[go: up one dir, main page]

JPH0298928A - Cleaning of semiconductor substrate - Google Patents

Cleaning of semiconductor substrate

Info

Publication number
JPH0298928A
JPH0298928A JP25125688A JP25125688A JPH0298928A JP H0298928 A JPH0298928 A JP H0298928A JP 25125688 A JP25125688 A JP 25125688A JP 25125688 A JP25125688 A JP 25125688A JP H0298928 A JPH0298928 A JP H0298928A
Authority
JP
Japan
Prior art keywords
substrate
extraction tank
pressure
semiconductor substrate
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25125688A
Other languages
Japanese (ja)
Inventor
Moriya Miyashita
守也 宮下
Shintaro Yoshii
吉井 新太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25125688A priority Critical patent/JPH0298928A/en
Publication of JPH0298928A publication Critical patent/JPH0298928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Cleaning In General (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To prevent the surface of a substrate from being contaminated and to realize a safe operation by a method wherein an extraction tank as a high- pressure container for substrate cleaning use and a heater used to heat the inside of the extraction tank are installed and a gas at a critical temperature or higher and at a critical pressure or higher is used. CONSTITUTION:A substrate 2 is arranged inside an extraction tank 1; a temperature of the extraction tank 1 is raised to 400 deg.C; carbon dioxide at 60 deg.C is introduced into the extraction tank 1 at a pressure of 400 atm. In this case, a critical temperature of the carbon dioxide is 31.06 deg.C and its critical pressure is 73.8 atm; the inside of the extraction tank 1 contains a supercritical gas. During this process, an outer wall of a separation tank 11 is cooled by using cooling water at 10 deg.C. Accordingly, an extracted organic substance is separated in the separation tank 11. When, e.g., a photoresist film coated on the substrate 2 in a photoetching process is stripped off, a silicon oxide film at 1000Angstrom is formed on a silicon substrate, an aluminum electrode thin film with a thickness of 1mum is evaporated on it and a test pattern where lines and spaces are repeated alternately is formed. After that, the resist is stripped off. Thereby, it is possible to prevent the surface of the substrate from being contaminated.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は″f、4体基板の洗浄方法に係り、特に流体を
用いて半導体基板表面上の汚染を除去する方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for cleaning a four-piece substrate, and more particularly to a method for removing contamination on the surface of a semiconductor substrate using a fluid. .

(従来の技術) 半導体工業における半導体!J、N(ウニ/%)の洗浄
は、半導体基板材料の製造、半導体素子の製造プロセス
、素子の組q工程などのいずれを問わず、極めて重要で
ある。洗浄工程の対象物としては、微粒子、金属付着物
、酸・アルカリ系の残留汚染および9機物汚染が挙げら
れる。これらの除去には、それぞれの対象物に応じた物
理的あるいは化学的な洗浄方法が採られる。
(Conventional technology) Semiconductors in the semiconductor industry! Cleaning of J and N (sea urchins/%) is extremely important regardless of whether it is in the production of semiconductor substrate materials, the production process of semiconductor elements, the assembly process of elements, etc. Objects to be subjected to the cleaning process include fine particles, metal deposits, acid/alkali residual contamination, and 9-organic contamination. To remove these, physical or chemical cleaning methods are used depending on each object.

半導体プロセスでの洗浄対豪となる前記q機物汚染とし
ては:フ孝トエッチング]二程で使用されるフ寸トレジ
スト塗布膜、基板材料の製造工程や素子組立工!2(例
えば基板のラッピング時に基板の貼り付け)で使用され
るワックスまたはパラフイン材、あるいはプロセス全体
を通じてウェハに信管する油ミスト、浮′ifi’b−
機物などに起因する外界からの有機物汚染が挙げられる
The above-mentioned q mechanical contamination that is a problem for cleaning in the semiconductor process is: Futoko etching] Futoshi resist coating film used in the second step, substrate material manufacturing process, and element assembly! Wax or paraffin materials used in 2 (e.g. pasting the substrate during substrate lapping), or oil mist, floating 'ifi'b- to fuse the wafer throughout the process.
An example of this is organic pollution from the outside world caused by machinery.

これらの有機物汚染の除去には、従来、メチルアルコー
ル、アセトン、トリクロルエチレン、メチレンクロライ
ド、イソプルピルアルコール、酢酸ブチルのような有機
溶剤が最も一般的に使用される。また、フォトレジスト
塗布膜のには、従来、硫酸と過酸化水素水との混合物な
ども使用される。
Traditionally, organic solvents such as methyl alcohol, acetone, trichloroethylene, methylene chloride, isopropyl alcohol, and butyl acetate are most commonly used to remove these organic contaminants. Furthermore, a mixture of sulfuric acid and hydrogen peroxide solution is conventionally used for photoresist coatings.

これらの化学薬品による自゛機物汚染の除去の隘路とし
て、(1)有機物汚染の除去を安全に行うことができず
、プロセスの安定を欠く。例えば、フォトエツチング工
程でのフォトレジスト塗布膜の剥離には硫酸と過酸化水
素水との混合物が使用されるが、ウェハ表面上にレジス
ト残渣が点在し、これにより高集積度半導体素子のサブ
ミクロンプロセスにおいてパターン欠陥のような工程不
良がしばしば発生する。(2)有機溶剤は、引火性、可
燃性、有害性が−aす、硫酸は強酸性や腐蝕性があり、
半導体プロセスの無害化、作業の安全化の観点より、本
来的に好ましくない。特に、塩素系9機溶剤の使用に関
しては、安全管理上、公害防止上の問題点が多く存在す
る。
The bottlenecks in removing organic contamination caused by these chemicals are: (1) organic contamination cannot be removed safely and the process lacks stability; For example, a mixture of sulfuric acid and hydrogen peroxide is used to remove photoresist coatings in the photoetching process, but resist residue is scattered on the wafer surface, which can cause sub-layers of highly integrated semiconductor devices. Process defects such as pattern defects often occur in micron processes. (2) Organic solvents are flammable, combustible, and harmful; sulfuric acid is strongly acidic and corrosive;
This is inherently undesirable from the standpoint of making semiconductor processes harmless and work safety. In particular, the use of chlorinated solvents poses many problems in terms of safety management and pollution prevention.

(発明が解決しようとする課題) 本発明は、上記したように化学薬品による半導体基板表
面上の汚染除去方法は、プロセスの安定を欠き、パター
ン欠陥のような工程不良がしばしば発生し、引火性、可
燃性、を害性が有り、半導体プロセスの無害化、作業の
安全化の観点より、本来的に好ましくないという問題が
ある点を解決すべくなされたもので、半導体基板表面上
の汚染を均一に除去でき、工程歩留りの改善が可能にな
り、半導体プロセスの無害化、作業の安全化が可能にな
る半導体基板の洗浄方法を提供することを目的とする。
(Problems to be Solved by the Invention) As described above, the method of removing contamination on the surface of a semiconductor substrate using chemicals lacks process stability, often causes process defects such as pattern defects, and is flammable. This was developed to solve the problem that combustibility is harmful and inherently undesirable from the viewpoint of making semiconductor processes harmless and work safety. It is an object of the present invention to provide a method for cleaning a semiconductor substrate, which enables uniform removal, improves process yield, renders the semiconductor process harmless, and makes work safer.

[発明の構成J (課題を解決するための手段) 本発明の半導体基板の洗浄方法は、臨界温度以上および
臨界圧力以上の気体を用いて半導体基板表面上の汚染を
除去することを特徴とする。
[Structure J of the Invention (Means for Solving the Problems) The method for cleaning a semiconductor substrate of the present invention is characterized in that contamination on the surface of the semiconductor substrate is removed using a gas at a temperature higher than a critical temperature and a pressure higher than the critical pressure. .

(作用) 二酸化炭素または水蒸気または窒素などの気体は、臨界
温度以上および臨界圧力以上の条件下では、特に有機物
汚染に対して高溶解力を発揮するという性質があり、こ
の性質を利用することによって、半導体基板表面上の汚
染を均一に除去でき、半導体プロセスの無害化、作業の
安全化が可能になる。
(Function) Gases such as carbon dioxide, water vapor, or nitrogen have the property of exhibiting particularly high dissolving power against organic contamination under conditions of a critical temperature or above and a critical pressure. , it is possible to uniformly remove contamination on the surface of a semiconductor substrate, making semiconductor processes harmless and work safer.

(実施例) 以下、図面を膠照して本発明の実施例を詳細に説明する
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は半導体基板の洗浄方法に使用される洗浄装置の
一例を示している。即ち、1は基板洗浄用の高圧容器で
ある抽出槽、2は洗浄対象物である半導体基板であ、9
、キャリアにより保持されて抽出槽1内に配置される。
FIG. 1 shows an example of a cleaning apparatus used in a semiconductor substrate cleaning method. That is, 1 is an extraction tank which is a high pressure container for cleaning substrates, 2 is a semiconductor substrate which is an object to be cleaned, and 9
, is held in the extraction tank 1 by a carrier.

3は抽出槽1内を加熱するためのヒーター 4は抽出槽
1内の圧力を指示する圧力計である。抽出槽1内に洗浄
用ガスを導入するための経路には、バルブ5、熱交換器
6、フィルタ7、圧縮機8、熱交換器9、バルブ10が
順次配設されている。また、抽出槽1内で抽出された有
機物を排出するための経路には、分MFf411が配設
されている。12は上記分離槽11の外壁の温度を冷却
水により冷却するための冷却器である。
3 is a heater for heating the inside of the extraction tank 1; 4 is a pressure gauge that indicates the pressure inside the extraction tank 1; A valve 5, a heat exchanger 6, a filter 7, a compressor 8, a heat exchanger 9, and a valve 10 are arranged in this order on a path for introducing cleaning gas into the extraction tank 1. Furthermore, a minute MFf411 is disposed in a path for discharging the organic matter extracted in the extraction tank 1. 12 is a cooler for cooling the temperature of the outer wall of the separation tank 11 with cooling water.

次に、上記実施例の洗浄装置を用いて半導体基板表面上
の汚染を除去する方法について説明する。
Next, a method for removing contamination on the surface of a semiconductor substrate using the cleaning apparatus of the above embodiment will be described.

(第1実施例) 基板2をキャリアに入れて抽出槽】内に配置し、抽出槽
1を400℃に昇温し、60 ’Cの二酸化炭素を40
0a Lmの圧力で抽出槽1内に導入する。
(First Example) The substrate 2 is placed in a carrier and placed in an extraction tank, the temperature of the extraction tank 1 is raised to 400°C, and carbon dioxide at 60'C is added to the
It is introduced into the extraction tank 1 at a pressure of 0a Lm.

この場合、二酸化炭素の臨界温度は31.06℃、臨界
圧力は73.8atmであり、抽出槽1内部は超臨界の
気体で満たされることになる。この時、分!M11の外
壁を10℃の冷却水により冷却しておく。これにより、
抽出された9機物は、分離槽11により0分離される。
In this case, the critical temperature of carbon dioxide is 31.06° C., the critical pressure is 73.8 atm, and the inside of the extraction tank 1 is filled with supercritical gas. At this time, minutes! The outer wall of M11 is cooled with cooling water at 10°C. This results in
The nine extracted substances are separated into zero by a separation tank 11.

この間の処理時間は20分である。The processing time during this period is 20 minutes.

ここで、例えばフォトエツチング工程で基板に塗布され
たフォトレジスト膜を剥離する場合にっいて、」1記実
施例による基板洗浄効果の評価結果と、従来の硫酸と過
酸化水素水との混合物による基板洗浄効果の評価結果を
第2図に示す。この場合、基板2は、シリコン基板上に
1000人のシリコン酸化膜を形成し、この上に1μm
厚のアルミニウム電極薄膜を蒸古し、さらに、フォトエ
ツチング工程によりラインとスペースとが交互に繰り返
すテストパターンを形成した後、レジストをJl離した
ものであり、レジスト剥離後のレジスト残渣に起因する
テストパターン不良率により洗浄効果を評価した。
Here, for example, when peeling off a photoresist film applied to a substrate in a photoetching process, we will discuss the evaluation results of the substrate cleaning effect according to Example 1 and the conventional method using a mixture of sulfuric acid and hydrogen peroxide solution. FIG. 2 shows the evaluation results of the substrate cleaning effect. In this case, the substrate 2 is a silicon oxide film formed on a silicon substrate with a thickness of 1 μm.
After a thick aluminum electrode thin film was vaporized and a test pattern of alternating lines and spaces was formed using a photo-etching process, the resist was separated by Jl. The cleaning effect was evaluated based on pattern defect rate.

第2図から分るように、従来法では不良率が2%発生し
ているのに対して、上記実施例では、レジス)21Mの
均一性が向上することから不良率は0.596であり、
従来法に比べて約1/4に減少し、工程歩留りの改善が
可能になった。
As can be seen from FIG. 2, while the conventional method has a defective rate of 2%, in the above embodiment, the defective rate is 0.596 because the uniformity of the resist 21M is improved. ,
It has been reduced to about 1/4 compared to the conventional method, making it possible to improve the process yield.

また、上記実施例と同様の方法で、二酸化炭素の圧力ま
たは温度を食えた場合におけるテストパターン不良率を
第3図(a)および(b)に示している。第3図(a)
は、温度が60℃(臨界温度以上)の時の圧力依存性を
示し、第3図(b)は、圧力が400a tm (臨界
圧力以上)の時の温度依存性を示している。いずれの場
合も、圧力または温度の上昇と共にテストパターン不良
率が減少する傾向を示す。
Further, FIGS. 3(a) and 3(b) show the test pattern failure rate when the pressure or temperature of carbon dioxide was absorbed by the same method as in the above embodiment. Figure 3(a)
shows the pressure dependence when the temperature is 60° C. (above the critical temperature), and FIG. 3(b) shows the temperature dependence when the pressure is 400 atm (above the critical pressure). In either case, the test pattern failure rate tends to decrease as the pressure or temperature increases.

上記したように、臨界温度以上および臨界圧力以上の条
件下の二酸化炭素は、特に有機物汚染に対して高溶解力
を発揮するという性質があり、この性質を利用すること
によって、半導体基板表面上の汚染を均一に除去でき、
工程歩留りの改善を図ることが可能になる。
As mentioned above, carbon dioxide under conditions above the critical temperature and critical pressure has the property of exhibiting high dissolving power, especially for organic contamination, and by utilizing this property, it is possible to Contamination can be removed uniformly,
It becomes possible to improve the process yield.

(第2実施例) 基板2をキャリアに入れて抽出槽1内に配置し、抽出槽
1を400℃に昇温し、150℃の二酸化炭素を90%
、150℃の水蒸気を10%の割合で300a tmの
圧力で抽出槽1内に導入する。
(Second Example) The substrate 2 is placed in a carrier and placed in the extraction tank 1. The temperature of the extraction tank 1 is raised to 400°C, and 90% carbon dioxide at 150°C is added.
, 150° C. steam is introduced into the extraction tank 1 at a rate of 10% at a pressure of 300 atm.

これにより、抽出槽1内部は超臨界の気体で満たされる
ことになる。この時、分M槽11の外壁を10℃の冷却
水により冷却しておく。これにより、抽出された有機物
は、分離槽11により分離される。
As a result, the inside of the extraction tank 1 is filled with supercritical gas. At this time, the outer wall of the minute M tank 11 is cooled with cooling water at 10°C. Thereby, the extracted organic matter is separated by the separation tank 11.

上記第2実施例でも、前記第1実施例と同様の効果が得
られた。また、上記二酸化炭素および水蒸気の温度を1
00〜200℃、圧力を200〜400a tmにした
場合でも、前記第1実施例と同様の効果が得られた。
In the second embodiment, the same effects as in the first embodiment were obtained. In addition, the temperature of the carbon dioxide and water vapor is set to 1
Even when the temperature was 00 to 200°C and the pressure was 200 to 400 atm, the same effects as in the first embodiment were obtained.

(第3実施例) 半導体素子組立工程で使用されるパラフィン材が付着し
た基板に対しては、前記第1実施例に準じた処理を40
℃、300a tmの条件下で行うことにより、パラフ
ィン材を均一に除去できることがオージェ分光分析によ
り確認された。
(Third Example) A substrate with paraffin material attached to it used in the semiconductor device assembly process was subjected to a treatment similar to the first example for 40 minutes.
It was confirmed by Auger spectroscopy that the paraffin material could be removed uniformly by performing the process under the conditions of 300 atm and 300 °C.

上記各実施例の結果より、使用する気体は40〜400
℃の温度範囲および100〜600atmの圧力範囲が
半導体プロセスとして実用的である。また、40〜40
0℃および100〜600a tmの条件下にある水蒸
気または窒素によっても、上記各実施例と同様に半導体
基板表面上の汚染を除去することができる。
From the results of the above examples, the gas used is 40 to 400
A temperature range of .degree. C. and a pressure range of 100 to 600 atm are practical for semiconductor processing. Also, 40 to 40
Contamination on the surface of the semiconductor substrate can also be removed using water vapor or nitrogen under conditions of 0° C. and 100 to 600 atm, as in the above embodiments.

[発明の効果] 上述したように本発明の半導体基板の洗浄方法によれば
、従来の宜機溶剤または強酸系などの化学薬品を使用し
た場合に比べて、半導体基板表面上の汚染を均一に除去
でき、フォトエツチング工程でのフォトレジスト剥離時
のレジスト残渣に起因するパターン欠陥のような不良を
低減でき、工程歩留りの改善を図ることができた。
[Effects of the Invention] As described above, according to the semiconductor substrate cleaning method of the present invention, contamination on the surface of the semiconductor substrate can be uniformly removed compared to the case where conventional solvents or strong acid-based chemicals are used. It was possible to reduce defects such as pattern defects caused by resist residue during photoresist peeling in the photoetching process, and improve process yield.

また、上記方法により洗浄された基板上にはレジスト残
渣が殆んどなくなるので、この基板上に通常のMOS形
成工程により形成されたMOSキャパシタのゲート酸化
膜の耐圧が向」ニした。
Further, since there is almost no resist residue on the substrate cleaned by the above method, the withstand voltage of the gate oxide film of a MOS capacitor formed on this substrate by a normal MOS forming process is improved.

また、基板材料の製造工程や素子組立工枠で使用される
ワックスまたはパラフィン材などの除去に、従来はトリ
クロルエチレンなどを使用していたので有害性が有った
が、本発明の半導体基板の洗浄方法によれば、半導体プ
ロセスの無害化、作業の安全化が可能になった。
In addition, conventionally, trichlorethylene was used to remove wax or paraffin materials used in the manufacturing process of substrate materials and in device assembly frames, which was harmful, but the semiconductor substrate of the present invention The cleaning method has made it possible to make semiconductor processes harmless and work safer.

また、本発明の半導体基板の洗浄方法によれば、使用ガ
スの循環回収利用を行えば、製造コストの低減も可能に
なる。
Further, according to the semiconductor substrate cleaning method of the present invention, if the used gas is recycled and used, it is also possible to reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体基板の洗浄方法の一実施例で使
用される半導体基板の洗浄装置の一例を示す構成説明図
、第2図は本発明の洗浄方法と従来の洗浄方法とによる
基板洗浄効果の評価結果を示す図、第3図(a)および
(b)は本発明の洗浄方法における圧力依存性および温
度依存性を示す図である。 1・・・基板洗浄用の抽出槽、2・・・洗浄対象物であ
る半導体基板、3・・・ヒーター、4・・・圧力計、5
.10・・・バルブ、6.9・・・熱交換器、7・・・
フィルタ、8・・・圧縮機、11・・・分M槽、12・
・・冷却器。 出願人代理人 弁理士 鈴江武彦 μカ(atm) (a) 滉渡(@C) (b) 第3図
FIG. 1 is a configuration explanatory diagram showing an example of a semiconductor substrate cleaning apparatus used in an embodiment of the semiconductor substrate cleaning method of the present invention, and FIG. FIGS. 3(a) and 3(b) are diagrams showing the evaluation results of the cleaning effect, and are diagrams showing the pressure dependence and temperature dependence in the cleaning method of the present invention. 1... Extraction tank for substrate cleaning, 2... Semiconductor substrate to be cleaned, 3... Heater, 4... Pressure gauge, 5
.. 10... Valve, 6.9... Heat exchanger, 7...
Filter, 8... Compressor, 11... Minute M tank, 12.
··Cooler. Applicant's agent Patent attorney Takehiko Suzue μka (atm) (a) Kodo (@C) (b) Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)臨界温度以上および臨界圧力以上の気体を用いて
半導体基板表面上の汚染を除去することを特徴とする半
導体基板の洗浄方法。
(1) A method for cleaning a semiconductor substrate, characterized in that contamination on the surface of the semiconductor substrate is removed using a gas at a temperature or pressure higher than a critical temperature.
(2)40〜400℃の温度および100〜600at
mの圧力の条件下にある二酸化炭素または水蒸気または
窒素により半導体基板表面上の汚染を除去することを特
徴とする半導体基板の洗浄方法。
(2) Temperature of 40-400℃ and 100-600at
1. A method for cleaning a semiconductor substrate, the method comprising removing contamination on the surface of the semiconductor substrate using carbon dioxide, water vapor, or nitrogen under a pressure of m.
(3)100〜200℃の温度および200〜400a
tmの圧力の条件下で、二酸化炭素および水蒸気を9:
1の割合で有する気体により半導体基板表面上の汚染を
除去することを特徴とする半導体基板の洗浄方法。
(3) Temperature of 100-200℃ and 200-400a
Under conditions of pressure of tm, carbon dioxide and water vapor are mixed at 9:
1. A method of cleaning a semiconductor substrate, comprising removing contamination on the surface of the semiconductor substrate using a gas having a ratio of 1:1.
JP25125688A 1988-10-05 1988-10-05 Cleaning of semiconductor substrate Pending JPH0298928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25125688A JPH0298928A (en) 1988-10-05 1988-10-05 Cleaning of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25125688A JPH0298928A (en) 1988-10-05 1988-10-05 Cleaning of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH0298928A true JPH0298928A (en) 1990-04-11

Family

ID=17220066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25125688A Pending JPH0298928A (en) 1988-10-05 1988-10-05 Cleaning of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH0298928A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383065A (en) * 1989-08-28 1991-04-09 Masaru Nishikawa Method for forming pattern of resist, method for removing resist and method for washing substrate
WO1996013067A1 (en) * 1994-10-21 1996-05-02 Tadahiro Ohmi Method of, and apparatus for, producing thin film transistor
US6880560B2 (en) 2002-11-18 2005-04-19 Techsonic Substrate processing apparatus for processing substrates using dense phase gas and sonic waves
JP2006508307A (en) * 2002-11-26 2006-03-09 ウーデ・ハイ・プレッシャー・テクノロジーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング High pressure device that closes the container in the clean room
JP2014206315A (en) * 2013-04-12 2014-10-30 ダイダン株式会社 Component dissolving energy saving operation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383065A (en) * 1989-08-28 1991-04-09 Masaru Nishikawa Method for forming pattern of resist, method for removing resist and method for washing substrate
WO1996013067A1 (en) * 1994-10-21 1996-05-02 Tadahiro Ohmi Method of, and apparatus for, producing thin film transistor
US6880560B2 (en) 2002-11-18 2005-04-19 Techsonic Substrate processing apparatus for processing substrates using dense phase gas and sonic waves
JP2006508307A (en) * 2002-11-26 2006-03-09 ウーデ・ハイ・プレッシャー・テクノロジーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング High pressure device that closes the container in the clean room
JP2014206315A (en) * 2013-04-12 2014-10-30 ダイダン株式会社 Component dissolving energy saving operation system

Similar Documents

Publication Publication Date Title
US6624127B1 (en) Highly polar cleans for removal of residues from semiconductor structures
US5990060A (en) Cleaning liquid and cleaning method
US5749975A (en) Process for dry cleaning wafer surfaces using a surface diffusion layer
WO2016101333A1 (en) Photoresist residue cleaning fluid
WO2015143942A1 (en) Low-etching cleaning fluid for removing photoresist etching residues
CN101152652A (en) A cleaning method for the surface of anodized parts
US4867799A (en) Ammonium vapor phase stripping of wafers
US20040072706A1 (en) Removal of contaminants using supercritical processing
US7431855B2 (en) Apparatus and method for removing photoresist from a substrate
JPH0298928A (en) Cleaning of semiconductor substrate
KR100568381B1 (en) Cleaning solution and cleaning method for semiconductor processing device parts
JP7180667B2 (en) Alumina protective liquid, protective method, and method for manufacturing semiconductor substrate having alumina layer using the same
CN1428823A (en) Method for Removing Polymer Residue After Pad Window Etching
JP2541560B2 (en) Cleaning method for fluororesin products
CN1268244A (en) Wet processing methods for the manufacture of electronic components
KR100248154B1 (en) Etchant
JPS6258636A (en) Dry etching process and device thereof
JPH10199847A (en) Method of cleaning wafer
US6589356B1 (en) Method for cleaning a silicon-based substrate without NH4OH vapor damage
JPS63107120A (en) processing equipment
KR20040098179A (en) Composition for removal residue of sensitive photoresist
JPS5837982B2 (en) Surface treatment method for Group 3-5 compound semiconductors
JPS59150427A (en) Semiconductor device and manufacture of the same
JPH0821562B2 (en) Resist removal method
US20050112903A1 (en) Process for removing tungsten particles after tungsten etch-back