JPH0310395Y2 - - Google Patents
Info
- Publication number
- JPH0310395Y2 JPH0310395Y2 JP1983191378U JP19137883U JPH0310395Y2 JP H0310395 Y2 JPH0310395 Y2 JP H0310395Y2 JP 1983191378 U JP1983191378 U JP 1983191378U JP 19137883 U JP19137883 U JP 19137883U JP H0310395 Y2 JPH0310395 Y2 JP H0310395Y2
- Authority
- JP
- Japan
- Prior art keywords
- vane
- cam ring
- pump body
- circumferential surface
- outside
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000006835 compression Effects 0.000 claims description 30
- 238000007906 compression Methods 0.000 claims description 30
- 239000003507 refrigerant Substances 0.000 description 20
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
Landscapes
- Rotary Pumps (AREA)
Description
【考案の詳細な説明】
(産業上の利用分野)
本考案は車輌用空気調和装置の冷媒ガス等を圧
縮するベーン型圧縮機に関する。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a vane compressor for compressing refrigerant gas, etc. for a vehicle air conditioner.
(従来の技術)
一般に、車輌用空気調和装置の冷媒ガスの圧縮
機としては構成が簡単で且つ高速回転に適するベ
ーン型圧縮機が採用されている。従来、この種の
ベーン型圧縮機は、第1図及び第2図に示す如く
構成されている。即ち、円筒形を成し吐出口1a
が設けられたケース1に、吸入口2a及び該吸入
口2aに連通する吸入室2b,2cが設けられた
フロントヘツド2をボルト止めすることにより、
密閉構造のハウジング3が構成されている。該ハ
ウジング3内には、内周面4cに楕円形のカム面
を有すると共に両端面が開口し且つ周壁に後述の
圧縮室10,11に連通する吐出口4d,4eが
穿設されたカムリング4が収納されている。該カ
ムリング4の一端面4aには、吸入室2b,2c
と圧縮室10,11の一端とを連通する吸入口5
b,5cが穿設されたフロントサイドブロツク5
の一端面5aが、気密に当接されている。カムリ
ング4の他端面4bには、リヤサイドブロツク6
の一端面が気密に当接されている。これらのフロ
ントサイドブロツク5とリヤサイドブロツク6と
には回転軸7が回転可能に支持されている。該回
転軸7にはカムリング4内に回転自在に収納され
たロータ8が固着されている。該ロータ8にその
周方向に所定の間隔を存し且つ径方向に沿つて穿
設された複数のベーン溝8b内には、ベーン9が
摺動自在にそれぞれ嵌装されている。これら各ベ
ーン9の先端がカムリング4の内周面4cに摺接
するようになつている。カムリング4の内周面4
cとロータ8の外周面8aとベーン9とにより、
圧縮室10,11が画成されている。カムリング
4の吐出口4d,4eには吐出弁12,13が装
着されている。ハウジング3の内周面とカムリン
グ4の外周面とリヤサイドブロツク6の外側面と
の間には、吐出室15が画成されている。なお、
カムリング4と両サイドブロツク5,6とによ
り、ポンプ本体14が構成されている。(Prior Art) Generally, a vane type compressor, which has a simple configuration and is suitable for high-speed rotation, is employed as a refrigerant gas compressor for a vehicle air conditioner. Conventionally, this type of vane compressor is constructed as shown in FIGS. 1 and 2. That is, the discharge port 1a has a cylindrical shape.
By bolting the front head 2, which is provided with a suction port 2a and suction chambers 2b, 2c communicating with the suction port 2a, to a case 1 provided with a
The housing 3 has a closed structure. Inside the housing 3 is a cam ring 4 which has an elliptical cam surface on its inner peripheral surface 4c, is open at both end surfaces, and has discharge ports 4d and 4e bored in its peripheral wall that communicate with compression chambers 10 and 11, which will be described later. is stored. One end surface 4a of the cam ring 4 has suction chambers 2b, 2c.
and one end of the compression chambers 10, 11.
Front side block 5 with holes b and 5c
One end surface 5a of the two is airtightly abutted. A rear side block 6 is attached to the other end surface 4b of the cam ring 4.
One end surface of the two is airtightly abutted. A rotating shaft 7 is rotatably supported by the front side block 5 and the rear side block 6. A rotor 8 rotatably housed within a cam ring 4 is fixed to the rotating shaft 7. Vanes 9 are slidably fitted into a plurality of vane grooves 8b which are formed in the rotor 8 at predetermined intervals in the circumferential direction and along the radial direction. The tips of these vanes 9 are adapted to come into sliding contact with the inner circumferential surface 4c of the cam ring 4. Inner peripheral surface 4 of cam ring 4
c, the outer peripheral surface 8a of the rotor 8, and the vane 9,
Compression chambers 10, 11 are defined. Discharge valves 12 and 13 are attached to discharge ports 4d and 4e of the cam ring 4. A discharge chamber 15 is defined between the inner circumferential surface of the housing 3, the outer circumferential surface of the cam ring 4, and the outer circumferential surface of the rear side block 6. In addition,
The cam ring 4 and both side blocks 5 and 6 constitute a pump body 14.
そして、機関に関連して回転軸7と共にロータ
8が回転すると、圧縮室10,11は、吸入行程
ではその容積が最小から最大に、吐出行程では最
大から最小に変化する。そして、吸入行程におい
て吸入口2aから吸入室2b,2c内に導入され
た冷媒ガスは、吸入口5b,5cから圧縮室1
0,11内に吸入され、吐出行程において圧縮さ
れて吐出口4d,4eから吐出室15に吐出され
る。この作用が繰り返されて冷媒ガスの吸入、圧
縮及び吐出作用が行なわれる。 When the rotor 8 rotates together with the rotating shaft 7 in relation to the engine, the volumes of the compression chambers 10 and 11 change from the minimum to the maximum during the suction stroke, and from the maximum to the minimum during the discharge stroke. During the suction stroke, the refrigerant gas introduced into the suction chambers 2b, 2c from the suction port 2a flows through the suction ports 5b, 5c into the compression chamber 1.
0 and 11, is compressed during the discharge stroke, and is discharged into the discharge chamber 15 from the discharge ports 4d and 4e. This action is repeated to suction, compress and discharge the refrigerant gas.
(考案が解決しようとする問題点)
ところで、吐出室15内に吐出された冷媒ガス
の圧力は約14〜15Kg/cm2と非常に高く、ポンプ本
体14の壁部はこの高圧冷媒ガスの圧力を受けて
いる。一方、吸入される冷媒ガスの圧力は約2
Kg/cm2程度と低く、このため特に第2図中A,
A′で示すポンプ本体14の圧縮室10,11の
吸入口5b,5cの近傍の範囲において、ポンプ
本体14の内圧と外圧との圧力差が最も大きくな
る。この結果、かかる範囲におけるカムリング4
と両サイドブロツク5,6との当接箇所から高圧
冷媒ガスが圧縮室10,11内に侵入し易くな
る。(Problem to be solved by the invention) By the way, the pressure of the refrigerant gas discharged into the discharge chamber 15 is very high, approximately 14 to 15 kg/cm 2 , and the wall of the pump body 14 is designed to absorb the pressure of this high-pressure refrigerant gas. Is receiving. On the other hand, the pressure of the refrigerant gas sucked is approximately 2
Kg/cm 2 is low, and for this reason, especially A,
The pressure difference between the internal pressure and the external pressure of the pump body 14 is greatest in the range near the suction ports 5b, 5c of the compression chambers 10, 11 of the pump body 14, indicated by A'. As a result, the cam ring 4 in this range
High pressure refrigerant gas easily enters into the compression chambers 10, 11 from the contact points between the side blocks 5, 6 and the side blocks 5, 6.
高圧冷媒ガスが圧縮室10,11内に侵入する
と吸入口5b,5cから低圧の冷媒ガスが圧縮室
10,11内に吸入されなくなり、この結果、圧
縮性能が低下する。かかる圧縮性能の低下を防止
するためには、カムリング4の両端面4a,4b
と両サイドブロツク5,6の各端面5a,6aの
加工精度を高めることにより、その組付精度を高
くして、気密性を向上させることが必要不可欠で
ある。 When high-pressure refrigerant gas enters the compression chambers 10, 11, low-pressure refrigerant gas is no longer sucked into the compression chambers 10, 11 from the suction ports 5b, 5c, resulting in a reduction in compression performance. In order to prevent such a decrease in compression performance, both end surfaces 4a and 4b of the cam ring 4 must be
It is essential to improve the accuracy of assembly of the end faces 5a, 6a of the side blocks 5, 6, thereby increasing the accuracy of assembly and improving airtightness.
しかるに、前記各端面4a,4b,5a,6a
の加工精度を高め、ポンプ本体14の組付精度を
高くすることはコストアツプを招いていた。 However, each end surface 4a, 4b, 5a, 6a
Improving the processing accuracy of the pump body 14 and the assembly accuracy of the pump body 14 have led to an increase in costs.
本考案は上記事情に鑑みてなされたもので、簡
単な構成で、コストアツプを招くことなく圧縮室
内への高圧冷媒ガスの漏洩を防止できるようにし
たベーン型圧縮機を提供することを目的とするも
のである。 The present invention has been made in view of the above circumstances, and aims to provide a vane type compressor that has a simple configuration and can prevent leakage of high-pressure refrigerant gas into the compression chamber without increasing costs. It is something.
(課題を解決するための手段)
上記目的を達成するため本考案のベーン型圧縮
機は、カムリングの両端面とこれら両端面と当接
する前記両サイドブロツクの当接面の少なくとも
一方の面に位置し且つ前記ポンプ本体の内外の圧
力差の大きい箇所に、前記圧縮室に略沿うと共に
前記吸入口の外側に位置し該吸入口の周方向に沿
う溝を設けたものである。(Means for Solving the Problems) In order to achieve the above object, the vane type compressor of the present invention provides a vane type compressor that is located on at least one of both end faces of a cam ring and the abutment faces of both side blocks that come into contact with these end faces. In addition, a groove is provided at a location where there is a large pressure difference between the inside and outside of the pump body, the groove approximately following the compression chamber and located outside the suction port in the circumferential direction of the suction port.
(作用)
圧縮室内に侵入しようとする高圧冷媒ガスが前
記溝内で膨張することによつて、そのエネルギが
消失し、高圧冷媒ガスが圧縮室内へ漏洩しない。(Function) When the high-pressure refrigerant gas that attempts to enter the compression chamber expands within the groove, its energy is lost, and the high-pressure refrigerant gas does not leak into the compression chamber.
(実施例)
以下本考案の一実施例を第3図及び第4図に基
づいて詳述する。(Example) An example of the present invention will be described in detail below with reference to FIGS. 3 and 4.
第3図及び第4図は本考案のベーン型圧縮機の
縦断面図及び横断面図である。尚、両図中前述し
た第1図及び第2図に示す従来のベーン型圧縮機
と同一構成部分には、同一符号を付してその詳細
説明を省略する。 3 and 4 are a longitudinal sectional view and a transverse sectional view of the vane type compressor of the present invention. In both figures, the same components as those of the conventional vane compressor shown in FIGS. 1 and 2 are designated by the same reference numerals, and detailed explanation thereof will be omitted.
第3図及び第4図において、ポンプ本体14の
外圧と内圧との圧力差が最大となる箇所即ち、カ
ムリング4の一端面4aの各圧縮室10,11の
冷媒ガス吸入側には、フロントサイドブロツク5
の各冷媒ガス吸入口5b,5cの外側に位置し
て、圧縮室10,11に沿う略円弧状の溝4f,
4gが形成されている。これらの各溝4f,4g
の周方向に沿う長さは、前記吸入口5b,5cの
周方向に沿う長さよりも長く設定されている。ま
た、カムリング4の他端面4bにも溝4f,4g
と対応する位置に、これらの各溝4f,4gと同
様の円弧状の溝4f′,4g′が形成されている。 In FIGS. 3 and 4, the front side Block 5
substantially arc-shaped grooves 4f, which are located on the outside of each refrigerant gas inlet 5b, 5c and run along the compression chambers 10, 11;
4g is formed. Each of these grooves 4f, 4g
The length along the circumferential direction is set longer than the length along the circumferential direction of the suction ports 5b and 5c. Additionally, grooves 4f and 4g are also provided on the other end surface 4b of the cam ring 4.
Arc-shaped grooves 4f' and 4g' similar to these grooves 4f and 4g are formed at positions corresponding to the grooves 4f and 4g.
このカムリング4の両端面4a及び4bには
夫々フロントサイドブロツク5及びリヤサイドブ
ロツク6が従来と同様に図示しないボルトにより
固着されている。これらの各サイドブロツク5,
6の各端面5a,6aは、夫々カムリング4の両
端面4a,4bに気密に当接されている。 A front side block 5 and a rear side block 6 are fixed to both end surfaces 4a and 4b of the cam ring 4, respectively, by bolts (not shown) as in the conventional case. Each of these side blocks 5,
The end surfaces 5a and 6a of the cam ring 6 are in airtight contact with both end surfaces 4a and 4b of the cam ring 4, respectively.
その他の構成は前述した第1図及び第2図に示
す従来のベーン型圧縮機とと同様に構成されてい
る。 The rest of the structure is similar to the conventional vane type compressor shown in FIGS. 1 and 2 described above.
上記構成において、ポンプ本体14の外側に加
わる吐出室15の高圧冷媒ガスの圧力は、前述し
たようにポンプ本体14を構成するカムリング4
と両サイドブロツク5,6との各当接面4aと5
aとの間及び4bと6aとの間から、圧縮室1
0,11の内外の圧力差が最大となる吸入口5
b,5c付近即ち、第4図中矢印B,B′で示す
範囲から圧縮室10,11内に侵入し易い。 In the above configuration, the pressure of the high-pressure refrigerant gas in the discharge chamber 15 applied to the outside of the pump body 14 is controlled by the cam ring 4 constituting the pump body 14 as described above.
and the contact surfaces 4a and 5 of both side blocks 5 and 6.
a and from between 4b and 6a, the compression chamber 1
Inlet port 5 where the pressure difference between the inside and outside of 0 and 11 is maximum
It is easy to enter the compression chambers 10 and 11 from the vicinity of b and 5c, that is, from the range indicated by arrows B and B' in FIG.
これらの矢印B及びB′で示す範囲から圧縮室
10,11の吸入側に侵入した高圧冷媒ガスは、
その侵入途中において溝4f,4f′及び4g,4
g′を横切ることとなる。しかるに、高圧冷媒ガス
はこれらの各溝4f,4f′及び4g,4g′を通過
する際に、これらの各溝4f,4f′,4g,4
g′内で膨張して、そのエネルギを消失し、その圧
力が低下する。即ち、ラビリンス効果により吸入
口5b,5c付近に侵入した高圧冷媒ガスの圧力
が低下する。この結果、これらの吸入口5b,5
c付近における圧縮室10,11内外の圧力差が
小さくなり、高圧冷媒ガスが吐出室15から圧縮
室10,11内に漏洩し難くなる。従つて、各圧
縮室10,11の吸入口5b,5c付近のシール
性が実質的に向上して、吐出室15から圧縮室1
0,11内への冷媒ガスの侵入が阻止される。 The high-pressure refrigerant gas that has entered the suction side of the compression chambers 10 and 11 from the range indicated by these arrows B and B' is
During the intrusion, grooves 4f, 4f' and 4g, 4
It will cross g'. However, when the high-pressure refrigerant gas passes through each of these grooves 4f, 4f', 4g, 4g',
It expands in g′, dissipates its energy, and its pressure decreases. That is, the pressure of the high-pressure refrigerant gas that has entered the vicinity of the suction ports 5b and 5c decreases due to the labyrinth effect. As a result, these inlets 5b, 5
The pressure difference between the inside and outside of the compression chambers 10, 11 near c becomes smaller, making it difficult for high-pressure refrigerant gas to leak from the discharge chamber 15 into the compression chambers 10, 11. Therefore, the sealing properties near the suction ports 5b and 5c of the compression chambers 10 and 11 are substantially improved, and the air flow from the discharge chamber 15 to the compression chamber 1 is substantially improved.
Refrigerant gas is prevented from entering into the interiors of 0 and 11.
尚、上記実施例においては、カムリング4の両
端面4a,4bに夫々溝4f,4f′4g,4g′を
形成した場合について記述したが、これに限られ
るものではなく、両サイドブロツク5,6の各端
面5a,6a側に溝を形成してもよく、またカム
リング4の両端面4a,4b及び両サイドブロツ
ク5,6の各端面5a,6aの双方に夫々溝を形
成してもよい。 In the above embodiment, the grooves 4f, 4f', 4g, 4g' are formed on both end surfaces 4a, 4b of the cam ring 4, respectively. A groove may be formed on each end surface 5a, 6a of the cam ring 4, or a groove may be formed on both end surfaces 4a, 4b of the cam ring 4 and each end surface 5a, 6a of both side blocks 5, 6, respectively.
また、上記実施例においては、各吸入口5b,
5cの外側に夫々1条の溝を形成した場合につい
て記述したが、これに限られるものではなく、同
心状に複数の溝を形成してもよい。 Further, in the above embodiment, each suction port 5b,
Although a case has been described in which one groove is formed on each outer side of the groove 5c, the present invention is not limited to this, and a plurality of grooves may be formed concentrically.
(考案の効果)
以上説明したように本考案のベーン型圧縮機
は、カムリングの両端面とこれらの両端面と当接
する両サイドブロツクの当接面の少なくとも一方
の面に位置し且つポンプ本体の内外の圧力差の大
きい箇所に、圧縮室に略沿うと共に前記吸入口の
外側に位置し該吸入口の周方向に沿う溝を設け、
吐出室から前記圧縮室内に侵入しようとする高圧
ガスを前記溝内で膨張させて、そのエネルギを消
失させて圧力を低下させるようにしたので、前記
高圧ガスが前記圧縮室へ漏洩することがなく、実
質的に前記ポンプ本体の内外の圧力差の大きい箇
所のシール性が向上し、これに伴い圧縮機の圧縮
性能が向上する。しかも、圧力差の大きい箇所に
溝を形成するだけでよく構成が極めて簡単であ
り、コストアツプを招くこともない。(Effects of the invention) As explained above, the vane type compressor of the invention is located on at least one of the end faces of the cam ring and the contact faces of both side blocks that contact these end faces, and on the pump body. A groove is provided at a location where there is a large pressure difference between the inside and outside, substantially along the compression chamber, and located outside the suction port and along the circumferential direction of the suction port,
The high-pressure gas that attempts to enter the compression chamber from the discharge chamber is expanded in the groove to dissipate its energy and reduce the pressure, so that the high-pressure gas does not leak into the compression chamber. , the sealing performance of the portions of the pump body where there is a large pressure difference between the inside and outside is substantially improved, and the compression performance of the compressor is accordingly improved. In addition, the structure is extremely simple, as it is only necessary to form grooves at locations where the pressure difference is large, and the cost does not increase.
第1図は従来のベーン型圧縮機の縦断面図、第
2図は第1図の−線に沿う断面図、第3図は
本考案の一実施例を示すベーン型圧縮機の縦断面
図、第4図は第3図の−線に沿う断面図であ
る。
4……カムリング、4a……一端面、4b……
他端面、4c……内周面、4f,4f′,4g,4
g′……溝、5……フロントサイドブロツク、5a
……フロントサイドブロツクの一端面、5b,5
c……吸入口、6……リヤサイドブロツク、6a
……リヤサイドブロツクの一端面、8……ロー
タ、8b……ベ−ン溝、9……ベーン、10,1
1圧縮室、14……ポンプ本体、15……吐出
室。
Fig. 1 is a longitudinal sectional view of a conventional vane type compressor, Fig. 2 is a sectional view taken along the - line in Fig. 1, and Fig. 3 is a longitudinal sectional view of a vane type compressor showing an embodiment of the present invention. , FIG. 4 is a sectional view taken along the - line in FIG. 3. 4...Cam ring, 4a...One end surface, 4b...
Other end surface, 4c...inner peripheral surface, 4f, 4f', 4g, 4
g'...Groove, 5...Front side block, 5a
...One end surface of the front side block, 5b, 5
c...Intake port, 6...Rear side block, 6a
... One end surface of rear side block, 8 ... Rotor, 8b ... Vane groove, 9 ... Vane, 10, 1
1 compression chamber, 14... pump body, 15... discharge chamber.
Claims (1)
るカムリングの両端面に夫々サイドブロツクを装
着して成るポンプ本体内に回転可能に収納された
ロータのベーン溝にベーンを摺動可能に嵌装し、
前記ロータの回転に伴う前記ベーンの遠心力によ
り前記ベーンを前記カムリングの内周面に摺接さ
せ、前記ロータの回転に伴い、前記カムリングの
内周面とロータの外周面とベーンとにより画成さ
れる圧縮室を拡大又は縮小してガスの吸入と圧縮
とを行ない、その圧縮ガスを前記ポンプ本体の外
側に画成された吐出室に吐出するようにしたベー
ン型圧縮機において、前記カムリングの両端面と
これら両端面と当接する前記両サイドブロツクの
当接面の少なくとも一方の面に位置し且つ前記ポ
ンプ本体の内外の圧力差の大きい箇所に、前記圧
縮室に略沿うと共に前記吸入口の外側に位置し該
吸入口の周方向に沿う溝を設けたことを特徴とす
るベーン型圧縮機。 The vane is slidably fitted into the vane groove of the rotor rotatably housed in the pump body, which is made up of a cam ring that has a cam surface on its inner circumferential surface and is open at both ends, with side blocks attached to each end surface. death,
The centrifugal force of the vane as the rotor rotates causes the vane to slide into contact with the inner circumferential surface of the cam ring, and as the rotor rotates, the inner circumferential surface of the cam ring, the outer circumferential surface of the rotor, and the vane form a defined area. In the vane type compressor, a compression chamber is expanded or contracted to suck in and compress gas, and the compressed gas is discharged into a discharge chamber defined outside the pump body. The pump body is located on at least one of both end faces and the abutment faces of the side blocks that come into contact with these end faces, and is located at a location where there is a large pressure difference between the inside and outside of the pump body, and is located approximately along the compression chamber and of the suction port. A vane type compressor characterized by having a groove located on the outside and extending along the circumferential direction of the suction port.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19137883U JPS6098782U (en) | 1983-12-12 | 1983-12-12 | vane compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19137883U JPS6098782U (en) | 1983-12-12 | 1983-12-12 | vane compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6098782U JPS6098782U (en) | 1985-07-05 |
JPH0310395Y2 true JPH0310395Y2 (en) | 1991-03-14 |
Family
ID=30412129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19137883U Granted JPS6098782U (en) | 1983-12-12 | 1983-12-12 | vane compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6098782U (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50113806A (en) * | 1974-02-20 | 1975-09-06 | ||
JPS578989B2 (en) * | 1975-09-16 | 1982-02-19 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6240156Y2 (en) * | 1980-06-18 | 1987-10-14 |
-
1983
- 1983-12-12 JP JP19137883U patent/JPS6098782U/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50113806A (en) * | 1974-02-20 | 1975-09-06 | ||
JPS578989B2 (en) * | 1975-09-16 | 1982-02-19 |
Also Published As
Publication number | Publication date |
---|---|
JPS6098782U (en) | 1985-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910002406B1 (en) | Vane compressor | |
WO2013172144A1 (en) | Gas compressor | |
JPH0151910B2 (en) | ||
JPH0332794Y2 (en) | ||
JPS63179190A (en) | Rotary compressor | |
US4657495A (en) | Rotor-shaft bearing apparatus for rotary compressors | |
JPH0310395Y2 (en) | ||
JPH0220478Y2 (en) | ||
JPH036873Y2 (en) | ||
CN117489592A (en) | Cylinder assembly and compressor | |
US4057367A (en) | Combined rotary-reciprocating piston compressor | |
JPS61258989A (en) | Scroll fluid machine | |
JP2000291546A (en) | Reciprocating compressor | |
JP3160073B2 (en) | compressor | |
CN108425845A (en) | A kind of screw compressor | |
US5074769A (en) | Compressor having an orbital rotor with parallel linkage and spring biased vanes | |
CN110985383A (en) | Compressor and refrigeration equipment | |
CN110863985A (en) | Compressor and refrigeration equipment | |
JPH0720391Y2 (en) | Vacuum pump for priming water | |
JPH034759B2 (en) | ||
JPH03551Y2 (en) | ||
JPS6327105Y2 (en) | ||
JPS6411831B2 (en) | ||
JPH0643514Y2 (en) | Vane compressor | |
JP3988818B2 (en) | Gas compressor |