も付与
することができる。
If a fluorinated monomer or an organosilicon compound is used as the monomer, high liquid impermeability and gas barrier properties can be imparted to the tank 10, and the monomer may also contain an organosilicon compound and an acceptor molecule such as iodine or bromine or a metal atom. By using a monomer, it is also possible to impart an antistatic effect to the tank 10.

なお、上記フッ素化モノマとしては、例えば、モノフル
オロメタン、ジフルオロメタン、トリフルオロエタン、
テトラフルオロメタン、モノフルオロジクロロメタン、
モノフルオロエタン、トリフルオロエタン、テトラフル
オロエタン、ペンタフルオロエタン、ヘキサフルオロエ
タン、ジフルオロジクロロエタン、トリフルオロトリク
ロロエタン、モノフルオロプロパン、トリフルオロプロ
パン、ペンタフルオロプロパン、パーフルオロプロパン
、ジフルオロジクロロプロパン、テトラフルオロジクロ
ロプロパン、モノフルオロn−ブタン、トリフルオロn
−ブタン、テトラフルオロn−ブタン、オクタフルオロ
n−ブタン、ジフルオロn−ブタン、モノフルオロイソ
ブタン、ジフルオロイソブタン、ペンタフルオロイソブ
タン、モノフルオロジクロロn−ブタン、ジフルオロジ
クロロイソブタン、テトラフルオロジクロロイソブタン
等を挙げることができる。
In addition, examples of the above-mentioned fluorinated monomers include monofluoromethane, difluoromethane, trifluoroethane,
Tetrafluoromethane, monofluorodichloromethane,
Monofluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, hexafluoroethane, difluorodichloroethane, trifluorotrichloroethane, monofluoropropane, trifluoropropane, pentafluoropropane, perfluoropropane, difluorodichloropropane, tetrafluorodichloroethane Chloropropane, monofluoro-n-butane, trifluoro-n
-butane, tetrafluoro n-butane, octafluoro n-butane, difluoro n-butane, monofluoroisobutane, difluoroisobutane, pentafluoroisobutane, monofluorodichloro n-butane, difluorodichloroisobutane, tetrafluorodichloroisobutane, etc. I can do it.

また有機ケイ素化合物としては、例えば、テトラクロロ
シラン、メチルトリクロロシラン、ジメチルジクロロシ
ラン、トリメチルクロロシラン、メチルシラン、ジメチ
ルシラン、トリメチルシラン、テトラメチルシラン、テ
トラメトキシシラン、メチルトリメトキシシラン、ジメ
チルジメトキシシラン、トリメチルメトキシシラン、フ
ェニルトリメトキシシラン、ビニルトリメトキシシラン
γーメタクリロキシプロピルトリメトキシシラン、アリ
ルシラン、γーグリシドキシプロピルトリメトキシシラ
ン、γーアミノプロピルトリメトキシシラン、γークロ
ロプロピルトリクロロシラン等を挙げることができる。
Examples of organosilicon compounds include tetrachlorosilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, methylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, and trimethylmethoxysilane. Silane, phenyltrimethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, allylsilane, γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-chloropropyltrichlorosilane, etc. I can do it.

上記実施例では、単層構造のプラズマ重合被膜を形成し
ているが、必要に応じて2層以上の被膜を形成すること
ができ、例えば2層の場合にはタンク内面へ第1層目の
プラズマ重合被膜を形成した後、引き続き第1層目とは
異なる1種もしくは2種以上混合のモノマを用いて第2
層目のプラズマ重合被膜を形成させる。好適な具体例と
しては、先にアリルアミンやビニルピリジンあるいはプ
ロパルギルアルコールやメチルメタクリレート等の窒素
原子や酸素原子を含むモノマによる親水性のプラズマ重
合膜を形成させ、次に疎水性であるテトラフルオロエチ
レン等のフッ素化モノマによるプラズマ重合被膜を形成
させる。
In the above example, a plasma polymerized coating with a single layer structure is formed, but two or more layers can be formed as necessary. For example, in the case of two layers, the first layer is applied to the inner surface of the tank. After forming the plasma polymerized film, a second layer is formed using one or a mixture of two or more monomers different from those used in the first layer.
A layered plasma polymerized film is formed. As a preferred specific example, a hydrophilic plasma polymerized film is first formed using a monomer containing a nitrogen atom or an oxygen atom such as allylamine, vinyl pyridine, propargyl alcohol, or methyl methacrylate, and then a hydrophilic plasma polymerized film is formed using a monomer containing a nitrogen atom or an oxygen atom such as allylamine, vinyl pyridine, propargyl alcohol, or methyl methacrylate. A plasma polymerized film is formed using a fluorinated monomer.

本発明を実施する場合のプラズマ重合の条件は、通常の
プラズマ重合のそれとほとんど同様でよい。
The conditions for plasma polymerization when carrying out the present invention may be almost the same as those for ordinary plasma polymerization.

すなわち、プラズマ重合反応中の反応体域の電子温度は
10,000〜28,OOOKが望ましく、また真空度
はIXlo−3〜I Torrでよい。更に、タンク内
に流入するモノマを含むガスの流量は、例えば内容積1
0リットルのタンクの場合には、0.  1−20 c
 c (STP) /min程度でよい。なお、前記の
ガスは、アルゴン、ヘリウム、キセノン、ネオン等の不
活性ガスをキャリアガス等として混合したのちタンク内
に導入することができる。
That is, the electron temperature in the reactant zone during the plasma polymerization reaction is preferably 10,000 to 28,000 OO, and the degree of vacuum may be IXlo-3 to I Torr. Furthermore, the flow rate of the gas containing monomer flowing into the tank is, for example, the internal volume 1
For a 0 liter tank, 0. 1-20c
c (STP) /min may be sufficient. Note that the above gas can be introduced into the tank after being mixed with an inert gas such as argon, helium, xenon, neon, etc. as a carrier gas.

プラズマ重合時におけるタンク10の温度には特に制約
はないが、好ましくは0℃以上でかつタンク基材の融点
以下であることが望ましい。なお、1 プラズマ重合被膜の厚さは、タンクの液体不透過性およ
びガスバリヤ性能により定められるが、通常は0.1〜
10μm程度である。
There are no particular restrictions on the temperature of the tank 10 during plasma polymerization, but it is preferably 0° C. or higher and lower than the melting point of the tank base material. Note that 1. The thickness of the plasma polymerized film is determined by the liquid impermeability and gas barrier performance of the tank, but is usually 0.1 to
It is about 10 μm.

本発明において使用するプラズマ重合装置は、公知のも
のをブロー成形機に取り付は可能に改良するだけでよい
。公知の重合装置には、内部電極容量型、外部電極容量
型、外部電極誘導型等があるが、本発明には実施例に示
したような内部電極容量型のものを適用することが好ま
しい。
The plasma polymerization apparatus used in the present invention may be a known one and only needs to be modified to the extent that it can be attached to a blow molding machine. Known polymerization apparatuses include an internal electrode capacitive type, an external electrode capacitive type, an external electrode induction type, etc., but it is preferable to apply an internal electrode capacitive type as shown in the Examples to the present invention.

また、重合装置の放電の方式は、高周波放電、マイクロ
波放電、低周波放電等のうちのいずれでもよく特に限定
されない。高周波放電の場合には出力周波数13.56
旧1z 、出力電力10〜200W程度の電源が、また
マイクロ波放電の場合には出力周波数2450MHz、
出力電力100〜5 0 0 0層程度の電源が、更に
低周波放電の場合には出力周波数0.1〜20KHz、
出力電力10〜200W程度の電源が適用される。なお
、均一な被膜を形成するためには、実施例に示したよう
な高周波放電を使用するのが好ましい。
Further, the discharge method of the polymerization apparatus may be any one of high frequency discharge, microwave discharge, low frequency discharge, etc., and is not particularly limited. In the case of high frequency discharge, the output frequency is 13.56
For the old 1z, a power supply with an output power of about 10 to 200W, and an output frequency of 2450MHz in the case of microwave discharge,
In the case of a power supply with an output power of about 100 to 5000 layers, and even lower frequency discharge, an output frequency of 0.1 to 20 KHz,
A power source with an output power of about 10 to 200 W is applied. Note that in order to form a uniform film, it is preferable to use high frequency discharge as shown in the examples.

 2 第4図は、本発明に従って内面にテトラフルオロエチレ
ン(モノマ)のプラズマ重合被膜を形成した燃料タンク
と、内面をフッ素処理した燃料タンクと、内面が未処理
の燃料タンクの各ガソリ透過量を示している。
2 Figure 4 shows the amount of gasoline permeated in a fuel tank with a plasma polymerized film of tetrafluoroethylene (monomer) formed on its inner surface according to the present invention, a fuel tank with a fluorine-treated inner surface, and a fuel tank with an untreated inner surface. It shows.

なお、上記各供試タンクは、平均厚さが4 m+mで内
容量が10リツトルである。そして、同図に示す透過量
は、タンク中に入れられた5リツトルのガソリンの減少
量から測定したものであり、未処理のタンクの30日経
過後の透過量を1oOとした時の相対値で表わされてい
る。
The above test tanks had an average thickness of 4 m+m and an internal capacity of 10 liters. The amount of permeation shown in the same figure is measured from the amount of decrease in 5 liters of gasoline placed in the tank, and is a relative value when the amount of permeation after 30 days in an untreated tank is taken as 1oO. It is represented.

同図から明らかなように、プラズマ重合したタンクはガ
ソリン透過量が他のタンクに比べて著しく少なく、ガソ
リン不透過性能が特に優れている。
As is clear from the figure, the amount of gasoline permeated in the plasma-polymerized tank is significantly smaller than that of other tanks, and its gasoline impermeability is particularly excellent.

(発明の効果) 本発明に係る被膜形成方法では、被膜形成手段としてプ
ラズマ重合法を用いているので、ビンホルフリーで且つ
高密度に架橋した化学的に安定で耐バリヤ性、耐薬品性
、耐熱性および機械的強度に優れた被膜をタンク内面に
密着させることができる。
(Effects of the Invention) Since the film forming method according to the present invention uses plasma polymerization as a film forming means, it is chemically stable, chemically stable, cross-linked with high density, and has barrier resistance, chemical resistance, and heat resistance. Also, a coating with excellent mechanical strength can be adhered to the inner surface of the tank.

なお、本発明は燃料タンクだけでなく、あらゆる種類の
樹脂製容器に適用することができる。
Note that the present invention can be applied not only to fuel tanks but also to all types of resin containers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る被膜形成方法に適用するプラズ
マ重合装置の構成を例示した概念図、第2図および第3
図はブロー成形法に従ったタンクの成形手順を示した概
念図、第4図はガソリン透過量についての試験結果を示
したグラフである。 10・・・タンク、30・・・パリソン、40・・・金
型、50・・・エア吹き込み口、60・・・プラズマ重
合装置。 特開平3 107458 (6) 軽焼時間(日)
FIG. 1 is a conceptual diagram illustrating the configuration of a plasma polymerization apparatus applied to the film forming method according to the present invention, and FIGS.
The figure is a conceptual diagram showing the procedure for forming a tank according to the blow molding method, and FIG. 4 is a graph showing test results regarding the amount of gasoline permeation. DESCRIPTION OF SYMBOLS 10... Tank, 30... Parison, 40... Mold, 50... Air blowing port, 60... Plasma polymerization apparatus. JP-A-3 107458 (6) Light baking time (Sun)

Claims (1)

【特許請求の範囲】  樹脂製容器内にモノマガスまたはその混合ガスを封入
させる工程と、 プラズマ重合法によって上記ガスの重合被膜を上記樹脂
製容器の内面に形成する工程と を含むことを特徴とする樹脂製容器の内面に被膜を形成
する方法。
[Claims] The method is characterized by comprising the steps of: sealing a monomer gas or a mixed gas thereof in a resin container; and forming a polymerized film of the gas on the inner surface of the resin container using a plasma polymerization method. A method of forming a film on the inner surface of a resin container.
JP24689289A 1989-09-22 1989-09-22 Method for forming film on inside surface of plastic container Pending JPH03107458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24689289A JPH03107458A (en) 1989-09-22 1989-09-22 Method for forming film on inside surface of plastic container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24689289A JPH03107458A (en) 1989-09-22 1989-09-22 Method for forming film on inside surface of plastic container

Publications (1)

Publication Number Publication Date
JPH03107458A true JPH03107458A (en) 1991-05-07

Family

ID=17155295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24689289A Pending JPH03107458A (en) 1989-09-22 1989-09-22 Method for forming film on inside surface of plastic container

Country Status (1)

Country Link
JP (1) JPH03107458A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677010A (en) * 1993-06-01 1997-10-14 Kautex Werke Reinold Hagen Aktiengesellschaft Method for producing a polymer coating inside hollow plastic articles
US5690745A (en) * 1994-10-17 1997-11-25 Leybold Ag Apparatus for plasma treatment of the inside surface of a fuel tank
DE19700426A1 (en) * 1997-01-09 1998-07-16 Inpro Innovations Gmbh Impermeable layer on inside wall of vessel especially plastic fuel tank
EP1595913A1 (en) * 2004-05-14 2005-11-16 Inergy Automotive Systems Research (SA) Method for preparing a hollow element of a fuel system
EP1725342A1 (en) * 2004-03-17 2006-11-29 Behr GmbH & Co. KG Coating method
JP2007138577A (en) * 2005-11-18 2007-06-07 Copros Co Ltd Shaft construction method
JP2008544011A (en) * 2005-06-16 2008-12-04 イノベイティブ システムズ アンド テクノロジーズ Polymer product having a thin film coating formed by plasma on at least one of its sides and a method for producing such a product
JP2010013735A (en) * 2009-09-29 2010-01-21 Konica Minolta Holdings Inc Method for producing resin film, and organic electroluminescence element using the resin film
CN114535029A (en) * 2022-02-24 2022-05-27 深圳市技高美纳米科技有限公司 Preparation method and preparation system of nano waterproof film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677010A (en) * 1993-06-01 1997-10-14 Kautex Werke Reinold Hagen Aktiengesellschaft Method for producing a polymer coating inside hollow plastic articles
US5690745A (en) * 1994-10-17 1997-11-25 Leybold Ag Apparatus for plasma treatment of the inside surface of a fuel tank
DE19700426A1 (en) * 1997-01-09 1998-07-16 Inpro Innovations Gmbh Impermeable layer on inside wall of vessel especially plastic fuel tank
DE19700426C2 (en) * 1997-01-09 2002-03-21 Inpro Innovations Gmbh Process for the production of layers and layers that block permeation against liquids and / or gases on the inner surfaces of hollow plastic containers, in particular plastic fuel containers (KKB), by means of plasma polymerization
EP1725342A1 (en) * 2004-03-17 2006-11-29 Behr GmbH & Co. KG Coating method
WO2005113654A3 (en) * 2004-05-14 2006-03-30 Inergy Automotive Systems Res Method for preparing a hollow element of a fuel system
EP1595913A1 (en) * 2004-05-14 2005-11-16 Inergy Automotive Systems Research (SA) Method for preparing a hollow element of a fuel system
JP2008544011A (en) * 2005-06-16 2008-12-04 イノベイティブ システムズ アンド テクノロジーズ Polymer product having a thin film coating formed by plasma on at least one of its sides and a method for producing such a product
US8715821B2 (en) 2005-06-16 2014-05-06 Innovative Systems & Technologies Polymer article having a thin coating formed on at least one of its sides by plasma and method for producing such an article
JP2007138577A (en) * 2005-11-18 2007-06-07 Copros Co Ltd Shaft construction method
JP4693606B2 (en) * 2005-11-18 2011-06-01 株式会社コプロス Vertical shaft construction method
JP2010013735A (en) * 2009-09-29 2010-01-21 Konica Minolta Holdings Inc Method for producing resin film, and organic electroluminescence element using the resin film
CN114535029A (en) * 2022-02-24 2022-05-27 深圳市技高美纳米科技有限公司 Preparation method and preparation system of nano waterproof film

Similar Documents

Publication Publication Date Title
US5833752A (en) Manifold system
US5677010A (en) Method for producing a polymer coating inside hollow plastic articles
JP4494792B2 (en) Chemical vapor deposition by corona on support.
RU2137603C1 (en) Method for intensification of effect of mould separation
US4483901A (en) Selectively gas-permeable composite membrane and process for production thereof
US20070281108A1 (en) Process for Plasma Coating
JP2004282064A (en) Method for forming low dielectric constant film on semiconductor substrate by plasma reaction using high frequency power
JPH03107458A (en) Method for forming film on inside surface of plastic container
JP2004169087A (en) High frequency plasma cvd system, and plastic vessel
TW200416138A (en) Process and apparatus for depositing plasma coating onto a container
CN1214741A (en) Barrier film with vapor-coated EVOH surface
JP5273760B2 (en) Plastic container
US20100003833A1 (en) Method of forming fluorine-containing dielectric film
JPH0514722B2 (en)
JP3355892B2 (en) Method of forming carbon film
KR100375131B1 (en) A vacuum coating apparatus for coating a metallic film on a plastic material and a coating method thereof
JP4432423B2 (en) Chemical vapor deposition film by plasma CVD method
JPWO2006059697A1 (en) Ethylene-tetrafluoroethylene copolymer molded product and method for producing the same
JP2000109581A (en) Deposition of barrier coating film on plastic material by barrier coating and high-output plasma chemical vapor deposition
US20070246472A1 (en) Method for Preparing a Hollow Element of a Fuel System
JP3446150B2 (en) Hard coating method
JP4300977B2 (en) Barrier plastic container
JPH05345831A (en) Production of gas barrier plastic material
Kaplan Cold gas plasma treatment for re-engineering films
JPH1017687A (en) Method for treating inner surface of bag