[go: up one dir, main page]

JPH03101286A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH03101286A
JPH03101286A JP23891389A JP23891389A JPH03101286A JP H03101286 A JPH03101286 A JP H03101286A JP 23891389 A JP23891389 A JP 23891389A JP 23891389 A JP23891389 A JP 23891389A JP H03101286 A JPH03101286 A JP H03101286A
Authority
JP
Japan
Prior art keywords
layer
contact layer
conductivity type
upper clad
clad layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23891389A
Other languages
Japanese (ja)
Inventor
Kunihiko Isshiki
邦彦 一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23891389A priority Critical patent/JPH03101286A/en
Publication of JPH03101286A publication Critical patent/JPH03101286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce noise of self-excited oscillation relatively easily by providing a second conductivity type upper clad layer with a ridge part which is thick on a first conductivity type semiconductor substrate and by forming a second conductivity type contact layer which is narrower than the width of the ridge part only at the top part of the ridge part of the upper clad layer. CONSTITUTION:A lower clad layer 2, an activation layer 3, an upper clad layer 4, and a contact layer 6 are allowed to grow on a substrate 1 in sequence. Then, after forming a stripe-shaped insulating film, for example an SiO2 film 9 on the surface of a contact layer 6, one part of the contact layer 6 and the upper clad layer 4 is removed by etching with this SiO2 film 9 as a mask. Then, only GaAs of the contact layer 6 is etched and an etchant where no AlGaAs of the upper clad layer 4 is etched is used for sandwiching only the contact layer 6, thus narrowing the width of the contact layer 6 to a desired value. Elements thus produced generates self-excited oscillating, thus achieving an improved low noise characteristic with small return light induction noise.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光デイスク装置等に用いる光源として好適
な、低雑音特性を有する半導体レーザ装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device having low noise characteristics and suitable as a light source for use in optical disk devices and the like.

〔従来の技術〕[Conventional technology]

ゲインタルオーディオディスク(DAD)やビデオディ
スク(VD)用光源あるいはアナログ信号伝達用光源と
して、基本の横モード発振にすぐれた半導体レーザ装置
が求められており、このための種々の半導体レーザ装置
が提供されている。
Semiconductor laser devices with excellent fundamental transverse mode oscillation are required as light sources for gaintal audio discs (DAD), video discs (VD), or analog signal transmission, and various semiconductor laser devices are provided for this purpose. has been done.

ところが、通常の半導体レーザ装置を光デイスク装置の
光源として用いた場合、ディスク面で反射される戻り光
によって誘起される、いわゆる戻り光雑音が大きいため
、信号との強度比で雑音特性を示す、いわゆるS/N比
(Signal to No1seRatio )が小
さくなるという問題点があった。
However, when a normal semiconductor laser device is used as a light source for an optical disk device, the so-called return light noise induced by the return light reflected on the disk surface is large, so the noise characteristic is expressed by the intensity ratio with the signal. There is a problem in that the so-called S/N ratio (Signal to Noise Ratio) becomes small.

戻り光誘起雑音を低減する1つの方法として、活性領域
に可飽和吸収体を設けて自動振を発生させる方法が提案
されている。
As one method for reducing the feedback-induced noise, a method has been proposed in which a saturable absorber is provided in the active region to generate automatic oscillation.

第5図は、例えば東芝レビュー、40巻7号、p576
〜578 (光ピツクアップ用低雑音半導体レーザ、鈴
木和雄他)に示された、ロスガイド機構を有する従来の
半導体レーザ装置を示す断面図であり、第6図は、第5
図の部分拡大断面図である。これらの図において、21
はp型GaAs基板、22はn型GaAs電流狭窄層、
23はp型AjGaAs下クラッド層、24ばp型Al
GaAs活性層、25ばn型AjGaAs上クラッド層
、26はn型A#GaAs:+ンタクト層、27はn型
A#GaAsアンチエッチバック層、28は2段溝であ
り、29はp側電極、3oはn側電極である。
Figure 5 shows, for example, Toshiba Review, Vol. 40, No. 7, p576.
578 (Low noise semiconductor laser for optical pickup, Kazuo Suzuki et al.) is a sectional view showing a conventional semiconductor laser device having a loss guide mechanism.
It is a partially enlarged sectional view of the figure. In these figures, 21
22 is a p-type GaAs substrate, 22 is an n-type GaAs current confinement layer,
23 is p-type AjGaAs lower cladding layer, 24 is p-type Al
25 is a GaAs active layer, 25 is a n-type AjGaAs upper cladding layer, 26 is an n-type A#GaAs:+ contact layer, 27 is an n-type A#GaAs anti-etch back layer, 28 is a two-step groove, and 29 is a p-side electrode. , 3o is an n-side electrode.

アンチエッチバック層27は、液相エピタキシャル成長
(LPE)法によりp型Aj G aAsAsチクラッ
ド層下、単に下クラッド層という。その他の符号につい
ても同様とする)23を成長させる工程で溝変形を阻止
するためのものである。
The anti-etchback layer 27 is formed under the p-type Aj GaAs As cladding layer by the liquid phase epitaxial growth (LPE) method, and is simply referred to as a lower cladding layer. This is to prevent groove deformation in the process of growing 23 (the same applies to other symbols).

すなわち、LRE法で溝上に成長する時、接触した融液
中にGaAsが逆に溶は出し、エツチングされるメルト
バックという現象が起こる。このため、基板21に2段
溝28を形成しておいても、第6図のように溝形状がた
れてしまう。一方、AlGaAsばメルトバックされに
くい。このため、薄いAjGaAsアンチエッチバック
層27を入れてお(と、メルトバックによる溝の断面形
状の変化を阻止することができる。その後、反応性イオ
ンエツチング(RI E)法により2段溝28の形成が
なされる。
That is, when growing on a groove by the LRE method, a phenomenon called meltback occurs in which GaAs is dissolved into the melt that comes into contact with it and is etched. For this reason, even if the two-step groove 28 is formed in the substrate 21, the groove shape will sag as shown in FIG. On the other hand, AlGaAs is less likely to melt back. Therefore, by inserting a thin AjGaAs anti-etchback layer 27, it is possible to prevent changes in the cross-sectional shape of the groove due to meltback.Then, the two-step groove 28 is etched by reactive ion etching (RIE). A formation is made.

上記のように構成された従来の半導体レーザ装置の画電
極29.30間に、活性層24のpn接合に対して順方
向の電圧を印加すると、キャリアが活性層24内に閉じ
込められて発光し、上、下クラッド層25,23および
2段溝28付近での光の損失に基づく実効的な屈折率差
によってガイドされ、基本横モード発振が得られる。
When a forward voltage is applied to the pn junction of the active layer 24 between the picture electrodes 29 and 30 of the conventional semiconductor laser device configured as described above, carriers are confined within the active layer 24 and light is emitted. , the upper and lower cladding layers 25, 23 and the two-step groove 28 are guided by an effective refractive index difference based on optical loss, and fundamental transverse mode oscillation is obtained.

ここで、光のガイド領域は2段溝28のうち幅の広い上
段の溝で規定され、電流は幅の狭い下段の溝による電流
狭窄層22の開口で、その広がりが抑えられるために、
光ガイド領域内で利得に不均一が生ずる(第6図参照)
Here, the light guide region is defined by the wide upper groove of the two-stage groove 28, and the spread of the current is suppressed by the opening of the current confinement layer 22 by the narrower lower groove.
Gain non-uniformity occurs within the light guide region (see Figure 6)
.

光ガイド内にある活性層24は、注入電流密度が小さく
て利得が吸収を上回ることができない場合には、可飽和
吸収体として働く。すなわち、レーザ光の強度が低い場
合にはレーザ光に対し吸収体となり、ある程度光強度が
大きいと透明体となる。したがって、可飽和吸収体は一
種の光誘起スイッチとして働き、レーザ出力光はns以
下のパルス幅を持った自己パルス変調を生じ、いわゆる
自励振が発生する。自励振が生じている状態ではレーザ
光の縦モードはマルチモードとなり、可干渉距離が小さ
くなる。戻り光誘起雑音は反射によって共振器内部に戻
った光との自己干渉により生じるので、可干渉距離が小
さいほど雑音は小さくなる。
The active layer 24 within the light guide acts as a saturable absorber when the injection current density is too small for gain to exceed absorption. That is, when the intensity of the laser beam is low, it becomes an absorber for the laser beam, and when the light intensity is high to a certain extent, it becomes a transparent body. Therefore, the saturable absorber acts as a kind of photo-induced switch, and the laser output light undergoes self-pulse modulation with a pulse width of ns or less, resulting in so-called self-oscillation. When self-oscillation occurs, the longitudinal mode of the laser beam becomes multimode, and the coherence length becomes small. Return light induced noise is caused by self-interference with light that has returned inside the resonator due to reflection, so the smaller the coherence distance, the smaller the noise.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように、第5図に示す従来の半導体レーザ装置で
は、自動振を利用した低雑音化に成功しているが、第2
回目の結晶成長工程において、2段溝28を埋め込んで
、活性層24をほぼ平坦に形成する必要がある。これは
、活性層24が湾曲していると、横方向に実屈折率分布
が形成され、光分布が溝のみで規定されなくなり、特性
、特に雑音特性に影響をおよぼすからである。乙のため
、上記従来例では溝の埋込み成長が可能なLPE法を2
回目成長に用いている。しかし、近年盛んに研究、開発
され、制御性、量産性に優れている。
As mentioned above, the conventional semiconductor laser device shown in Fig. 5 has succeeded in reducing noise by using automatic oscillation.
In the second crystal growth step, it is necessary to fill the two-step groove 28 and form the active layer 24 substantially flat. This is because when the active layer 24 is curved, a real refractive index distribution is formed in the lateral direction, and the light distribution is no longer defined only by the grooves, which affects the characteristics, especially the noise characteristics. For this reason, in the conventional example above, the LPE method, which allows trench-filling growth, is
It is used for the second growth. However, it has been actively researched and developed in recent years, and has excellent controllability and mass production.

有機金属気相成長法(MOCVD法)や分子線成長法(
MBE法)等の気相エピタキシャル成長法は、溝を平坦
に埋め込む成長が困難なため、上記従来のレーザ装置に
は適用できない問題点があった。
Metal organic chemical vapor deposition method (MOCVD method) and molecular beam growth method (
A vapor phase epitaxial growth method such as the MBE method has a problem in that it cannot be applied to the above-mentioned conventional laser device because it is difficult to grow the trench flatly.

この発明は、上記のような問題点を解消するためになさ
れたもので、MOCVD法やMBE法等の気相エピタキ
シャル成長法を用いて、比較的簡単な方法で作製可能な
自動振による低雑音の半導体レーザ装置を得ることを目
的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to produce a low-noise self-oscillation device using a relatively simple method using a vapor phase epitaxial growth method such as MOCVD or MBE. The purpose is to obtain a semiconductor laser device.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体レーザ装置は、第1導電型の半導
体基板上に、少なくとも第1導電型の下クラッド層、活
性層、ストライプ部が層厚の厚いリッジ部を有する第2
導電型の上クラッド層を備え、上クラッド層のりフジ部
の頂上部のみにリッジ部の幅よりも狭い第2導電型のコ
ンタクト層を形成したものである。
A semiconductor laser device according to the present invention includes a semiconductor laser device having a semiconductor substrate of a first conductivity type;
A conductive type upper cladding layer is provided, and a second conductive type contact layer narrower than the width of the ridge portion is formed only at the top of the ridge portion of the upper cladding layer.

〔作用〕[Effect]

この発明においては、コンタクト層の幅を光を導波する
リッジの幅よりも狭く形成したので、従来例と同様の機
構で、自励振を発生し、低雑音が実現できる。
In this invention, since the width of the contact layer is formed narrower than the width of the ridge that guides light, self-oscillation can be generated using the same mechanism as in the conventional example, and low noise can be achieved.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す半導体レーザ装置の
断面図である。この図において、1はn型GaAs基板
、2はn型AjGaAs下クラッド層、3はp型At’
GaAs活性層、4ばp型AlGaAs上りラッド層、
5ばn型GaAs1l流阻止層、6はp型A I G 
a A s ニア ンタクト層、7は2m電極、8はn
側電極である。
FIG. 1 is a sectional view of a semiconductor laser device showing an embodiment of the present invention. In this figure, 1 is an n-type GaAs substrate, 2 is an n-type AjGaAs lower cladding layer, and 3 is a p-type At'
GaAs active layer, 4-bap type AlGaAs upward rad layer,
5 is a n-type GaAs 1l flow blocking layer, 6 is a p-type A I G
a A s near contact layer, 7 is 2m electrode, 8 is n
This is the side electrode.

次に、上記実施例の製造工程を第2図(a)〜(d)に
従って簡単に説明する。
Next, the manufacturing process of the above embodiment will be briefly explained with reference to FIGS. 2(a) to 2(d).

まず、基板1上にMOCVD法あるいはMBE法によっ
て下クラッド層2.活性層3.上クラッド層4.コンタ
クト層6までを順次成長する[第2図(a)]、次に、
ストライプ状の絶縁膜、例えばSin、膜9をコンタク
ト層6の表面に形成した後、このS i 02膜9をマ
スクとして、例えば硫酸と過酸化水素水の混合液からな
るエッチャントを用いて、コンタク】・層6および上ク
ラッド層4の一部をエツチング除去する〔第2図(b)
〕。
First, a lower cladding layer 2 is formed on a substrate 1 by MOCVD or MBE. Active layer 3. Upper cladding layer 4. The layers up to the contact layer 6 are grown sequentially [FIG. 2(a)], and then,
After forming a striped insulating film, e.g., a Sin film 9, on the surface of the contact layer 6, using the SiO2 film 9 as a mask, a contact is formed using an etchant consisting of, for example, a mixture of sulfuric acid and hydrogen peroxide. ]・Remove layer 6 and part of upper cladding layer 4 by etching [Fig. 2(b)]
].

次に、コンタクI−ji16のGaAsのみをエツチン
グし、かつ上クラッド層4のAIGaksばエツチング
しないエッチャント、例えばアンモニア水と過酸化水素
水の混合液を用いて、コンタクト層6のみをサイドエツ
チングして、コンタクト層6の幅を所望の値まで狭くす
る〔第2図(C))。
Next, only the contact layer 6 is side-etched using an etchant that etches only the GaAs of the contact I-ji 16 and does not etch the AIGaks of the upper cladding layer 4, such as a mixture of aqueous ammonia and hydrogen peroxide. , the width of the contact layer 6 is narrowed to a desired value [FIG. 2(C)].

次に、SiO□膜9をマスクとして、MOCVD法等で
選択埋込み成長することによって、電流阻止層5を形成
する〔第2図(d))。
Next, using the SiO□ film 9 as a mask, the current blocking layer 5 is formed by selectively filling and growing by MOCVD or the like (FIG. 2(d)).

さらに、5iOz膜9を除去した後、両面にp側電極7
およびn側電極8を真空蒸着法で形成し、最後に各チッ
プに分離して第1図の素子が完成する。
Furthermore, after removing the 5iOz film 9, p-side electrodes 7 are formed on both sides.
Then, the n-side electrode 8 is formed by vacuum evaporation, and finally the device is separated into chips to complete the device shown in FIG.

上記実施例の動作機構は従来例と全く同様であり、自動
振が発生することによって、戻り光誘起雑音の小さな良
好な低雑音特性を得ることができる。
The operating mechanism of the above embodiment is exactly the same as that of the conventional example, and by generating automatic oscillation, it is possible to obtain good low noise characteristics with little return light induced noise.

なお、上記実施例では、幅の狭いコンタクト層6の表面
のみで電極のオーミック接触を形成しているが、面積が
小ざいため、オーミック抵抗が大きくなる場合がある。
In the above embodiment, ohmic contact between the electrodes is formed only on the surface of the narrow contact layer 6, but since the area is small, the ohmic resistance may increase.

これを防ぎ、より広い面積でオーミック接触を形成する
ため、第3図に示すように、第3回目の結晶成長を行っ
て、p型AlGaAs層10.p型GaAs層11をさ
らに形成しても良い。
In order to prevent this and form ohmic contact over a wider area, a third crystal growth is performed to form the p-type AlGaAs layer 10, as shown in FIG. A p-type GaAs layer 11 may be further formed.

また、上記実施例はn型GaAs電流阻止層5でのレー
ザ光の吸収によるロスガイド機構で横モードを安定化し
ているが、第4図に示す他の実施例のように、電流阻止
層を設けない構造も可能である。この場合、光の横方向
のガイドば、リッジ形状に厚くなっている上クラッド層
4に起因する屈折率分布でなされるので、リッジ・ガイ
ド構造と呼ばれている。電流は、n側電極8と上クラッ
ド層4との界面ではシヲットキーバリアが形成されるた
めに阻止され、オーミック接触のとれているコンタクト
層6の部分のみに流れるので、第1図の実施例と同様の
自動振が発生する。
Further, in the above embodiment, the transverse mode is stabilized by a loss guide mechanism caused by absorption of laser light in the n-type GaAs current blocking layer 5, but as in another embodiment shown in FIG. A structure without the provision is also possible. In this case, the light is guided in the lateral direction by the refractive index distribution caused by the thick upper cladding layer 4 having a ridge shape, so it is called a ridge guide structure. The current is blocked by the Schottky barrier formed at the interface between the n-side electrode 8 and the upper cladding layer 4, and flows only to the part of the contact layer 6 where ohmic contact is established. Automatic vibration similar to the example occurs.

なお、上記実施例でばあ、GaAs、A#GaAsを材
料として用いた例を示したが、材料はこれに限定される
ものではなく、例えば(At’Ga)I nP、Ga 
I nP、I nGaAsP等を用いても良い。
In the above embodiment, an example was shown in which GaAs and A#GaAs were used as the materials, but the materials are not limited to these, and for example, (At'Ga)I nP, Ga
InP, InGaAsP, etc. may also be used.

また、導電型はp、nを入れ替えたものでも同様に適用
できる。
Further, the conductivity type may be similarly applied even if p and n are exchanged.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、第1導電型の半導体
基板上に、少なくとも第1導電型の下クラッド層、活性
層、ストライプ部が層厚の厚いリッジ部を有する第2導
電型の上クラッド層を備え、上クラッド層のリッジ部の
頂上部のみにリッジ部の幅よりも狭い第2導電型のコン
タクト層を形成したので、戻り光誘起雑音の小さな良好
な低雑音特性の自励振型の半導体レーザ装置が得られる
効果がある。
As described above, the present invention provides a semiconductor substrate of a first conductivity type, on which at least a lower cladding layer of a first conductivity type, an active layer, and a stripe portion have a thick ridge portion. A self-oscillating type with good low-noise characteristics with little return light induced noise because it is equipped with a cladding layer and a contact layer of the second conductivity type narrower than the width of the ridge is formed only at the top of the ridge of the upper cladding layer. This has the effect of providing a semiconductor laser device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す半導体レザ装置の断
面図、第2図は、第1図の半導体レーザ装置の製造方法
を説明する工程断面図、第3図。 第4図はこの発明の他の実施例を示す断面図、第5図P
第6図は従来の半導体レーザ装置を示す断面図である。 図において、1は基板、2は下クラッド層、3は活性層
、4は上クラッド層、5は電流阻止層・6はコンタクト
層、7はp側電極、8はn側電極、9は5in2膜であ
る。 なお、各図中の同一符号は同一または相当部分を示す。
FIG. 1 is a sectional view of a semiconductor laser device showing an embodiment of the present invention, FIG. 2 is a process sectional view illustrating a method of manufacturing the semiconductor laser device of FIG. 1, and FIG. 3 is a sectional view of a semiconductor laser device. FIG. 4 is a sectional view showing another embodiment of the invention, and FIG. 5P
FIG. 6 is a sectional view showing a conventional semiconductor laser device. In the figure, 1 is the substrate, 2 is the lower cladding layer, 3 is the active layer, 4 is the upper cladding layer, 5 is the current blocking layer, 6 is the contact layer, 7 is the p-side electrode, 8 is the n-side electrode, 9 is the 5in2 It is a membrane. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板上に、少なくとも第1導電型の
下クラッド層、活性層、ストライプ部が層厚の厚いリッ
ジ部を有する第2導電型の上クラッド層を備え、前記上
クラッド層のリッジ部の頂上部のみに前記リッジ部の幅
よりも狭い第2導電型のコンタクト層を形成したことを
特徴とする半導体レーザ装置。
A semiconductor substrate of a first conductivity type is provided with at least a lower cladding layer of a first conductivity type, an active layer, and an upper cladding layer of a second conductivity type in which a stripe portion has a thick ridge portion, and A semiconductor laser device characterized in that a contact layer of a second conductivity type narrower than the width of the ridge portion is formed only at the top of the ridge portion.
JP23891389A 1989-09-14 1989-09-14 Semiconductor laser device Pending JPH03101286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23891389A JPH03101286A (en) 1989-09-14 1989-09-14 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23891389A JPH03101286A (en) 1989-09-14 1989-09-14 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH03101286A true JPH03101286A (en) 1991-04-26

Family

ID=17037135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23891389A Pending JPH03101286A (en) 1989-09-14 1989-09-14 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH03101286A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2407434A (en) * 2003-10-24 2005-04-27 Sharp Kk Vcsel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343387A (en) * 1986-08-08 1988-02-24 Toshiba Corp Semiconductor laser device and manufacture thereof
JPS63263789A (en) * 1987-04-22 1988-10-31 Mitsubishi Electric Corp Semiconductor laser diode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343387A (en) * 1986-08-08 1988-02-24 Toshiba Corp Semiconductor laser device and manufacture thereof
JPS63263789A (en) * 1987-04-22 1988-10-31 Mitsubishi Electric Corp Semiconductor laser diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2407434A (en) * 2003-10-24 2005-04-27 Sharp Kk Vcsel

Similar Documents

Publication Publication Date Title
US4984244A (en) Semiconductor laser device
US5029175A (en) Semiconductor laser
US4366568A (en) Semiconductor laser
KR19990072352A (en) Self-pulsation type semiconductor laser
JPH027194B2 (en)
US5786234A (en) Method of fabricating semiconductor laser
US5518954A (en) Method for fabricating a semiconductor laser
JP2555197B2 (en) Semiconductor laser device
US4807235A (en) Semiconductor laser device
JPH0231488A (en) Semiconductor laser device and its manufacture
JPH03101286A (en) Semiconductor laser device
JPS6362292A (en) Semiconductor laser device and manufacture thereof
EP0298778A2 (en) Semiconductor laser devices and methods of making same
JPH0671121B2 (en) Semiconductor laser device
JPH0437598B2 (en)
JPH0613709A (en) Semiconductor laser device and manufacture thereof
JPS61112392A (en) Semiconductor laser and its manufacturing method
JP2973215B2 (en) Semiconductor laser device
JP2564343B2 (en) Semiconductor laser device
JPS63250886A (en) Manufacture of semiconductor laser element
EP0292276A2 (en) A semiconductor laser device
JPH0936491A (en) Fabrication of semiconductor light emitting element
JPH04229682A (en) Manufacturing method of semiconductor laser
JPH03238886A (en) Semiconductor laser device and manufacture thereof
JPH04303986A (en) Semiconductor laser device