[go: up one dir, main page]

JPH0299146A - Method for reducing eluted substance from mixed resin bed - Google Patents

Method for reducing eluted substance from mixed resin bed

Info

Publication number
JPH0299146A
JPH0299146A JP63249977A JP24997788A JPH0299146A JP H0299146 A JPH0299146 A JP H0299146A JP 63249977 A JP63249977 A JP 63249977A JP 24997788 A JP24997788 A JP 24997788A JP H0299146 A JPH0299146 A JP H0299146A
Authority
JP
Japan
Prior art keywords
resin
exchange resin
oxygen
water
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63249977A
Other languages
Japanese (ja)
Inventor
Mutsuyoshi Kitamoto
北本 六良
Shuji Tamura
田村 修治
Masakuni Yoshihara
吉原 正邦
Megumi Munakata
宗像 恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Organic Chemical Industries Inc
Original Assignee
Tokyo Organic Chemical Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Organic Chemical Industries Inc filed Critical Tokyo Organic Chemical Industries Inc
Priority to JP63249977A priority Critical patent/JPH0299146A/en
Publication of JPH0299146A publication Critical patent/JPH0299146A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To reduce a resin eluted substance by suppressing decomposition in a mixed ion exchange resin by preserving or using the mixed ion exchange resin in an atmosphere lowered in oxygen or free from oxygen. CONSTITUTION:At the time of the preservation of a mixed resin bed consisting of a basic anion exchange resin and an acidic cation exchange resin, said resin bed is held in water lowered in the content of dissolved oxygen and/or an oxygen free atmosphere. At the time of the use of said mixed resin bed, a liquid to be treated lowered in the content of dissolved oxygen is passed through said bed in an oxygen free atmosphere to perform ion removal treatment. By this method, the bond of the carbon atom at the benzene position of the methylene chain of the crosslinked polystyrene of the skeletal of the anion exchange resin is not cut. Therefore, the decomposition of the resin itself is suppressed to reduce the amount of a resin eluted substance to treated water and clean water is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、塩基性陰イオン交換樹脂(以下、陰イオン交
換樹脂と略称。)および酸性陽イオン交換樹脂(以下、
陽イオン交換樹脂と略称)からなる混合樹脂床の分解を
抑制して、その溶出物量を低減させる方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to basic anion exchange resins (hereinafter referred to as anion exchange resins) and acidic cation exchange resins (hereinafter referred to as anion exchange resins).
This invention relates to a method for suppressing the decomposition of a mixed resin bed made of a cation exchange resin (abbreviated as cation exchange resin) and reducing the amount of eluates from the bed.

[従来技術] 近年、イオン交換樹脂は、水需要の増大に伴い工業用水
の軟化、精製に広く利用されている。
[Prior Art] In recent years, ion exchange resins have been widely used for softening and purifying industrial water as the demand for water increases.

特に、医薬用純水装置、発電所用純水装置、半導体工業
用の純水装置では、極めて高純度に更に精製することが
要望されており、このような超純水システムにおいては
、逆浸透膜、限外濾過膜などとともにイオン交換樹脂が
精製工程の重要構成要素になっている。
In particular, there is a demand for further purification to extremely high purity in medical water purification equipment, water purification equipment for power plants, and water purification equipment for the semiconductor industry. Along with ultrafiltration membranes, ion exchange resins have become important components of the purification process.

イオン交換樹脂は、主に、スチレンとジビニルベンゼン
(DVB)の共重合体に、官能基を付与したものであり
、再生を繰返せば、再利用できるとはいうものの長期間
にわたる使用では、イオン交換能力の低下など、その性
能が劣化することはよく知られている。
Ion exchange resin is mainly a copolymer of styrene and divinylbenzene (DVB) with functional groups added to it, and although it can be reused by repeated regeneration, it cannot be used for long periods of time. It is well known that its performance deteriorates, such as a decrease in exchange capacity.

このような自然劣化については、陰イオン交換樹脂の場
合には、ホフマン分解型の下記のような分解が知られて
いるのみであって、分解生成物、分解ルートなどについ
ては、殆ど明らかになっていない。
Regarding this kind of natural deterioration, in the case of anion exchange resins, the only known decomposition is the Hoffman decomposition type as shown below, and the decomposition products and decomposition routes are largely unknown. Not yet.

(ホフマン分解ルート) ■ また、陽イオン交換樹脂の場合には加水分解型の下記の
ような分解が知られているが、他の分解生成物、分解ル
ートなどについては殆ど知られていない。
(Hoffmann Decomposition Route) ■ In the case of cation exchange resins, the following hydrolysis type decomposition is known, but little is known about other decomposition products or decomposition routes.

(P )QSO3H+ H2O このように、分解生成物の構造、分解ルートについて十
分な知見が得られていない状況下での高純度の水の需要
への対応としては、イオン交換樹脂混合床において、陽
イオン交換樹脂部を、再生形(H形)にした樹脂を、再
度、塩形(Na形)にし、これを再び再生形にし、また
、陰イオン交換樹脂を、再生形(OH形)にした樹脂を
、再度塩形(CI形)にして、これを再び再生形にする
樹脂洗浄法、温水による樹脂洗浄法、多量の水による樹
脂洗浄法、あるいはこれらを組合わせた方法により各イ
オン交換樹脂内に付着している樹脂溶出物を充分に溶出
させた上、混合後、混合樹脂床として採水稼動に供する
方法が摂られている。
(P)QSO3H+ H2O As described above, in order to meet the demand for high-purity water in a situation where sufficient knowledge about the structure and decomposition route of decomposition products has not been obtained, it is possible to The resin whose ion exchange resin part was made into a regenerated form (H form) was made into a salt form (Na form) again, which was made into a regenerated form again, and the anion exchange resin was made into a regenerated form (OH form). Each ion exchange resin can be washed using a resin washing method in which the resin is converted into a salt form (CI form) and regenerated again, a resin washing method with warm water, a resin washing method with a large amount of water, or a combination of these methods. A method has been adopted in which the resin eluate adhering inside the container is sufficiently eluted, mixed, and then used as a mixed resin bed for water sampling operation.

実際、高純度水が要求されている発電所用純水装置、半
導体工業用の純水装置に装填されているイオン交換樹脂
においては、前述のような樹脂溶出物量の低減化の処理
が行われているが、この場合には、樹脂内部に残存して
いる溶出物を洗浄する方法が摂られているのみであり、
樹脂溶出物の生成を抑止する完全な本質的な方法ではな
い。
In fact, the ion-exchange resins used in deionized water equipment for power plants and deionized water equipment for the semiconductor industry, which require high-purity water, are not treated to reduce the amount of resin eluted as described above. However, in this case, the only method used is to clean the eluate remaining inside the resin.
It is not a completely essential method to suppress the formation of resin eluates.

[発明が解決しようとする問題点] 技術の高度化に伴い、水質への要求水準が高くなる大勢
下、洗浄による一時的な溶出物の除去ではなく、樹脂の
分解自体を抑制することによって処理水中への樹脂溶出
物量を低減する本質的な対応方法の開発が切望されてい
る。
[Problems to be solved by the invention] With the increasing sophistication of technology, the level of water quality requirements has become higher. There is a strong need for the development of a substantial method to reduce the amount of resin leached into water.

[発明の目的] 本発明の目的は、かかる状況に鑑み、陽イオンおよび陰
イオン交換樹脂からの樹脂溶出物につき精密に測定し解
析し、これにより推定された分解物の生成ルートによる
両イオン交換樹脂の溶出物の生成自体を減少させること
により混合樹脂床の溶出物の総量を低減させる方法を提
供する。
[Objective of the Invention] In view of the above circumstances, the object of the present invention is to precisely measure and analyze resin eluates from cation and anion exchange resins, and to perform both ion exchange using decomposition product generation routes estimated from this. A method is provided for reducing the total amount of eluate in a mixed resin bed by reducing the production of resin eluate itself.

即ち、各種産業で使用されている脱塩装置などにおいて
、採水運転に供されるまでの保存状態にある混合イオン
交換樹脂な溶存酸素を低下させた水中および/または酸
素不在の雰囲気中で保存することにより、または/およ
び採水運転時に混合イオン交換樹脂を供する場合におい
ては、被処理水中の溶存酸素量が低下した状態および/
または酸素不在の雰囲気下にて、混合イオン交換樹脂床
に通液し、イオン除去を行うことにより両イオン交換樹
脂が分解することが抑制される結果、混合イオン交換樹
脂床の分解溶出物の量を低減させ、被処理水中への樹脂
溶出物の漏出を防ぎ、高純度の処理水を得る方法に関す
る。
In other words, in desalination equipment used in various industries, mixed ion exchange resins are stored in water with reduced dissolved oxygen and/or in an oxygen-free atmosphere until they are used for water sampling operation. or/and when a mixed ion exchange resin is provided during water sampling operation, the amount of dissolved oxygen in the water to be treated is reduced and/or
Alternatively, in an atmosphere without oxygen, the decomposition of both ion exchange resins is suppressed by passing the liquid through the mixed ion exchange resin bed and removing ions, resulting in the amount of decomposition eluate from the mixed ion exchange resin bed. The present invention relates to a method for obtaining high-purity treated water by reducing resin effluents and preventing leakage of resin eluates into treated water.

[発明の構成] 発明者らは陰イオン交換樹脂および陽イオン交換樹脂の
樹脂の分解と溶出の機構解明が、殆ど行われていない現
状に鑑み、まず、トリメチルアンモニウム基を有する陰
イオン交換樹脂を使用して、樹脂溶出物について種々検
討と試験を重ねた結果、トリメチルアミン、メタノール
などのホフマン分解ルートによる樹脂溶出物以外に次の
構造の分解により生成したと推定される樹脂溶出物を、
新たに確認し同定し得た。
[Structure of the Invention] In view of the fact that the mechanism of decomposition and elution of anion exchange resins and cation exchange resins has hardly been elucidated, the inventors first developed an anion exchange resin having a trimethylammonium group. As a result of various studies and tests on resin eluates, we found that in addition to resin eluates due to the Hoffmann decomposition route such as trimethylamine and methanol, we found that resin eluates were generated by the decomposition of the following structures:
This was newly confirmed and identified.

これらは、陰イオン交換樹脂の骨格を構成している架橋
ポリスチレンのメチレン鎖のベンジル位の炭素原子の結
合が切断された結果、生成するものであると推定される
It is presumed that these are generated as a result of cleavage of the bond of the carbon atom at the benzyl position of the methylene chain of the crosslinked polystyrene that constitutes the skeleton of the anion exchange resin.

そしてスルホン酸凰陽イオン交換樹脂についての樹脂溶
出物についても種々研究を重ねた結果、最近になり加水
分解による硫酸イオン以外に酸化分解により生成したも
のと推定される次の構造の樹脂溶出物の存在を明らかに
し得た。
As a result of various studies on resin eluates from sulfonic acid cation exchange resins, we have recently discovered that resin eluates with the following structure, which is presumed to be produced by oxidative decomposition in addition to sulfate ions caused by hydrolysis, have been found. revealed its existence.

ハイドロキシ安息香酸 これらは、イオン交換樹脂の骨格を構成している架橋ポ
リスチレン樹脂のメチレン鎖のベンジル位の炭素原子が
切断された結果として生成したものと推定される。
Hydroxybenzoic acid It is presumed that these are generated as a result of cutting of the benzylic carbon atom of the methylene chain of the crosslinked polystyrene resin that constitutes the skeleton of the ion exchange resin.

発明者らは、上記のように樹脂溶出物に分解物が含まれ
ているという知見を得て、混合イオン交換樹脂を酸素を
除去した雰囲気下において保存および/または通液処理
した場合、樹脂溶出物量が低減するか否かを、全有機炭
素量(TOC)を指標として追究したところ、対照の大
気解放状態下においた樹脂よりの樹脂溶出物量に比較し
て、著しく低減されることを見出し、この発明を完成し
得た。
The inventors obtained the knowledge that resin elution contains decomposition products as described above, and when a mixed ion exchange resin is stored and/or subjected to liquid passage treatment in an oxygen-free atmosphere, the resin elution is reduced. When investigating whether the amount of substances was reduced using the total organic carbon content (TOC) as an index, we found that it was significantly reduced compared to the amount of resin eluted from a control resin exposed to the atmosphere. This invention was completed.

この発明の方法は、混合イオン交換樹脂の使用に先立っ
て保存しておく場合に、溶存酸素を低下させた水中、お
よび/または酸素不存の雰囲気下で保存すること、また
その使用の際には、イオン除去が行われる被処理水中の
溶存酸素量を低下させた状態下、または/および酸素不
在の雰囲気下で混合イオン交換樹脂に通液して、イオン
除去を行うところの混合イオン交換樹脂の分解を抑制す
ることにより、樹脂溶出物量を低減させる方法である。
The method of the present invention includes storing the mixed ion exchange resin in water with reduced dissolved oxygen and/or in an oxygen-free atmosphere when storing the mixed ion exchange resin prior to use; is a mixed ion exchange resin in which ions are removed by passing the liquid through the mixed ion exchange resin in a state in which the amount of dissolved oxygen in the water to be treated is reduced and/or in an oxygen-free atmosphere. This is a method of reducing the amount of resin eluate by suppressing the decomposition of.

樹脂の保存用に使用される水、あるいは被処理水に含ま
れている溶存酸素を低減する方法としては、溶存酸素の
低減に有効であり、これによる架橋ポリスチレン樹脂骨
格鎖を分断する反応を抑制する方法であれば、いかなる
方法であってもよい。
As a method for reducing dissolved oxygen contained in water used for resin storage or water to be treated, it is effective in reducing dissolved oxygen, and suppresses the reaction that disrupts the crosslinked polystyrene resin backbone chain. Any method may be used as long as it does so.

例えば、窒素ガスなどの不活性ガスを、水中に通じるこ
とにより、溶存酸素を不活性ガスと置換する方法、水を
減圧扱態下において、溶存ガスを除き、これに窒素ガス
を導入して溶存酸素と置換する方法、あるいは被処理水
の水質に悪影響を及ぼさない限界内において、ヒドラジ
ン、亜硫酸ソーダなどのような化学的還元剤、あるいは
酸化還元樹脂などの有機還元材料を使用して溶存酸素を
低減する方法、超音波を使用する方法、水を加熱して溶
存酸素を除去する方法などがある。
For example, a method in which dissolved oxygen is replaced with an inert gas by passing an inert gas such as nitrogen gas through the water; Dissolved oxygen can be removed using chemical reducing agents such as hydrazine, sodium sulfite, etc., or organic reducing materials such as redox resins, within limits that do not adversely affect the quality of the water being treated. Methods include reducing dissolved oxygen, using ultrasound, and heating water to remove dissolved oxygen.

これらの数例について説明する。A few examples of these will be explained.

不溶性の還元材料であり、不溶性樹脂母体に還元性基を
有するものを使用する場合には、これを固定床として被
処理液を通液して、溶存酸素が低下させられた状態にし
て、この被処理液を混合イオン交換樹脂層に通液するこ
と、または、この被処理液中に混合イオン交換樹脂を保
存することができるのであり、これらはこの発明の実施
態様中の手段として挙げられる。
When using an insoluble reducing material that has a reducing group in the insoluble resin matrix, the solution to be treated is passed through this as a fixed bed to reduce dissolved oxygen. The liquid to be treated can be passed through the mixed ion exchange resin layer, or the mixed ion exchange resin can be stored in the liquid to be treated, and these are mentioned as means in the embodiments of the present invention.

また、可溶性還元剤を使用して酸素を除去する場合、例
えば、ヒドラジンを使用する場合には、被処理液中にヒ
ドラジンを添加して、処理した液を不活性気体雰囲気下
または密閉系中で陽イオン交換樹脂と接触させて、被処
理水中に溶解しているイオンを除去し、次いで、溶存酸
素を低下させた状態下にて不活性気体雰囲気下、または
密閉系中などにおいて、混合イオン交換樹脂に通液また
は混合イオン交換樹脂を保存することによりこの発明に
よる溶出物の抑制が達成される。
In addition, when removing oxygen using a soluble reducing agent, for example, when using hydrazine, hydrazine is added to the liquid to be treated, and the treated liquid is stored in an inert gas atmosphere or in a closed system. Ions dissolved in the water to be treated are removed by contacting with a cation exchange resin, and then mixed ion exchange is performed in an inert gas atmosphere or in a closed system while reducing dissolved oxygen. Suppression of eluates according to the present invention is achieved by passing the resin through the resin or storing the mixed ion exchange resin.

この発明によって所期の効果を達成するに当り水中溶存
酸素は可及的に零に接近させられているべきであり、更
に詳細に定量的に云えば、水中の溶存酸素量は飽和酸素
量の50%以下であることが望ましいのであり、特に3
0%以下であることが好ましい。
In order to achieve the desired effect with this invention, dissolved oxygen in water should be brought as close to zero as possible.More quantitatively speaking, the amount of dissolved oxygen in water should be equal to or less than the amount of saturated oxygen. It is desirable that it is 50% or less, especially 3
It is preferably 0% or less.

陰イオン交換樹脂と陽イオン交換樹脂を混合樹脂床に使
用するに当り、両交換樹脂の混合比率は、1:9〜9:
1の範囲内である。
When using an anion exchange resin and a cation exchange resin in a mixed resin bed, the mixing ratio of both exchange resins is 1:9 to 9:
It is within the range of 1.

なお、酸素不存の雰囲気下での保存とその使用とは、例
えば、窒素ガスなどの不活性気体が封入された密閉容器
中での混合イオン交換樹脂の保存と使用などである。
Note that storage and use in an oxygen-free atmosphere includes, for example, storage and use of the mixed ion exchange resin in a closed container filled with an inert gas such as nitrogen gas.

この発明において使、用される陰イオン交換樹脂として
第4級アンモニウム基を有する各種市販の陰イオン交換
樹脂を一部分量でも含有しているものであれば、いかな
る一般市販商品も利用可能である。
As the anion exchange resin used in this invention, any commercially available product can be used as long as it contains even a portion of various commercially available anion exchange resins having a quaternary ammonium group.

陽イオン交換樹脂としてはスルホン酸型の酸性陽イオン
交換樹脂であるならば、全ての市販品が利用可能である
As the cation exchange resin, any commercially available sulfonic acid cation exchange resin can be used.

[発明の効果] この発明の方法を、混合イオン交換樹脂の保存時、ある
いは使用時に適用すれば、混合イオン交換樹脂中の分解
が抑制され、樹脂溶出物が低減される結果、処理水の純
度が向上する。
[Effects of the Invention] If the method of the present invention is applied during storage or use of a mixed ion exchange resin, decomposition in the mixed ion exchange resin is suppressed and resin eluates are reduced, resulting in improved purity of treated water. will improve.

分解により生成する樹脂溶出物は、量としては微量であ
り、通常の水の軟化、精製などでは問題にならないが、
半導体工業用、医薬品工業用、原子力発電用などでは、
適用基準にあった高度に精製された水が要求されており
、このような用途に使用される水の場合、微量の樹脂溶
出物も問題となっており、樹脂溶出物の低減法として有
用な方法の提供が是非必要である。
The amount of resin eluate produced by decomposition is very small and does not pose a problem during normal water softening and purification.
For semiconductor industry, pharmaceutical industry, nuclear power generation, etc.
Highly purified water that meets applicable standards is required, and when water is used for such purposes, trace amounts of resin eluates are a problem, so there is a method to reduce resin eluates. It is absolutely necessary to provide a method.

従って、この発明の方法は、先端技術分野向の高度純水
製造システムのカートリッジポリシャーの一部分として
特に有用である。
Accordingly, the method of the present invention is particularly useful as part of a cartridge polisher of a highly purified water production system for high technology applications.

[実施例] 以下、この発明により、混合イオン交換樹脂を酸素不存
の雰囲気下にて保存することによって、イオン交換樹脂
中の分解が抑制され、樹脂溶出物が低減されることを、
実験結果を示して具体的に説明する。
[Example] Hereinafter, it will be shown that according to the present invention, by storing a mixed ion exchange resin in an oxygen-free atmosphere, decomposition in the ion exchange resin is suppressed and resin eluate is reduced.
This will be explained in detail by showing experimental results.

実施例により詳細に説明するが、この発明はこれらの例
示によって制限されるものではない。
The present invention will be explained in detail with reference to examples, but the present invention is not limited to these examples.

実施例1 以下に示す実施例では、市販強塩基性陰イオン交換樹脂
(アンバーライトIRA−900、アンバーライトは米
国ロームアンドハース社の登録商標)を1規定Na0)
1で再生形(OH形)とし、更に、1規定HCIで逆再
生しくC1形)、次いで再び1規定NaOHで再生形(
OH形)とし、最後に脱イオン水でよく洗浄して、樹脂
中に含まれる樹脂溶出物を、充分に除去した再生形の陰
イオン交換樹脂を使用し、一方、市販の強酸性陽イオン
交換樹脂(アンバーライト200)を、1規定HC1を
以て再生形CH形)とし、更に、1規定のNa0)1で
逆再生しくNa形)、次いで、再び1規定のHCIで再
生形(H形)とし最後に、脱イオン水で充分洗浄し、樹
脂中に含有される樹脂溶出物を充分に除去した再生形の
陽イオン交換樹脂を使用して、実験を行った。
Example 1 In the example shown below, a commercially available strongly basic anion exchange resin (Amberlite IRA-900, Amberlite is a registered trademark of Rohm and Haas Company, USA) was used with 1N Na0).
1 to form the regenerated form (OH form), then reversely regenerated with 1N HCI (C1 form), and then regenerated again with 1N NaOH (C1 form).
We used a regenerated anion exchange resin that had been thoroughly washed with deionized water to sufficiently remove the resin eluates contained in the resin.On the other hand, we used a commercially available strongly acidic cation exchange The resin (Amberlite 200) was made into a regenerated form (CH type) with 1N HC1, then reversely regenerated with 1N Na0)1 (Na form), and then again made into a regenerated form (H type) with 1N HCI. Finally, an experiment was conducted using a regenerated cation exchange resin that had been sufficiently washed with deionized water to sufficiently remove the resin eluate contained in the resin.

この両イオン交換樹脂のそれぞれ25m1を採り、これ
らをTOC100ppb以下、溶存酸素量6.6ppm
の脱イオン水100m1を以て充分に混合し、次いで、
500m1のフラスコ中で10mmHgまでの減圧とし
て脱イオン水中の溶存ガスを除去した。
Take 25 ml of each of these ion exchange resins and combine them with a TOC of 100 ppb or less and a dissolved oxygen amount of 6.6 ppm.
Mix thoroughly with 100 ml of deionized water, then
Dissolved gases in the deionized water were removed by applying a vacuum to 10 mm Hg in a 500 ml flask.

これに窒素ガスを導入して常圧まで昇圧した。Nitrogen gas was introduced into this and the pressure was raised to normal pressure.

この操作を二度、繰返して脱イオン水中の溶存ガスを窒
素ガスに置換した。
This operation was repeated twice to replace the dissolved gas in the deionized water with nitrogen gas.

溶存酸素量は、O,lppmとなった。The amount of dissolved oxygen was O, lppm.

同時にフラスコ内の気相部も窒素ガスに置換し密栓した
At the same time, the gas phase inside the flask was also replaced with nitrogen gas and the flask was sealed tightly.

これを、50℃の恒温槽に入れ、それぞれ7時間63時
間、 144時間、振どう攪拌した。 その後、ミクロ
フィルター(0,2ミクロン)を通して、樹脂と、樹脂
溶出物含有の抽出液とを分離した。
This was placed in a constant temperature bath at 50°C and stirred with shaking for 7 hours, 63 hours, and 144 hours, respectively. Thereafter, the resin and the extract containing the resin eluate were separated through a microfilter (0.2 micron).

抽出液を高滓製作所製のTOCアナライザー10Bで測
定した。
The extract was measured using TOC Analyzer 10B manufactured by Takasugi Seisakusho.

それぞれのTOC値は1.0.1.7.2.2 ppm
であった。
Each TOC value is 1.0.1.7.2.2 ppm
Met.

上述の窒素ガスによる置換操作を実施することなく50
℃にて同様の実験を行い、各時間毎に抽出液を採り出し
た。
50 without performing the above-mentioned nitrogen gas replacement operation.
A similar experiment was conducted at ℃, and extracts were collected at each time point.

抽出液のTOC値は、それぞれ、1.1.8.13.1
2、9ppmであり、この大気解放状態下に置かれた場
合に比較して、前記のTOC値は有意に低下したもので
あることが認められる。
The TOC values of the extracts are 1.1.8.13.1, respectively.
The TOC value was 2.9 ppm, and it is recognized that the TOC value was significantly lower than that when exposed to the atmosphere.

なお、溶存酸素量は東亜電波工業製の[1O−2Aによ
り測定した。
The amount of dissolved oxygen was measured using [1O-2A manufactured by Toa Denpa Kogyo.

実施例2 実施例1の再生形陽イオン交換樹脂25m1と、陰イオ
ン交換樹脂50m1を混合し、カラムに充填し、SV:
12の一定速度、を以て、TOC含量100ppb以下
、溶存酸素fi 6.6ppmの精製脱イオン水を密閉
状態にて通液し、 5分間、12分間、30分間および
1時間経過後のフラクションを採り、TOC値を測定し
た。 その結果は、0.1.1.1.0.6および0.
3ppmであった。
Example 2 25 ml of regenerated cation exchange resin of Example 1 and 50 ml of anion exchange resin were mixed, packed into a column, and SV:
Purified deionized water with a TOC content of 100 ppb or less and a dissolved oxygen fi of 6.6 ppm was passed through the tube at a constant rate of 12 in a sealed state, and fractions were collected after 5 minutes, 12 minutes, 30 minutes, and 1 hour. The TOC value was measured. The results are 0.1.1.1.0.6 and 0.1.1.1.0.6.
It was 3 ppm.

次に、TOC100ppb以下、溶存酸素量6.6pp
mの精製脱イオン水を実施例1の方法の通りに、窒素ガ
スを導入して、溶存酸素を置換した。
Next, TOC 100ppb or less, dissolved oxygen amount 6.6pp
Nitrogen gas was introduced into purified deionized water according to the method of Example 1 to replace dissolved oxygen.

その溶存酸素量は0. lppmになった。The amount of dissolved oxygen is 0. It became lppm.

予め、再生形の陽イオン交換樹脂25m1と、陰イオン
交換樹脂50m1を混合し、カラムに充填しこれに前記
の溶存酸素量を低下させた水をSV:12の一定速度に
て密閉系中で通液な行い、5分間、12分間、30分間
、および1時間経過後のフラクションを採り、TOC値
を測定した。
In advance, 25 ml of regenerated cation exchange resin and 50 ml of anion exchange resin were mixed, packed into a column, and water with the above-mentioned amount of dissolved oxygen reduced was added at a constant rate of SV: 12 in a closed system. The solution was passed through the solution, and fractions were taken after 5 minutes, 12 minutes, 30 minutes, and 1 hour, and the TOC value was measured.

その結果は0.1.0.9.0.4 、および0.2p
pmであった。
The result is 0.1.0.9.0.4, and 0.2p
It was pm.

実施例3 TOC100ppb以下、溶存酸素量6.4ppmの精
製脱イオン水を加熱により溶存酸素を除去し、密閉状態
において冷却した。
Example 3 Dissolved oxygen was removed from purified deionized water with a TOC of 100 ppb or less and a dissolved oxygen amount of 6.4 ppm by heating, and the water was cooled in a sealed state.

その溶存酸素は0.9ppmとなった。The dissolved oxygen was 0.9 ppm.

これを、予め、実施例2同様に、再生形の混合イオン交
換樹脂75m1を充填したカラムに、酸素不存の雰囲気
下でSV 、 12の一定流速にて通液しこの通液から
5分間、12分間、30分、および1時間経過後のフラ
クションを採って、TOC値を測定した。
As in Example 2, this solution was passed through a column filled with 75 ml of regenerated mixed ion exchange resin at a constant flow rate of SV, 12 in an oxygen-free atmosphere for 5 minutes after passing. Fractions were taken after 12 minutes, 30 minutes, and 1 hour, and TOC values were measured.

その結果は0.1.1.0.0.4および0.2ppm
であった。
The results are 0.1.1.0.0.4 and 0.2ppm
Met.

実施例4 TOC100ppb以下、溶存酸素量6.6ppmの精
製脱イオン水に100mj当り15mgのヒドラジン(
N2H4・H2O)を添加して、窒素雰囲気下にて溶存
酸素を除去した。
Example 4 15 mg of hydrazine (
N2H4.H2O) was added to remove dissolved oxygen under nitrogen atmosphere.

その溶存酸素量は、0.6ppmとなった。The amount of dissolved oxygen was 0.6 ppm.

従って、これを陽イオン交換樹脂で酸素不存の雰囲気下
で数回処理し、その後に、混合イオン交換樹脂で処理す
れば、樹脂溶出物は同様に低減させられる。
Therefore, if this is treated with a cation exchange resin several times in an oxygen-free atmosphere and then treated with a mixed ion exchange resin, the resin eluate can be similarly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1の保存状態下において測定されたT
OC値をグラフとして示したものである。 第2図は、実施例2および実施例3の通液下において測
定されたTOC値をグラフとして示したものである。
FIG. 1 shows the T measured under the storage conditions of Example 1.
The OC values are shown as a graph. FIG. 2 is a graph showing the TOC values measured under liquid passage in Examples 2 and 3.

Claims (1)

【特許請求の範囲】 1、塩基性陰イオン交換樹脂および酸性陽イオン交換樹
脂からなる混合樹脂床を、溶存酸素量が低下させられた
水中または/および酸素不存の雰囲気下で保存すること
、または/および酸素不存の雰囲気下にあるか、または
/および溶存酸素量が低下させられた被処理液を該混合
樹脂床に通液して、イオン除去処理を行うことを特徴と
する塩基性陰イオン交換樹脂および酸性陽イオン交換樹
脂からなる混合樹脂床からの溶出物の低減方法。 2、該塩基性陰イオン交換樹脂が一般式: ▲数式、化学式、表等があります▼ A=CH_3( I 型) A=C_2H_4OH(II型) (但し、(P)は、架橋共重合体を示す。)にて示され
る交換基を有する陰イオン交換樹脂である請求項1記載
の方法。 3、該酸性陽イオン交換樹脂が一般式: ▲数式、化学式、表等があります▼ (但し、(P)は、架橋共重合体を示す。)にて示され
る交換基を有する陽イオン交換樹脂である請求項1記載
の方法。
[Scope of Claims] 1. Storing a mixed resin bed consisting of a basic anion exchange resin and an acidic cation exchange resin in water with a reduced amount of dissolved oxygen or/and in an oxygen-free atmosphere; or/and a basic process characterized by performing ion removal treatment by passing the liquid to be treated in an oxygen-free atmosphere or/and with a reduced amount of dissolved oxygen through the mixed resin bed; A method for reducing leachables from a mixed resin bed comprising an anion exchange resin and an acidic cation exchange resin. 2. The basic anion exchange resin has the general formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ A=CH_3 (Type I) A=C_2H_4OH (Type II) (However, (P) is a crosslinked copolymer. 2. The method according to claim 1, wherein the anion exchange resin has an exchange group represented by: 3. The acidic cation exchange resin has the general formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, (P) indicates a crosslinked copolymer.) A cation exchange resin having an exchange group shown in the following. The method according to claim 1.
JP63249977A 1988-10-05 1988-10-05 Method for reducing eluted substance from mixed resin bed Pending JPH0299146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63249977A JPH0299146A (en) 1988-10-05 1988-10-05 Method for reducing eluted substance from mixed resin bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63249977A JPH0299146A (en) 1988-10-05 1988-10-05 Method for reducing eluted substance from mixed resin bed

Publications (1)

Publication Number Publication Date
JPH0299146A true JPH0299146A (en) 1990-04-11

Family

ID=17201002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63249977A Pending JPH0299146A (en) 1988-10-05 1988-10-05 Method for reducing eluted substance from mixed resin bed

Country Status (1)

Country Link
JP (1) JPH0299146A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966403A (en) * 1982-10-07 1984-04-14 Mitsubishi Chem Ind Ltd Manufacturing method of cation exchange resin
JPS60166040A (en) * 1984-02-08 1985-08-29 Hitachi Ltd Ion exchange resin and its adjusting method and manufacturing apparatus of ultrapure water using said resin
JPS61254292A (en) * 1985-05-01 1986-11-12 Kurita Water Ind Ltd Pure water production method
JPS62273095A (en) * 1986-05-21 1987-11-27 Japan Organo Co Ltd Water treatment plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966403A (en) * 1982-10-07 1984-04-14 Mitsubishi Chem Ind Ltd Manufacturing method of cation exchange resin
JPS60166040A (en) * 1984-02-08 1985-08-29 Hitachi Ltd Ion exchange resin and its adjusting method and manufacturing apparatus of ultrapure water using said resin
JPS61254292A (en) * 1985-05-01 1986-11-12 Kurita Water Ind Ltd Pure water production method
JPS62273095A (en) * 1986-05-21 1987-11-27 Japan Organo Co Ltd Water treatment plant

Similar Documents

Publication Publication Date Title
US4430226A (en) Method and apparatus for producing ultrapure water
US4045553A (en) Method of treating silver impregnated activated carbon
BR112018012272B1 (en) PURIFICATION PROCESS FOR HYDROLYSABLE ORGANIC SOLVENT
JPS59501681A (en) Fixation of anionic substances using complexing agents
JP5294180B2 (en) Method and apparatus for separating and purifying technetium from molybdenum containing technetium, and method and apparatus for recovering molybdenum
JPH07308590A (en) Production and regenerating method of ion exchanger for separating cesium
JPH0299146A (en) Method for reducing eluted substance from mixed resin bed
JPH01119345A (en) Method for decreasing eluate of anion-exchange resin of high basicity
JPH01119344A (en) Method for reducing eluates from strongly acidic cation exchange resins
JPH03167160A (en) Method for purifying quaternary ammonium hydroxide aqueous solution
FR2507493A1 (en) PROCESS FOR SEPARATING IRON COMPOUNDS FROM CURRENTS FOR THE PRODUCTION OF ORGANIC COMPOUNDS
Kawamura et al. Using copper hexacyanoferrate (II) impregnated zeolite for cesium removal from radioactive liquid waste
JP2611774B2 (en) Acetic acid purification method
JPS6218216B2 (en)
JP2898125B2 (en) Regeneration method of cation exchange resin in condensate desalination equipment
JPS6153117A (en) Recovery of noble metal element
JPS61283355A (en) Method for preventing release of impurities from strong acidic cation exchange resin
US3168571A (en) Ketone purification with bisulfite washed ion exchange resins
JPS62286589A (en) Simultaneous removal of phosphorus and ammonia
JPH09173832A (en) Production of porous resin carried with copper hexacyanoferrate (ii)
JPH11221561A (en) Pure water equipment
AU2018232890A1 (en) Catalytic Regeneration of Resin for Antimony Removal
JPH09225324A (en) Regeneration of ion exchange resin or synthetic adsorbing material for removing organic impurities
JP2023137717A (en) Preparation method of mixed bed ion exchanger for purifying hydrogen peroxide water, and purification method of purifying hydrogen peroxide water
JPH0696147B2 (en) Method for producing ultrapure water using ion exchange resin composition