[go: up one dir, main page]

JPH03103246A - Real time shortening method for speckle noise - Google Patents

Real time shortening method for speckle noise

Info

Publication number
JPH03103246A
JPH03103246A JP1241327A JP24132789A JPH03103246A JP H03103246 A JPH03103246 A JP H03103246A JP 1241327 A JP1241327 A JP 1241327A JP 24132789 A JP24132789 A JP 24132789A JP H03103246 A JPH03103246 A JP H03103246A
Authority
JP
Japan
Prior art keywords
element group
signal
sound ray
sub
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1241327A
Other languages
Japanese (ja)
Other versions
JP2824673B2 (en
Inventor
Kazuhiro Kono
一博 河野
Yoshikatsu Noda
野田 芳克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP1241327A priority Critical patent/JP2824673B2/en
Publication of JPH03103246A publication Critical patent/JPH03103246A/en
Application granted granted Critical
Publication of JP2824673B2 publication Critical patent/JP2824673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To reduce the speckle in a real time without narrowing a speckle reducing area by receiving signals with a main sound ray element group and a sub-sound ray element group whose position and opening are different, amplifying them separately, and thereafter, deriving the respective absolute values and adding them. CONSTITUTION:From an array transducer 1, (n) pieces of i-th-(i+n-1)-th element groups are selected for transmission. By setting (i)=1, the transmission element group is constituted of (n) pieces of first - n-th elements. Transmission is executed from (n) transmission element groups. Reception is executed by a main sound ray element group 2 (i-i)+(n-1) being the same as the transmission element group. Reception is executed by an (i+1)-(i+n)-th sub-sound ray element group 3, as well. In such a manner, with respect to the same transmission signal, by receiving simultaneously two reception signals whose propagation paths are different, and superposing the signals whose correlation is small, the speckle can be reduced in a real time without decreasing an image area.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超音波診断装置のBモード画像のスペックルノ
イズの実時間低減法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a real-time method for reducing speckle noise in B-mode images of an ultrasound diagnostic apparatus.

(従来の技術) パルス式超音波診断装置は超音波パルスを被検体内に放
射し、超音波の減衰や反射の度合が組織やその病変部に
よって異なることを利用して、被検体からの反射波を分
析して診断する装置である。
(Prior art) Pulse-type ultrasound diagnostic equipment emits ultrasound pulses into the subject, and uses the fact that the degree of attenuation and reflection of ultrasound waves differs depending on the tissue and its lesion to detect the reflections from the subject. This is a device that analyzes and diagnoses waves.

しかしこの超音波診断装置で得られたBモード画像には
スペックルと呼ばれる斑紋状の模様が現れ、画質劣化の
主原因となっている。スペックルの発生の原因は生体内
に入射される超音波パルスが位相の揃ったものであるた
めに、被検体内部に存在する多数の散乱体からの反射波
はトランスデューサの受波面上で干渉を起こしてしまう
。その結果、検出されたエコー信号の振幅にゆらぎを生
じ、これがBモード画像上の斑紋状の模様、即ち、スペ
ックルとなって現れる。画像に現れたスペックルパタン
は多数の散乱体からの反射波の干渉の結果生じたもので
あり、組織の微細な構造を表すものではない。従って、
受信信号をBモード画像として表示するためには、スペ
ックルを減少させる必要がある。
However, a mottled pattern called speckle appears in the B-mode image obtained by this ultrasonic diagnostic apparatus, which is the main cause of image quality deterioration. The cause of speckles is that the phases of the ultrasonic pulses that enter the living body are aligned, so the reflected waves from the many scatterers that exist inside the object interfere with each other on the receiving surface of the transducer. I'll wake you up. As a result, the amplitude of the detected echo signal fluctuates, which appears as speckles on the B-mode image. The speckle pattern that appears in the image is the result of interference of reflected waves from a large number of scatterers, and does not represent the fine structure of the tissue. Therefore,
In order to display the received signal as a B-mode image, it is necessary to reduce speckle.

(発明が解決しようとする課題) 上記のスペックル減少のために、スペックルに関して相
関の小さい複数個のBモード画像を重ね合わせる方法を
取っており、この方法としてトランスデューサの位置変
化(空間フンバウンド法)、成るいは入射する超音波パ
ルスの中心周波数変化(周波数コンパウンド法)によっ
て得ている。
(Problem to be Solved by the Invention) In order to reduce the speckles mentioned above, a method is used in which multiple B-mode images with low correlation with respect to speckles are superimposed. method), or by changing the center frequency of the incident ultrasonic pulse (frequency compound method).

空間コンパウンド法では、受信アレイトランスデューサ
の受信エレメントの位置を変えることによりスペックル
に関して相関の小さい複数の信号を得、これをBモード
画像化した後、加算して重ね合わせて表示することによ
りスペックルノイズを低減している。この方法では、ア
レイトランスデューサによる送受信を異なるエレメント
で行い、これに増幅.検波,整相加算等の処理を施こし
てBモード画像にし、この行程を必要な回数(最小限2
回)繰り返して加算して画像表示するため、時間が掛か
り、実時間処理が困難であるという問題があった。又、
相関の小さい複数個のBモード画像を得るためには、複
数個の画像を同一領域から得ることができず、スペック
ルノイズの低減される領域が第5図の斜線で示される領
域に狭まってしまうという問題もあった。図において、
1はアレイトランスデューサで、複数のエレメントによ
って等価的に図のA, B, C3点から照射されてい
る場合のビームの照射範囲を示している。この場合にス
ペックルノイズの低減される領域は斜線の範囲のみであ
る。
In the spatial compounding method, multiple signals with low correlation with respect to speckle are obtained by changing the position of the receiving element of the receiving array transducer, and after converting these signals into a B-mode image, they are added and superimposed for display. Reduces noise. In this method, the array transducer transmits and receives signals using different elements, which are then amplified. Processing such as detection and phasing addition is performed to create a B-mode image, and this process is repeated as many times as necessary (minimum 2
The problem is that it takes time to repeatedly add and display an image, making real-time processing difficult. or,
In order to obtain multiple B-mode images with low correlation, multiple images cannot be obtained from the same area, and the area where speckle noise is reduced is narrowed to the area shown by diagonal lines in Figure 5. There was also the problem of putting it away. In the figure,
1 is an array transducer, and shows the irradiation range of the beam when it is equivalently irradiated from three points A, B, and C in the figure by a plurality of elements. In this case, the area where speckle noise is reduced is only the shaded area.

本発明は上記の点に鑑みてなされたもので、その目的は
、スペックル低減領域を狭めることなく、実時間でスペ
ックルを低減させることのできるスペックルノイズの実
時間低減法を実現することにある。
The present invention has been made in view of the above points, and its purpose is to realize a real-time speckle noise reduction method that can reduce speckles in real time without narrowing the speckle reduction area. It is in.

(課題を解決するための手段) 前記の課題を解決する本発明は、アレートランスデュー
サの複数のエレメントを送信用エレメント群とする段階
と、該送信用エレメント群と同じエレメントから戊る主
音線用エレメント群により受信して主音線信号とする段
階と、前記主音線川エレメント群とはずれた位置のエレ
メントもしくは異なる数のエレメントを有する副音線用
エレメント群により受信して副音線信号を得る段階と、
前記主音線信号と前記副音線信号とに別個に対数圧縮増
幅等の処理を行う段階と、該処理段階からの出力信号か
ら位相情報をなくすために絶対値信号を求める段階と、
該絶対値信号を加算する段階と、前記アレートランスデ
ューサの全エレメントによる送受信が終れば信号処理及
び画像再構戊を行う段階とから成ることを特徴とするの
ものである。
(Means for Solving the Problems) The present invention for solving the above-mentioned problems includes the steps of using a plurality of elements of an array transducer as a transmission element group, and creating a tonic ray element which is removed from the same element as the transmission element group. a step of receiving the sound ray element group to obtain a main sound ray signal, and a step of receiving the sound ray element group by a sub-sound ray element group having an element located at a position different from the main sound ray element group or a sub-sound ray element group having a different number of elements to obtain a sub-tone ray signal. ,
a step of separately performing processing such as logarithmic compression amplification on the main sound ray signal and the sub-sound ray signal; and a step of obtaining an absolute value signal in order to eliminate phase information from the output signal from the processing step;
This method is characterized by comprising a step of adding the absolute value signals, and a step of performing signal processing and image reconstruction after transmission and reception by all elements of the array transducer are completed.

(作用) アレイトランスデューサの複数個のエレメント群を主音
線用エレメント群として送信する。主音線用エレメント
群でエコー信号を受信すると共に、主音線用エレメント
群とは位置又は開口の異なる副音線用エレメント群でも
受信し、別個に増幅した後、それぞれの絶対値を求めて
加算し、スペックルノイズを低減する。
(Operation) A plurality of element groups of the array transducer are transmitted as a tonic ray element group. The echo signal is received by the main sound ray element group, and is also received by the sub sound ray element group, which has a different position or aperture from the main sound ray element group, and after being amplified separately, the absolute value of each is calculated and added. , reduce speckle noise.

(実施例) 以下、図面を参照して本発明の実施例を詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の方法の一実施例のアレイトランスデュ
ーサの送受エレメントの配分を示す図である。図におい
て、1は複数のエレメントが一列に配置されたN個のエ
レメントを有するアレイトランスデューサ、2はi番目
のエレメントからi+n−1番目のエレメントまでnf
f4のエレメントにより送信し受信する主音線用エレメ
ント群、3はi+a番目からi+a+n−1番目までn
個のエレメントから成る受信専用の副音線用エレメント
群である。主音線用エレメント群2から送信し、被検体
の目標からのエコー信号を受信する。同時に副音線用エ
レメント群3により同じエコー信号を受信ずる。これが
終ればそれぞれ隣のエレメントに移って送受信を行う。
FIG. 1 is a diagram showing the distribution of transmitting and receiving elements of an array transducer in one embodiment of the method of the present invention. In the figure, 1 is an array transducer having N elements arranged in a row, and 2 is nf from the i-th element to the i+n-1-th element.
The tonic ray element group transmitted and received by the element f4, 3 is n from the i+ath to the i+a+n-1th
This is a reception-only subtone ray element group consisting of elements. The echo signal is transmitted from the main sound ray element group 2 and receives the echo signal from the target of the subject. At the same time, the sub sound ray element group 3 receives the same echo signal. Once this is completed, each element moves to its adjacent element and performs transmission and reception.

第2図は第1図に示した、アレイトランスデューサ1で
受信した2信号を処理する回路のブロック図である。図
において、第1図と同等の部分には同一の符号を付して
ある。この図では主音線用エレメント群2は1番目から
n−1番目のエレメント、副音線用エレメント群3は2
番目からn番目までのエレメントで構戊される例を示し
ている。
FIG. 2 is a block diagram of a circuit shown in FIG. 1 that processes two signals received by the array transducer 1. In the figure, parts equivalent to those in FIG. 1 are given the same reference numerals. In this figure, the tonic ray element group 2 is the 1st to n-1th element, and the sub-tone ray element group 3 is the 2nd element.
An example is shown in which the elements are composed of elements from the th to the nth.

図中、11は主音線用エレメント群2からの信号(以下
主音線信号という)を対数圧縮増幅する対数増幅器、1
2は副音線用エレメント群3からの信号(以下副音線信
号という)を対数圧縮増幅する対数増幅器である。13
は対数増幅器11の出力の主音線信号の位相情報を除去
するため、その絶対値である振幅値を求めるための絶対
値演算回路、14は同じく副音線信号の振幅値を得るた
めの絶対値演算回路である。15は絶対値演算回路13
.14の出力を加算する加算器、16は加算器15の出
力信号を検波して、その包絡線信号を出力する包絡線検
波器、17は包絡線検波器16で検波された信号を所要
の信号処理をする信号処理回路である。全エレメントの
データが集まった段階で画像再構或回路18で画像再構
或される。
In the figure, 11 is a logarithmic amplifier that logarithmically compresses and amplifies the signal from the tonic ray element group 2 (hereinafter referred to as the tonic ray signal);
2 is a logarithmic amplifier that logarithmically compresses and amplifies the signal from the sub-sound ray element group 3 (hereinafter referred to as sub-sound ray signal). 13
In order to remove the phase information of the main sound ray signal output from the logarithmic amplifier 11, 14 is an absolute value calculation circuit for obtaining the amplitude value, which is the absolute value thereof, and 14 is an absolute value calculation circuit for obtaining the amplitude value of the sub sound ray signal. It is an arithmetic circuit. 15 is an absolute value calculation circuit 13
.. 16 is an envelope detector that detects the output signal of adder 15 and outputs its envelope signal; 17 converts the signal detected by envelope detector 16 into a desired signal. This is a signal processing circuit that performs processing. When the data of all the elements have been collected, the image is reconstructed by the image reconstruction circuit 18.

次に上記のように構或された装置の動作を第3図のフロ
ーチャートを参照して説明することにより、本実施例の
方法を説明する。
Next, the method of this embodiment will be explained by explaining the operation of the apparatus configured as described above with reference to the flowchart of FIG.

ステップ1 アレイトランスデューサ1からi番目〜(1+n−1)
番目のn個のエレメント群を送信用に選択する。
Step 1 From array transducer 1 to i-th (1+n-1)
Select the nth group of elements for transmission.

ステップ2 i −a lとして送信用エレメント群を1番1」から
n番目のn個のエレメントとする。
Step 2 As i - a l, the transmission element group is set to n elements from 1st to nth elements.

ステップ3 n個の送信用エレメント群から送信する。Step 3 Transmission is performed from a group of n transmission elements.

( i − i 十n − 1 ) ステップ4 送信用エレメント群と同じ主音線用エレメント群2 (
i−i十n−1)で受信する。(i+1〜i +n)番
目の副音線用エレメント群3でも受信する。
(i − i ten n − 1) Step 4 Tonic ray element group 2, which is the same as the transmission element group (
i-i ten n-1). It is also received by the (i+1 to i+n)th subtone ray element group 3.

ステップ5 主音線信号を対数増幅器11で対数圧縮増幅して受信信
号の広いダイナミックレンジを画像表示に適する範囲の
レベルに圧縮する。副音線信号を対数増幅器12で対数
圧縮増幅する。
Step 5 The main sound line signal is logarithmically compressed and amplified by the logarithmic amplifier 11 to compress the wide dynamic range of the received signal to a level suitable for image display. A logarithmic amplifier 12 performs logarithmic compression amplification on the sub-sound ray signal.

ステップ6 対数圧縮された主音線信号及び副ぎ線信号から位相情報
を消去して位相差による信号間の相違をなくし、振幅の
最大値のみを得るために、主音線信号を絶対値演算回路
13において絶対値演算を行って絶対値である振幅値を
算出する。副音線信号を絶対値演算回路14において絶
対値演算を行って振輻値を算出する。
Step 6 In order to erase the phase information from the logarithmically compressed main sound line signal and subline signal to eliminate the difference between the signals due to the phase difference, and to obtain only the maximum value of the amplitude, the main sound line signal is transferred to the absolute value calculation circuit 13. Absolute value calculation is performed to calculate the amplitude value, which is the absolute value. The sub-sound ray signal is subjected to absolute value calculation in an absolute value calculation circuit 14 to calculate the amplitude value.

ステップ7 絶対値/ijt算回路13と絶対値演算回路14との出
力を加算器15により加算し、生き線信号と副音線信号
の絶対値の和を求める。
Step 7: Add the outputs of the absolute value/ijt calculating circuit 13 and the absolute value calculating circuit 14 using the adder 15 to obtain the sum of the absolute values of the live line signal and the sub-acoustic line signal.

ステップ8 加算器15の出力を包路線検波器l6により検波する。Step 8 The output of the adder 15 is detected by an envelope line detector l6.

ステップ9 検波された信号を通常の超音波診断装置の信号処理回路
17において、AD変換,記憶装置に格納等の信号処理
を行う。
Step 9 The detected signal is subjected to signal processing such as AD conversion and storage in a storage device in the signal processing circuit 17 of an ordinary ultrasonic diagnostic apparatus.

ステップ10 アレイトランスデューサ1の全エレメントについて送受
信が終ったかをチェックする。終っていなければ、ステ
ップ11に進む。終っていれば、ステップ12に進む。
Step 10 Check whether transmission and reception have been completed for all elements of array transducer 1. If not completed, proceed to step 11. If completed, proceed to step 12.

ステップ11 エレメント番号iに1を加えて、次のエレメント群を選
択し、ステップ3に戻る。
Step 11 Add 1 to element number i, select the next element group, and return to step 3.

ステップ12 全エレメントの送受信が終了した段階で補間を行いBモ
ード画像の再構成を行う。
Step 12: When all elements have been transmitted and received, interpolation is performed to reconstruct a B-mode image.

上記に説明したように、同一の送信信号に対して、2組
の伝播経路の異なる受信信号を同時に受信することによ
り、スペックルについて相関の小さい信号を実時間で、
同一領域で得ることができ、相関の小さい信号を重ね合
わせることで、実時間で、イメージ領域を減少させるこ
となく、スペックルの低減したBモード画像が得られる
ようになる。
As explained above, by simultaneously receiving two sets of received signals with different propagation paths for the same transmitted signal, signals with low correlation regarding speckle can be detected in real time.
By superimposing signals that can be obtained in the same area and have a small correlation, a B-mode image with reduced speckles can be obtained in real time without reducing the image area.

尚、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

実施例では副音線用エレメント群3を主音線用エレメン
ト群2の隣りのエレメントから選んだが、適当数離隔す
るようにしてもよい。但し、それがためにスペックル低
減領域を狭めないように留意する必要がある。
In the embodiment, the subtone ray element group 3 is selected from the elements adjacent to the main tone ray element group 2, but they may be separated by an appropriate number of elements. However, care must be taken not to narrow the speckle reduction area because of this.

又、実施例では音響経路を変化させた2音線によりスペ
ックル低減をしていたが、開口の大きさを変えた2音線
によるようにしてもよい。その場合のエレメント群の選
択は例えば次のようにして選ぶ。
Further, in the embodiment, speckle reduction is performed using two sound rays with different acoustic paths, but it may be possible to use two sound rays with different aperture sizes. In this case, the element group is selected as follows, for example.

主音線用エレメント群・・・・・・ i+a番目〜i+3+n−1番目のn個副音線用エレメ
ント群・・・・・・ i番目〜i+2a+n−1番目のn+2a個ここで、i
=1〜N− (2a+n−1)この実施例では副音線の
エレメントの数を主音線の両側に等しい数だけ増加させ
た場合を示したが、左右の増加数を等しくする必要はな
く、異なる数を選んでも差し支えない。
Tonic ray element group... n elements from i+ath to i+3+n-1 subtone element group... n+2a from ith to i+2a+n-1 where, i
=1~N- (2a+n-1) This example shows a case where the number of elements of the sub-tone ray is increased by an equal number on both sides of the main tone ray, but it is not necessary that the increased numbers on the left and right sides be equal; Feel free to choose a different number.

更に、主音線1個に対し副音線を複数個選んで行うこと
もできる。
Furthermore, it is also possible to select a plurality of subtone lines for one tonic line.

第4図は更に他の実施例の信号処理のための装置のブロ
ック図である。図において、第2図と同じ部分には同一
の符号を付してある。図中、21は対数増幅器11の出
力の主音線信号を包絡線検波する包絡線検波器、22は
対数増幅器12の出力の副音線信号を包絡線検波する包
路線検波器である。前記の実施例では信号の位相情報を
なくすために信号の絶対値を取っていたが、この実施例
では対数増幅器11.12によって対数圧縮された信号
を包絡線検波器21.22により検波された信号波形を
加算してスペックルを低減させるものである。このよう
に包絡線検波をするとその絶対値が求められることにな
り、加算前に検波を行えば絶対値演算回路は不要になる
FIG. 4 is a block diagram of a device for signal processing according to yet another embodiment. In the figure, the same parts as in FIG. 2 are given the same reference numerals. In the figure, 21 is an envelope detector that performs envelope detection of the main sound ray signal output from the logarithmic amplifier 11, and 22 is an envelope detector that performs envelope detection of the secondary sound ray signal output from the logarithmic amplifier 12. In the above embodiment, the absolute value of the signal was taken to eliminate the phase information of the signal, but in this embodiment, the signal logarithmically compressed by the logarithmic amplifier 11.12 was detected by the envelope detector 21.22. This method adds signal waveforms to reduce speckle. When envelope detection is performed in this way, its absolute value is determined, and if the detection is performed before addition, an absolute value calculation circuit is not required.

(発明の効果) 以上詳細に説明したように本発明によれば、スペックル
低減領域を狭めることなく、実時間でスペックルを低減
させることができるようになり、実用上の効果は大きい
(Effects of the Invention) As described above in detail, according to the present invention, speckles can be reduced in real time without narrowing the speckle reduction area, and the practical effects are great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の一実施例の送受信方法を示す図
、 第2図は第1図の方法で得られた信号の処理回路を示す
図、 第3図は本発明の方法のフローチャート、第4図は他の
実施例の信号の処理回路の図、第5図は従来の空間コン
バウンド法によるスペックル低減領域を示す図である。 1・・・アレイトランスデューサ 2・・・主音線用エレメント群 3・・・副音線用エレメント群 11.12・・・対数増幅器 3,14・・・絶対値演算回路 5・・・加算器 6,21.22・・・包路線検波器
Fig. 1 is a diagram showing a transmission/reception method according to an embodiment of the method of the present invention, Fig. 2 is a diagram showing a processing circuit for a signal obtained by the method of Fig. 1, and Fig. 3 is a flowchart of the method of the present invention. , FIG. 4 is a diagram of a signal processing circuit of another embodiment, and FIG. 5 is a diagram showing a speckle reduction area by the conventional spatial conbound method. 1... Array transducer 2... Main sound ray element group 3... Sub-tone ray element group 11.12... Logarithmic amplifiers 3, 14... Absolute value calculation circuit 5... Adder 6 , 21.22...Envelope detector

Claims (1)

【特許請求の範囲】 アレートランスデューサ(1)の複数のエレメントを送
信用エレメント群とする段階と、 該送信用エレメント群と同じエレメントから成る主音線
用エレメント群(2)により受信して主音線信号とする
段階と、 前記主音線用エレメント群(2)とはずれた位置のエレ
メントもしくは異なる数のエレメントを有する副音線用
エレメント群(3)により受信して副音線信号を得る段
階と、 前記主音線信号と前記副音線信号とに別個に対数圧縮増
幅等(11、12)の処理を行う段階と、該処理段階か
らの出力信号から位相情報をなくすために絶対値信号を
求める段階(13、14、21、22)と、 該絶対値信号を加算する段階(15)と、 前記アレートランスデューサ(1)の全エレメントによ
る送受信が終れば信号処理(17)及び画像再構成(1
8)を行う段階とから成ることを特徴とするスペックル
ノイズの実時間低減法。
[Claims] A step of using a plurality of elements of an array transducer (1) as a transmitting element group, and receiving a tonic ray signal by a tonic ray element group (2) consisting of the same elements as the transmitting element group. a step of receiving the sub-sound ray signal by a sub-sound ray element group (3) having an element located at a position different from the main sound ray element group (2) or having a different number of elements, and obtaining a sub-sound ray signal; A step of separately processing logarithmic compression amplification (11, 12) on the main sound ray signal and the sub-sound ray signal, and a step of obtaining an absolute value signal in order to eliminate phase information from the output signal from the processing step ( 13, 14, 21, 22), the step of adding the absolute value signals (15), and once the transmission and reception by all elements of the array transducer (1) are completed, signal processing (17) and image reconstruction (1) are performed.
8) A real-time speckle noise reduction method characterized by comprising the steps of:
JP1241327A 1989-09-18 1989-09-18 Ultrasound diagnostic equipment Expired - Lifetime JP2824673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1241327A JP2824673B2 (en) 1989-09-18 1989-09-18 Ultrasound diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1241327A JP2824673B2 (en) 1989-09-18 1989-09-18 Ultrasound diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH03103246A true JPH03103246A (en) 1991-04-30
JP2824673B2 JP2824673B2 (en) 1998-11-11

Family

ID=17072649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1241327A Expired - Lifetime JP2824673B2 (en) 1989-09-18 1989-09-18 Ultrasound diagnostic equipment

Country Status (1)

Country Link
JP (1) JP2824673B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000618A (en) * 2004-05-20 2006-01-05 Fuji Photo Film Co Ltd Ultrasonic imaging apparatus, ultrasonic image processing method, and ultrasonic image processing program
JP2007263780A (en) * 2006-03-29 2007-10-11 Hitachi Engineering & Services Co Ltd Ultrasonic inspection method and device
JP2007291431A (en) * 2006-04-24 2007-11-08 Jfe Steel Kk Bath roll speed detecting device, bath roll speed control method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000618A (en) * 2004-05-20 2006-01-05 Fuji Photo Film Co Ltd Ultrasonic imaging apparatus, ultrasonic image processing method, and ultrasonic image processing program
JP2007263780A (en) * 2006-03-29 2007-10-11 Hitachi Engineering & Services Co Ltd Ultrasonic inspection method and device
JP2007291431A (en) * 2006-04-24 2007-11-08 Jfe Steel Kk Bath roll speed detecting device, bath roll speed control method and apparatus

Also Published As

Publication number Publication date
JP2824673B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
JP2777197B2 (en) Ultrasound diagnostic equipment
US8684934B2 (en) Adaptively performing clutter filtering in an ultrasound system
US20190369220A1 (en) Methods and systems for filtering ultrasound image clutter
EP3581961A1 (en) Method and apparatus for ultrasound imaging with improved beamforming
KR20080039446A (en) Ultrasonic Image Processing System and Method for Flow Image Processing Using Real-Time Spatial Synthesis
US9173629B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image processing apparatus
ITMI981988A1 (en) METHOD AND APPARATUS FOR COHERENCE FILTERING OF ULTRASONIC IMAGES
KR101552427B1 (en) Speckle Reduction Apparatus In Ultrasound Imaging
CN110431443B (en) Method and system for filtering ultrasound image clutter
US6432054B1 (en) Medical ultrasonic imaging with adaptive synthesis and compounding
US11737734B2 (en) Ultrasound imaging device and system, and image enhancement method for contrast enhanced ultrasound imaging
JP5498551B2 (en) Ultrasonic diagnostic apparatus and ultrasonic transmission / reception condition optimization program
CN107137111A (en) A kind of Ultrasound beamforming method
JP5132089B2 (en) Ultrasonic diagnostic apparatus, ultrasonic transmission / reception condition optimization program, and ultrasonic transmission / reception condition optimization method
JP4445255B2 (en) Method and apparatus for ultrasonic speckle reduction using broadband frequency synthesis with harmonics generated in tissue
JP2824673B2 (en) Ultrasound diagnostic equipment
US6366227B1 (en) Delta-sigma beamformers with minimal dynamic focusing artifacts
CN113679418B (en) Ultrasonic imaging method based on compressed signal-to-noise ratio coefficient weighting
US7803114B2 (en) Ultrasonic diagnostic apparatus and data processing method therefor
JP2508000B2 (en) Ultrasonic diagnostic equipment
CN115227288B (en) Delay multiplied accumulation ultrasonic virtual source beam forming method based on hysteresis
JP2002301071A (en) Ultrasonic imaging method and apparatus
JP4664209B2 (en) Ultrasonic diagnostic apparatus and ultrasonic imaging program for performing imaging thereof
JPS6029137A (en) Ultrasonic diagnostic apparatus
Jeong et al. Side Lobe Reduction Using Centroid and Flatness in Passive Cavitation Imaging

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100911

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100911

Year of fee payment: 12