[go: up one dir, main page]

JPH03103417A - Production of self-curing phenolic resin - Google Patents

Production of self-curing phenolic resin

Info

Publication number
JPH03103417A
JPH03103417A JP23947789A JP23947789A JPH03103417A JP H03103417 A JPH03103417 A JP H03103417A JP 23947789 A JP23947789 A JP 23947789A JP 23947789 A JP23947789 A JP 23947789A JP H03103417 A JPH03103417 A JP H03103417A
Authority
JP
Japan
Prior art keywords
resin
formaldehyde
self
phenolic resin
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23947789A
Other languages
Japanese (ja)
Inventor
Yasuoki Fujikawa
八洲興 藤川
Hideki Kitajima
秀樹 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP23947789A priority Critical patent/JPH03103417A/en
Publication of JPH03103417A publication Critical patent/JPH03103417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PURPOSE:To obtain the subject resin, excellent in metallic mold releasability and blocking resistance and suitable as a binder with hardly any unreacted substances without causing clouding of metallic molds in molding by reacting a phenol novolak resin with aldehydes in the presence of a basic catalyst. CONSTITUTION:The objective resin obtained by reacting a phenol novolak resin (preferably with <=10wt.% content of unreacted phenols) with aldehydes (e.g. formaldehyde) in the presence of a basic catalyst [e.g. oxide, hydroxide or carbonate of an alkali (earth) metal, ammonia or amines].

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自硬化性フェノール樹脂の製造方法に関し、更
に詳しくは、特に電気部品の分野における金属インサー
ト成形品の材料として使用されるフェノール樹脂或形材
料の結合剤として好適な固形の自硬化性フェノール樹脂
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a self-curing phenolic resin, and more particularly to a method for producing a phenolic resin used as a material for metal insert molded products in the field of electrical parts. The present invention relates to a method for producing a solid self-curing phenolic resin suitable as a binder for shaped materials.

〔従来の技術〕[Conventional technology]

一般に、フェノール樹脂成形材料はノボラック型フェノ
ール樹脂及び硬化剤としてのへキサメチレンテトラミン
(以下へキサミンと略称する)を、硬化助剤、充填剤、
着色剤、離型剤等と共にロール混練し、その後、造粒あ
るいは粉砕して製造されている。
In general, phenolic resin molding materials contain a novolak type phenolic resin and hexamethylenetetramine (hereinafter abbreviated as hexamine) as a curing agent, a curing aid, a filler,
It is manufactured by roll-kneading it with colorants, mold release agents, etc., and then granulating or crushing it.

しかるに、このようなヘキサミンを硬化剤に使用したフ
ェノール樹脂成形材料は、180−170℃のような高
温に加熱された金型中で成形したときにヘキサミンの分
解により、アンモニアガスが発生し、一部未分解のへキ
サミンと共に成形品中に残存する。このアンモニアガス
は、成形品にインサートされた金属類、あるいは隣接し
て使用される金属類の腐食の原因となり、該或形品の長
期使用を不可能にする。特に或形された部品が密閉形で
あったり、高温高湿などの過酷な条件下で使用される場
合には、該前記したアンモニアガスによる腐食は更に激
しくなる。
However, when such phenolic resin molding materials that use hexamine as a curing agent are molded in a mold heated to a high temperature such as 180-170°C, ammonia gas is generated due to the decomposition of hexamine, resulting in the production of ammonia gas. Part of it remains in the molded product along with undecomposed hexamine. This ammonia gas causes corrosion of metals inserted into the molded product or metals used adjacently, making it impossible to use the molded product for a long period of time. In particular, if the shaped part is of a closed type or is used under harsh conditions such as high temperature and high humidity, the corrosion caused by the ammonia gas described above becomes even more severe.

これらの問題点を解決するために、自硬化性を有する固
形のペンジリックエーテル型フェノール樹脂(以下BE
樹脂と略称する)を主体とじたフェノール樹脂を結合剤
とするフェノール樹脂成形材料が開発され、多用される
ようになった。
In order to solve these problems, we developed a self-curing solid pengylic ether type phenolic resin (hereinafter referred to as BE).
A phenolic resin molding material, which is mainly composed of phenolic resin (abbreviated as "resin") and uses a phenolic resin as a binder, has been developed and is now widely used.

これらの公報に開示されているBE樹脂は、二価金属塩
の存在下に、フェノール類とホムルアルデヒドをモル比
で1 : 1.5〜2.0あるいは1:1.0〜3.0
の割合で反応させている。
The BE resins disclosed in these publications contain phenols and formaldehyde in a molar ratio of 1:1.5 to 2.0 or 1:1.0 to 3.0 in the presence of a divalent metal salt.
It reacts at a rate of

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記構造を有するBE樹脂を結合剤としたフェノール樹
脂成形材料を用いかつ金属インサート成形された電気部
品においては、従来のようなアンモニアガスによる金属
インサートの腐食という問題は解決されたが、これらの
BE樹脂あるいはこれを使用したフェノール樹脂成形材
料には以下のような問題点がある。
In electrical parts molded with metal inserts using a phenolic resin molding material with BE resin having the above structure as a binder, the conventional problem of corrosion of the metal inserts due to ammonia gas has been solved, but these BE resins Resins and phenolic resin molding materials using them have the following problems.

1.連続成形時に金型曇りを発生し易く、従来のBE樹
脂を使用したノーアンモニア材ではこの金型曇りを完全
に解決したものは未だ得られていない。
1. Mold fogging is likely to occur during continuous molding, and no ammonia-free material using conventional BE resin has yet completely solved this mold fogging problem.

2.結合構造において、メチロール基及びジメチロール
基の含有比率が高いため、材料のロール混線時の離型性
及び成形時における戊形品の金型離型性が劣り、この点
の改良が望まれている。
2. Due to the high content of methylol groups and dimethylol groups in the bonding structure, the releasability of the material when rolls are mixed together and the mold releasability of hollow-shaped products during molding are poor, and improvements in this point are desired. .

3.一般のノボラック型フェノール樹脂に比較して融点
が低く、特に夏期においてブロック化し易く、取扱が困
難である。
3. It has a lower melting point than general novolac-type phenolic resins, and is difficult to handle because it easily blocks, especially in the summer.

本発明は前記した従来技術の問題点に鑑みなされたもの
で、その目的はこれらの問題点をすべて解決することが
できる自硬化性フェノール樹脂の製造方法を提供するこ
とである。
The present invention was made in view of the problems of the prior art described above, and its purpose is to provide a method for producing a self-curing phenolic resin that can solve all of these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、前記従来技術の問題点に鑑み種々検討の
結果、フェノールノボラック樹脂にアルデヒド類を塩基
性触媒の存在下に反応させて得られる自硬化性フェノー
ル樹脂が前記問題点をすべて解決できることを見出し、
本発明に至った。
As a result of various studies in view of the problems of the prior art described above, the present inventors have discovered that a self-curing phenol resin obtained by reacting aldehydes with a phenol novolac resin in the presence of a basic catalyst solves all of the above problems. Find out what you can do,
This led to the present invention.

まず、金型曇りの発生程度は、成形材料からの加熱成形
時に発生するガス状成分特にフェノール類、ホルムアル
デヒドの影響を最も多く受けることが明らかになり、発
生するフェノール類、ホルムアルデヒドを低減すれば、
金型曇りの発生は大幅に改善されることがわかった。
First, it has become clear that the degree of mold fogging is most influenced by gaseous components, especially phenols and formaldehyde, generated during heat molding from molding materials.If the generated phenols and formaldehyde are reduced,
It was found that the occurrence of mold fogging was significantly improved.

これらの発生量を減らすためにはフェノール樹脂中に含
まれる未反応フェノール類、未反応ホルムアルデヒドを
低減すればよい。また、成形材料硬化性に関してはフェ
ノール樹脂中の未反応フェノール類の影響が大きくこれ
を低減すれば大幅に改善されることが明かとなった。本
発明は前記欠点を改良した未反応フェノール類、未反応
ホルムアルデヒドの少ない自硬化性フェノール樹脂の製
造方法に関するものである。
In order to reduce the amount of these generated, unreacted phenols and unreacted formaldehyde contained in the phenol resin can be reduced. In addition, it has become clear that the curability of molding materials is greatly influenced by unreacted phenols in the phenolic resin and can be significantly improved by reducing this. The present invention relates to a method for producing a self-curing phenol resin that has improved the above-mentioned drawbacks and contains less unreacted phenols and unreacted formaldehyde.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明で使用されるフェノールノボラック樹脂は、よく
知られているように、フェノール類とホムルアルデヒド
を、フェノール類1モルに対して、ホルムアルデヒド1
モル以下、pH4以下の酸性環境下で反応、脱水して得
られる軟化点60〜150℃のもろい樹脂状のものであ
る。
As is well known, the phenol novolak resin used in the present invention contains phenols and formaldehyde for 1 mole of phenols and 1 mol of formaldehyde.
It is a brittle resin with a softening point of 60 to 150°C obtained by reaction and dehydration in an acidic environment with a pH of 4 or less.

フェノールノボラック樹脂中の未反応のフェノール類は
10重量%以下であることが好ましい。
The content of unreacted phenols in the phenol novolak resin is preferably 10% by weight or less.

lO重量%より多量存在すると物性も低下するので好ま
しくない。
If it is present in an amount greater than 10% by weight, the physical properties will also deteriorate, which is not preferable.

用いられるフェノール類としては、例えば、フェノール
、o−,m−,p−クレゾール或いはこれらの混合物、
キシレノール類、−ビスフェノールA1置換アルキルフ
ェノール、レゾルシン、並びにこれらの混合使用があげ
られる。
Examples of the phenols used include phenol, o-, m-, p-cresol, or mixtures thereof;
Examples include xylenols, -bisphenol A1-substituted alkylphenol, resorcinol, and mixtures thereof.

触媒は硫酸、塩酸、パラトルエンスルホン酸、リン酸、
蓚酸などの酸性触媒が用いられる。
Catalysts include sulfuric acid, hydrochloric acid, para-toluenesulfonic acid, phosphoric acid,
An acidic catalyst such as oxalic acid is used.

本発明で使用されるアルデヒド類としては、ホルムアル
デヒド、パラホルムアルデヒド等が挙げられるが、その
中でホルムアルデヒドが代表的である(以下、ホルムア
ルデヒドを代表例として説明する)。
Examples of aldehydes used in the present invention include formaldehyde and paraformaldehyde, of which formaldehyde is representative (formaldehyde will be described below as a representative example).

本発明のフェノールノボラック樹脂とホルムアルデヒド
の反応比率は、フェノールノボラック樹脂100ffi
ffl部に対して、ホルムアルデヒドとして3〜100
重量部に設定する必要があり、好ましくは5〜50重量
部に設定する。
The reaction ratio of the phenol novolak resin and formaldehyde of the present invention is 100ffi of the phenol novolak resin.
3 to 100 as formaldehyde to ffl part
It is necessary to set the amount in parts by weight, preferably 5 to 50 parts by weight.

ホルムアルデヒドが3重量部より少ないと、得られる樹
脂の硬化速度が遅くなり、また成形品の強度や耐熱性が
低下する。
If the amount of formaldehyde is less than 3 parts by weight, the curing speed of the resulting resin will be slow, and the strength and heat resistance of the molded product will be reduced.

一方、ホルムアルデヒドが100重量部より多くなると
、硬化時のガス発生量が増加したりして好ましくない。
On the other hand, if the amount of formaldehyde exceeds 100 parts by weight, the amount of gas generated during curing increases, which is undesirable.

次に、本発明に使用される塩基性触媒としては、アルカ
リ及びアルカリ土類の酸化物、水酸化物、炭酸塩、アン
モニア、アミン類、ヘキサミン、二価金属塩等が使用さ
れる。
Next, as the basic catalyst used in the present invention, alkali and alkaline earth oxides, hydroxides, carbonates, ammonia, amines, hexamine, divalent metal salts, etc. are used.

フェノールノボラックとホルムアルデヒドとの反応は、
50〜110℃の温度が望ましく、反応温度が50℃以
下では系内の粘度が高く、110℃以上では反応が速く
安定したものが作り難い。
The reaction between phenol novolac and formaldehyde is
A temperature of 50 to 110°C is desirable; if the reaction temperature is below 50°C, the viscosity within the system will be high, and if it is above 110°C, the reaction will be rapid and it will be difficult to produce a stable product.

反応時間は、ホルムアルデヒドの量、使用した触媒の種
類や量により異なるが、通常は30分〜5時間である。
The reaction time varies depending on the amount of formaldehyde and the type and amount of the catalyst used, but is usually 30 minutes to 5 hours.

縮合反応終了後、反応生成物を120℃以下の温度で減
圧脱水し、生成樹脂が測定温度150℃で目的とする熱
板ゲルタイムになった時に減圧脱水を終了し、生成樹脂
を反応釜から取り出し冷却することによって所望の樹脂
を得ることができる。
After the condensation reaction is completed, the reaction product is dehydrated under reduced pressure at a temperature of 120°C or lower, and when the resulting resin reaches the desired hot plate gel time at a measurement temperature of 150°C, the reduced pressure dehydration is completed and the resulting resin is taken out from the reaction vessel. A desired resin can be obtained by cooling.

本発明方法によれば、自硬化性フェノール樹脂中の未反
応フェノール類とホルムアルデヒドの含有量をそれぞれ
0.10重量%以下、好適な条件を選べば殆んど零とす
ることもできるので、前記した金型曇りの発生を防止す
るなどの効果が発揮される。
According to the method of the present invention, the content of unreacted phenols and formaldehyde in the self-curing phenolic resin can be reduced to 0.10% by weight or less, and almost zero if suitable conditions are selected. It is effective in preventing mold fogging.

〔実 施 例〕〔Example〕

以下、本発明の実施例について説明するが、本発明の技
術的範囲をこれらの実施例に限定するものではないこと
はいうまでもない。
Examples of the present invention will be described below, but it goes without saying that the technical scope of the present invention is not limited to these examples.

実施例 1 l.フェノールノボラックの合成 撹拌機、還流コンデンサー及び温度計を付した3gセバ
ラプルフラスコに、フェノール1000g,37%ホル
マリン890g,蓚酸10gを加え、徐々に昇温させる
Example 1 l. Synthesis of Phenol Novolak 1000 g of phenol, 890 g of 37% formalin, and 10 g of oxalic acid are added to a 3 g Sevarapuru flask equipped with a stirrer, a reflux condenser, and a thermometer, and the temperature is gradually raised.

4時間還流反応させた後、常温で150℃になるまで加
熱して溜出液を溜去させ、液温150℃、減圧50To
rrで、溜出液がなくなるまで脱水した。
After refluxing for 4 hours, the distillate was distilled off by heating at room temperature to 150°C.
rr until there was no distillate left.

軟化点90℃、未反応フェノール2.1重量%のフ工ノ
ールノボラック樹脂(A)が得られた。
A phenol novolak resin (A) having a softening point of 90° C. and 2.1% by weight of unreacted phenol was obtained.

2.自硬化性フェノール樹脂の合或 フェノールノボラック樹脂(A)を95℃まで冷却し、
37%ホルマリンを270g加え、均一に撹拌混合し、
更に65℃に冷却した後、酸化マグネシウムを2g加え
、65℃で2時間反応させた。次いで加熱下60Tor
rに減圧脱水し、固形の樹脂を得た。
2. A mixture of self-curing phenolic resins or phenolic novolak resin (A) is cooled to 95°C,
Add 270g of 37% formalin and stir to mix evenly.
After further cooling to 65°C, 2g of magnesium oxide was added and reacted at 65°C for 2 hours. Then heated to 60 Tor
The mixture was dehydrated under reduced pressure to obtain a solid resin.

このようにして得られた樹脂の150℃における熱板ゲ
ルタイムは85秒であり、未反応フェノール量は0.I
O重量%、未反応ホルムアルデヒドユは0.06重量%
であった。
The hot plate gel time of the thus obtained resin at 150°C was 85 seconds, and the amount of unreacted phenol was 0. I
O weight%, unreacted formaldehyde 0.06% by weight
Met.

実施例 2 37%ホルマリンを400g,反応を65℃で3時間と
した以外は実施例1と同様に行った。
Example 2 The same procedure as in Example 1 was carried out except that 400 g of 37% formalin was used and the reaction was carried out at 65° C. for 3 hours.

このようにして得られた樹脂の150℃における熱板ゲ
ルタイムは38秒であり、未反応フェノール量は0.0
3重量%、未反応ホルムアルデヒドー量は0.43重量
%であった。
The hot plate gel time of the thus obtained resin at 150°C was 38 seconds, and the amount of unreacted phenol was 0.0
The amount of unreacted formaldehyde was 0.43% by weight.

実施例 3 フェノールノボラック樹脂合成の終了時に水蒸気を吹き
込み未反応フェノールをo,05重量%のフェノールノ
ボラック樹脂(B)を得た以外は実施例1と同様に行っ
た。
Example 3 The same procedure as in Example 1 was carried out, except that at the end of the phenol novolak resin synthesis, water vapor was blown into the resin to obtain a phenol novolak resin (B) containing 0.05% by weight of unreacted phenol.

このようにして得られた樹脂の150’cにおける熱板
ゲルタイムは83秒であり、未反応フェノール量はなし
、未反応ホルムアルデヒド量は0.07重皿%であった
The hot plate gel time of the thus obtained resin at 150'c was 83 seconds, there was no unreacted phenol amount, and the unreacted formaldehyde amount was 0.07%.

実施例 4〜6 自硬化性フェノール樹脂合成時の反応時間、触媒の種類
及び量を第1表に示した条件以外は実施例1と同様に行
った。
Examples 4 to 6 Synthesis of self-curing phenolic resin was carried out in the same manner as in Example 1 except that the reaction time, type and amount of catalyst were as shown in Table 1.

得られた樹脂の評価結果を第1表に示す。The evaluation results of the obtained resin are shown in Table 1.

第 1 表 a  25%苛性ソーダ,  b 水酸化バリウムC 
水酸化カルシウム 比較例 1 実施例1と同様の装置にフェノール1000g. 37
%ホルマリン1032 . ,酢酸亜鉛0.4gを加え
、還流温度で6時間反応を行った。次いで減圧下100
Torr、温度100℃で脱水し固形の樹脂を得た。
Table 1 a 25% caustic soda, b barium hydroxide C
Calcium hydroxide comparative example 1 Into the same apparatus as in Example 1, 1000 g of phenol was added. 37
% formalin 1032. , 0.4 g of zinc acetate was added, and the reaction was carried out at reflux temperature for 6 hours. Then under reduced pressure 100
Dehydration was performed at Torr and a temperature of 100°C to obtain a solid resin.

このようにして得られた樹脂の150℃における熱板ゲ
ルタイムは94秒であり、未反応フエノール量は4.2
重量%、未反応ホルムアルデヒド量は1.2重量%であ
った。
The hot plate gel time of the thus obtained resin at 150°C was 94 seconds, and the amount of unreacted phenol was 4.2 seconds.
The amount of unreacted formaldehyde was 1.2% by weight.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく、本発明の製造方法によって得られ
る自硬化性フェノール樹脂は、従来公知の自硬化性フェ
ノール樹脂に比較して、未反応のフェノール類及びホル
ムアルデヒド量が少ないため、以下のような効果が得ら
れる。
As explained above, the self-curing phenolic resin obtained by the production method of the present invention has a lower amount of unreacted phenols and formaldehyde than conventionally known self-curing phenolic resins, so it has the following effects. is obtained.

1.連続或形時に金型曇りが発生しない。1. Mold fogging does not occur during continuous molding.

2.成形品の金型離型性が良い。2. Good mold releasability of molded products.

3.成形材料製造における混練工程においてロール作業
性が優れている。
3. Excellent roll workability in the kneading process in molding material production.

4.吸湿しにくいので耐ブロック性に優れ作業性が良好
である。
4. Since it does not easily absorb moisture, it has excellent block resistance and good workability.

なお、本発明の方法によって得られた自硬化性フェノー
ル樹脂は、フェノール樹脂成形材料以外の各分野におけ
る結合剤としても好適に利用できることはいうまでもな
い。
It goes without saying that the self-curing phenolic resin obtained by the method of the present invention can also be suitably used as a binder in various fields other than phenolic resin molding materials.

Claims (1)

【特許請求の範囲】 1、フェノールノボラック樹脂にアルデヒド類を塩基性
触媒の存在下に反応させることを特徴とする自硬化性フ
ェノール樹脂製造方法。 2、前記フェノールノボラック樹脂中の未反応フェノー
ル類が10重量%以下である特許請求第1項記載の自硬
化性フェノール樹脂の製造方法。
[Claims] 1. A method for producing a self-curing phenol resin, which comprises reacting a phenol novolac resin with an aldehyde in the presence of a basic catalyst. 2. The method for producing a self-curing phenol resin according to claim 1, wherein the amount of unreacted phenols in the phenol novolac resin is 10% by weight or less.
JP23947789A 1989-09-14 1989-09-14 Production of self-curing phenolic resin Pending JPH03103417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23947789A JPH03103417A (en) 1989-09-14 1989-09-14 Production of self-curing phenolic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23947789A JPH03103417A (en) 1989-09-14 1989-09-14 Production of self-curing phenolic resin

Publications (1)

Publication Number Publication Date
JPH03103417A true JPH03103417A (en) 1991-04-30

Family

ID=17045356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23947789A Pending JPH03103417A (en) 1989-09-14 1989-09-14 Production of self-curing phenolic resin

Country Status (1)

Country Link
JP (1) JPH03103417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056496A (en) * 2009-08-11 2011-03-24 Kurita Water Ind Ltd Water treatment method and water treatment flocculant
JP2013255922A (en) * 2009-08-11 2013-12-26 Kurita Water Ind Ltd Water treatment method and water treatment flocculant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056496A (en) * 2009-08-11 2011-03-24 Kurita Water Ind Ltd Water treatment method and water treatment flocculant
JP2013255922A (en) * 2009-08-11 2013-12-26 Kurita Water Ind Ltd Water treatment method and water treatment flocculant
JP2013255923A (en) * 2009-08-11 2013-12-26 Kurita Water Ind Ltd Water treatment method and water treatment flocculant
US9403704B2 (en) 2009-08-11 2016-08-02 Kurita Water Industries, Ltd. Water treatment method and water treatment flocculant

Similar Documents

Publication Publication Date Title
JPH03103417A (en) Production of self-curing phenolic resin
US4297473A (en) Quick-curing phenolic resin and process for preparing same
JPS61152717A (en) Phenolic resin composition modified with boric acid
JP3062211B2 (en) Method for producing self-curing phenolic resin
US4870154A (en) Method of producing a quick-curing novolac phenolic resin using ammonium halides
JPS6195735A (en) Bonding agent of phenol resin for shell mold
JPS6357624A (en) Production of selfcurable phenolic resin
JP2001131253A (en) Method for manufacturing water-soluble phenolic resin
JPH0753786B2 (en) Method for producing heat-resistant phenol resin
JPH05148409A (en) Phenolic resin molding material
JPS5964616A (en) Solid resol resin and its production
JPH0521129B2 (en)
JPS59147012A (en) Preparation of modified phenolic resin composition for shell mold
JPS6215087B2 (en)
JPS6026491B2 (en) Production method of solid phenol-melamine cocondensation resin
JPH0725990B2 (en) Method for producing phenolic resin binder
JPH11279247A (en) Production of melamine/phenol co-condensation resin
JPH06228256A (en) Phenolic resin composition and molding material
JPS61108445A (en) Production of resin coated sand grain for shell mold
JPH0611776B2 (en) Method for producing solid resole type phenol resin
JP3972712B2 (en) Acid curable resol resin composition
JPS598465B2 (en) Manufacturing method of resin-coated sand for foundries
JPH01318030A (en) Preparation of resol type phenol resin
JPS60135418A (en) Production of modified phenolic resin
JPS6037241A (en) Modified phenolic resin composition for shell mold