[go: up one dir, main page]

JPH0298053A - Manufacture of platinum ruthenium catalyst for fuel cell - Google Patents

Manufacture of platinum ruthenium catalyst for fuel cell

Info

Publication number
JPH0298053A
JPH0298053A JP63250194A JP25019488A JPH0298053A JP H0298053 A JPH0298053 A JP H0298053A JP 63250194 A JP63250194 A JP 63250194A JP 25019488 A JP25019488 A JP 25019488A JP H0298053 A JPH0298053 A JP H0298053A
Authority
JP
Japan
Prior art keywords
platinum
ruthenium
dispersion
catalyst
binary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63250194A
Other languages
Japanese (ja)
Inventor
Makoto Uchida
誠 内田
Kunio Ito
伊藤 邦夫
Mieko Tanabe
田辺 美恵子
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63250194A priority Critical patent/JPH0298053A/en
Publication of JPH0298053A publication Critical patent/JPH0298053A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To manufacture a platinum ruthenium catalyst having high polarization by adding ruthenium chloride to platinum dispersion comprising chloroplatinic acid and dithionous acid to form platinum-ruthenium binary dispersion, and depositing on a conductive carbon substrate. CONSTITUTION:Platinum dispersion is prepared by mixing chloroplatinic acid and dithionous acid in an aqoueous solvent under the presence of anti- flocculating agent. Ruthenium chloride is added to the platinum dispersion to prepare platinum-ruthenium binary colloidal dispersion. The platinum- ruthenium binary dispersion keeping high dispersion of 5-30Angstrom . Carbon fine powder slurry is added to the platinum-ruthenium colloidal dispersion, then the mixture is vigorously stirred. As a result, platinum ruthenium colloidal particles are deposited on the carbon fine powder, then they are filtered, dried and crushed. The platinum ruthenium catalyst supported on the fine carbon support can be manufactured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、メタノール、ホルムアルデヒド、ギ酸など全
燃料とする燃料電池用燃料極触媒の製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a fuel electrode catalyst for a fuel cell using all fuels such as methanol, formaldehyde, and formic acid.

従来の技術 従来、この棟の燃料電池用電極触媒としては白金が広く
用いられている。酸素−水素燃料電池用の白金触媒の製
造法として、白金コロイドを生成させることによって2
6Å以下の粒子径をもつ高分散された白金触媒が得られ
ることが提案されている(特公昭61−1869号公報
、特開昭64−92588号公報)。この触媒は酸素を
酸化剤とする酸素電極及び水素を燃料とする水素電極触
媒に対して高い性能を示す。しかし、メタノールホルム
アルデヒド、ギ酸など全燃料とする燃料電池用電極触媒
としては分極が大きく、十分な特性は得られていなかっ
た。そこで、第二の元素で白金を修飾し、高性能化を図
る試みが多くなされている。それらのうち、比較的高い
性能が得られているものに、白金ルテニウム合金、白金
スズ共電着体などがある。白金ルテニウム合金は最も良
い性能を示しているが、調製に高温加熱を必要とするた
めに、触媒粒子の比表面積が低下し、均一に単体上に分
散させることが困難であるという欠点がある。従って、
第二元素による賦活効果はみられるが、分散が悪いため
に電極触媒として十分な特性は得られていない。
Conventional Technology Conventionally, platinum has been widely used as an electrode catalyst for fuel cells in this building. As a method for producing platinum catalysts for oxygen-hydrogen fuel cells, 2
It has been proposed that a highly dispersed platinum catalyst having a particle size of 6 Å or less can be obtained (Japanese Patent Publication No. 1869/1982, Japanese Patent Application Laid-open No. 92588/1983). This catalyst shows high performance compared to an oxygen electrode using oxygen as an oxidizing agent and a hydrogen electrode catalyst using hydrogen as a fuel. However, as an electrode catalyst for fuel cells that use methanol formaldehyde or formic acid as all fuel, polarization is large and sufficient characteristics have not been obtained. Therefore, many attempts have been made to improve performance by modifying platinum with a second element. Among them, platinum-ruthenium alloys, platinum-tin co-electrodeposited materials, etc. have achieved relatively high performance. Although the platinum-ruthenium alloy has shown the best performance, it has the disadvantage that it requires high-temperature heating for preparation, which reduces the specific surface area of the catalyst particles and makes it difficult to uniformly disperse the catalyst particles. Therefore,
Although an activation effect by the second element is observed, sufficient properties as an electrode catalyst are not obtained due to poor dispersion.

発明が解決しようとする課題 このような従来の構成では、多元系触媒でありかつ平均
粒径30Å以下に高分散された触媒が得られないという
課題があった。
Problems to be Solved by the Invention With such a conventional configuration, there was a problem in that it was not possible to obtain a multi-component catalyst and a highly dispersed catalyst with an average particle size of 30 Å or less.

本発明はこのような課題を解決するもので、30Å以下
の平均粒系を有する高度に分散された白金ルテニウム分
散液と、その分散液をカーボン基体上に沈積させること
によって、高い分極特性を示す白金ルテニウム触媒を製
造する方法を提供することを目的とするものである。
The present invention solves these problems by using a highly dispersed platinum ruthenium dispersion having an average grain size of 30 Å or less and depositing the dispersion on a carbon substrate, which exhibits high polarization characteristics. The object of the present invention is to provide a method for producing a platinum ruthenium catalyst.

課題を解決するための手段 この課題を解決するために本発明は、水溶媒体中に塩化
白金酸と亜二チオン酸ナトリウム(Ha2S、、o4)
とを、例えば過酸化水素などの凝集防止剤の存在下で混
合した白金分散液に、塩化ルテニウムを加えて白金とル
テニウムの二元コロイド分散液を形成させ、この白金ル
テニワム二元コロイド分散液中に懸濁状態の導電性カー
ボンを加えて導電性カーボン基体上に白金ルテニウム二
元触媒粒子を形成させることによって、燃料電池用白金
ルテニウム触媒金得るものである。
Means for Solving the Problem In order to solve this problem, the present invention provides chloroplatinic acid and sodium dithionite (Ha2S,,o4) in an aqueous medium.
Ruthenium chloride is added to a platinum dispersion prepared by mixing the above in the presence of an anti-aggregation agent such as hydrogen peroxide to form a binary colloidal dispersion of platinum and ruthenium, and in this platinum-ruthenium binary colloidal dispersion Platinum-ruthenium catalyst gold for fuel cells is obtained by adding suspended conductive carbon to the conductive carbon substrate to form platinum-ruthenium binary catalyst particles on the conductive carbon substrate.

作用 この製造法により、還元剤となる亜二チオン酸ナトリウ
ムを用いて高度に分散した白金粒子上にルテニウムが沈
着し、5〜30人の高い分散を保ったままの白金−ルテ
ニウム二元分散液が得られる。この高分散し几白金ルテ
ニウム微粒子を導電性カーボン基体上に沈着させること
ができるので、触媒粒子径6〜30人からなる高活性な
白金ルテニウム触媒が得られることとなる。
Effect: Through this production method, ruthenium is deposited on highly dispersed platinum particles using sodium dithionite as a reducing agent, creating a binary platinum-ruthenium dispersion that maintains a high degree of dispersion. is obtained. Since these highly dispersed platinum ruthenium fine particles can be deposited on a conductive carbon substrate, a highly active platinum ruthenium catalyst having a catalyst particle size of 6 to 30 particles can be obtained.

実施例 以下に実施例によりさらに詳しく説明する。Example This will be explained in more detail with reference to Examples below.

2gの塩化白金酸を室温においてイオン交換水300 
rugに溶解させた。この塩化白金酸水溶液を60℃に
加熱し、工〈攪はんしながら過酸化水素水(31%)1
0m/i添加する。このとき溶液が赤みを帯びる。亜二
チオン酸ナトリウム溶液(60g/(1) 1oox1
2滴下すると溶液は赤褐色に変わり、pHが低下する。
Add 2 g of chloroplatinic acid to 300 g of ion-exchanged water at room temperature.
It was dissolved in rug. This chloroplatinic acid aqueous solution was heated to 60°C, and while stirring, 1 part hydrogen peroxide solution (31%) was added.
Add 0m/i. At this time, the solution becomes reddish. Sodium dithionite solution (60g/(1) 1oox1
After adding 2 drops, the solution turns reddish-brown and the pH decreases.

これをイオン変換水で700罰に希釈し、塩化ルテニウ
ム水ffEWc1o、4qRu/m/ ) s Ort
tlを滴下する。この間、溶液は褐色そして黒色にゆっ
くり変化し、白金及びルテニウムを含有するコロイド分
散液が形成される。このようにして形成され之白金−ル
テニウム分散液のコロイド粒子を透過電子顕微鏡で観察
したところ、粒子直径が6〜26人の範囲で一様に分布
していることがわかっ几。
This was diluted to 700% with ion-converted water, and ruthenium chloride waterffEWc1o, 4qRu/m/)s Ort
Drop the tl. During this time, the solution slowly turns brown and then black, forming a colloidal dispersion containing platinum and ruthenium. When the colloidal particles of the platinum-ruthenium dispersion thus formed were observed using a transmission electron microscope, it was found that the particle diameters were uniformly distributed in the range of 6 to 26 particles.

上記の白金ルテニウムコロイド分散液にスラリー状の炭
素微粉末(VulcanXC72RDabot社製)ε
gt”添刀口、激しく攪はんした。その結果、白金ルテ
ニウムのコロイド粒子が炭素微粉末担体上に沈着し、こ
れを濾過、乾燥、微粉化することKよって、微粉末状の
炭素担体上に担持された白金ルテニウム触媒が形成され
た。
Slurry-like carbon fine powder (manufactured by VulcanXC72RDabot)
As a result, colloidal particles of platinum-ruthenium were deposited on the carbon fine powder carrier, and by filtering, drying, and pulverizing them, they were deposited on the fine powder carbon carrier. A supported platinum ruthenium catalyst was formed.

透過電子顕微鏡写真により、白金ルテニウム粒子の直径
は5〜30人の範囲に一様に分布していることがわかっ
た。また、白金ルテニウムの95チが炭素担体上に担持
されていた。
Transmission electron micrographs showed that the diameters of the platinum-ruthenium particles were uniformly distributed in the range of 5 to 30 people. Further, 95% of platinum ruthenium was supported on the carbon carrier.

上記のようにして作成され几白金ルテニウム触媒のメタ
ノール燃料極の分極特性を測定するために、上記触媒担
持炭素微粉末とフッ素樹脂(PTFE)により撥水化処
理した導電性炭素微粉末とを白金量2Hi/anIとな
るように混合し、導電性カーボンペーパーに加圧成型し
て試料電極基板を作成した。
In order to measure the polarization characteristics of the methanol fuel electrode prepared as described above and having a platinum ruthenium catalyst, the catalyst-supported fine carbon powder and the conductive carbon fine powder treated to be water repellent with fluororesin (PTFE) were mixed with platinum. The mixture was mixed in an amount of 2Hi/anI and pressure molded onto conductive carbon paper to prepare a sample electrode substrate.

メタノール燃料電極の分極特性の測定は、60℃の硫酸
水溶液(1,5M )とメタノール(2M)(7)混合
溶液中で行った。その結果を第1図に示す。
The polarization characteristics of the methanol fuel electrode were measured in a mixed solution of sulfuric acid aqueous solution (1.5M) and methanol (2M) (7) at 60°C. The results are shown in FIG.

第1図の横軸は電流密度を示し、縦軸は標準水素電極(
RHE)に対する試験極の電位を示す。本発明の触媒を
用いたメタノール燃料極の分極特性を曲線人に示す。比
較のために従来法による白金のみの触媒を白金量(2η
/cd)で塗布したメタノール燃料極の分極特性を曲線
Bに示す。
The horizontal axis in Figure 1 shows the current density, and the vertical axis shows the standard hydrogen electrode (
The potential of the test electrode relative to RHE) is shown. The polarization characteristics of a methanol fuel electrode using the catalyst of the present invention are shown in a curved line. For comparison, a conventional platinum-only catalyst was used with a platinum amount (2η
Curve B shows the polarization characteristics of the methanol fuel electrode coated with /cd).

第1図に示すように、本発明による白金−ルテニウム触
媒は、従来法による触媒と比較して、幅広い電流密度に
おいて0.2”/以上分極を小さくすることができた。
As shown in FIG. 1, the platinum-ruthenium catalyst according to the present invention was able to reduce polarization by more than 0.2'' over a wide range of current densities compared to the conventional catalyst.

すなわち、分極が0.2v以上小さいということは、こ
の電極?用いて燃料電池を構成した場合に、電池電圧が
0.2v以上同上できるということである。
In other words, the polarization is smaller by 0.2v or more, which means that this electrode? This means that when a fuel cell is constructed using the same, the battery voltage can be increased to 0.2 V or more.

なお、本発明をその特定の実施例について詳細に説明し
たが、本発明はこの実施例に限定されるものではなく、
種々の修正が可能であることは明かである。また、実施
例では燃料にメタノールを用いたが、そのほかにホルム
アルデヒド、ギ酸を用いても同様の傾向の性能が得られ
た。さらに、実施例では電解質に硫酸を用いていたが、
このほかにもリン酸、トリフルオルメタンスルホン酸な
どを用いた場合も有効であった。
Although the present invention has been described in detail with respect to a specific example thereof, the present invention is not limited to this example.
Obviously, various modifications are possible. Furthermore, although methanol was used as the fuel in the examples, performance with a similar tendency was obtained when formaldehyde and formic acid were also used. Furthermore, although sulfuric acid was used as the electrolyte in the example,
In addition to this, the use of phosphoric acid, trifluoromethanesulfonic acid, etc. was also effective.

発明の効果 以上のように本発明によれば、塩化白金酸と亜二チオン
酸ナトリウムからなる白金分散液に塩化ルテニウムを添
加する工程を設けることによって、触媒粒子径5〜30
人の高い分散を保持した状態で白金−ルテニウム二元分
散液が得られ、さらにこれを導電性カーボン基体上に形
成させることにより、メタノール、ホルムアルデヒド、
ギ酸などを燃料とする燃料電池用電極触媒として優れた
分極特性を実現する製造法を提供できるという効果が得
られる。
Effects of the Invention As described above, according to the present invention, by providing a step of adding ruthenium chloride to a platinum dispersion consisting of chloroplatinic acid and sodium dithionite, the catalyst particle size can be reduced to 5 to 30.
A platinum-ruthenium binary dispersion is obtained while maintaining high dispersion, and by forming this on a conductive carbon substrate, methanol, formaldehyde,
The present invention has the effect of providing a manufacturing method that achieves excellent polarization characteristics as an electrode catalyst for fuel cells using formic acid or the like as a fuel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるメタノール燃料極と従来のメタノ
ール燃料極の分極特性を比較した図である。
FIG. 1 is a diagram comparing the polarization characteristics of a methanol fuel electrode according to the present invention and a conventional methanol fuel electrode.

Claims (1)

【特許請求の範囲】[Claims]  水溶媒体中に塩化白金酸と亜二チオン酸ナトリウム(
Na_2S_2O_4)とを過酸化水素などの凝集防止
剤の存在下で混合した白金分散液に、塩化ルテニウムを
加えて白金とルテニウムの二元コロイド分散液を形成さ
せ、前記白金ルテニウム二元コロイド分散液中に懸濁状
態の導電性カーボンを加え、導電性カーボン基体上に白
金ルテニウム二元触媒粒子を形成させることを特徴とす
る燃料電池用白金ルテニウム触媒の製造法。
Chloroplatinic acid and sodium dithionite (
Ruthenium chloride is added to a platinum dispersion prepared by mixing Na_2S_2O_4) in the presence of an anti-aggregation agent such as hydrogen peroxide to form a binary colloidal dispersion of platinum and ruthenium. 1. A method for producing a platinum-ruthenium catalyst for fuel cells, which comprises adding conductive carbon in a suspended state to a conductive carbon substrate to form platinum-ruthenium binary catalyst particles on a conductive carbon substrate.
JP63250194A 1988-10-04 1988-10-04 Manufacture of platinum ruthenium catalyst for fuel cell Pending JPH0298053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250194A JPH0298053A (en) 1988-10-04 1988-10-04 Manufacture of platinum ruthenium catalyst for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250194A JPH0298053A (en) 1988-10-04 1988-10-04 Manufacture of platinum ruthenium catalyst for fuel cell

Publications (1)

Publication Number Publication Date
JPH0298053A true JPH0298053A (en) 1990-04-10

Family

ID=17204216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250194A Pending JPH0298053A (en) 1988-10-04 1988-10-04 Manufacture of platinum ruthenium catalyst for fuel cell

Country Status (1)

Country Link
JP (1) JPH0298053A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118860A (en) * 1990-09-10 1992-04-20 Fuji Electric Co Ltd Manufacture of fuel cell alloy catalyst
US5521439A (en) * 1993-04-05 1996-05-28 Sgs-Microelectronics S.R.L. Combination and method for coupling a heat sink to a semiconductor device
JPH11250918A (en) * 1997-12-19 1999-09-17 Degussa Ag Platinum/ruthenium alloy catalyst, its manufacture, gas diffusion electrode, membrane electrode unit, and proton conductive polymer membrane for pem fuel cell
JP2005522015A (en) * 2002-04-04 2005-07-21 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ Fuel cell and fuel cell catalyst
US7445859B2 (en) 1993-10-12 2008-11-04 California Institute Of Technology Organic fuel cell methods and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492588A (en) * 1977-12-12 1979-07-21 United Technologies Corp Manufacture of platinum dispersed solution and platinum catalyst
JPS6397232A (en) * 1986-10-15 1988-04-27 Tanaka Kikinzoku Kogyo Kk Production of high-dispersion binary pt-ru cluster catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492588A (en) * 1977-12-12 1979-07-21 United Technologies Corp Manufacture of platinum dispersed solution and platinum catalyst
JPS6397232A (en) * 1986-10-15 1988-04-27 Tanaka Kikinzoku Kogyo Kk Production of high-dispersion binary pt-ru cluster catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118860A (en) * 1990-09-10 1992-04-20 Fuji Electric Co Ltd Manufacture of fuel cell alloy catalyst
US5521439A (en) * 1993-04-05 1996-05-28 Sgs-Microelectronics S.R.L. Combination and method for coupling a heat sink to a semiconductor device
US7445859B2 (en) 1993-10-12 2008-11-04 California Institute Of Technology Organic fuel cell methods and apparatus
JPH11250918A (en) * 1997-12-19 1999-09-17 Degussa Ag Platinum/ruthenium alloy catalyst, its manufacture, gas diffusion electrode, membrane electrode unit, and proton conductive polymer membrane for pem fuel cell
JP4582594B2 (en) * 1997-12-19 2010-11-17 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Platinum / ruthenium alloy catalyst, process for producing the same, gas diffusion electrode, membrane electrode unit and proton conducting polymer membrane for PEM fuel cell
JP2005522015A (en) * 2002-04-04 2005-07-21 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ Fuel cell and fuel cell catalyst

Similar Documents

Publication Publication Date Title
US5240893A (en) Method of preparing metal-heterocarbon-nitrogen catalyst for electrochemical cells
KR100953545B1 (en) Supported catalyst and its manufacturing method
JP3867232B2 (en) Catalyst nanoparticles
JP4463522B2 (en) Electrode catalyst fine particles, electrode catalyst fine particle dispersion, and method for producing electrode catalyst fine particle dispersion
KR100761593B1 (en) Anode for liquid fuel cell, membrane electrode assembly for liquid fuel cell, and liquid fuel cell
KR100647296B1 (en) Fuel cell employing metal catalyst and electrode containing the same
JP2005527957A (en) Proton conductive carbonaceous material
US20150368817A1 (en) Anode catalyst suitable for use in an electrolyzer
JP2001093531A (en) Solid polymer fuel cell and method for manufacturing electrode catalyst
KR20180117808A (en) Carbon-Platinum Core-Shell Type Catalysts for Fuel Cell and Method for Preparing the Same
US4409129A (en) Method of manufacturing catalyst
JPH09223503A (en) Manufacture of high molecular solid electrolyte type fuel cell electrode
JP2003109643A (en) Fuel cell
CA2241505A1 (en) Method for producing electrode catalyst powder
JPH0298053A (en) Manufacture of platinum ruthenium catalyst for fuel cell
JPH05217586A (en) Fuel cell and manufacture thereof
CN111564641B (en) Preparation method of catalyst layer in membrane electrode
JP2007172887A (en) Carried catalyst for fuel cell, reaction layer for fuel cell, fuel cell, and manufacturing method of carried catalyst for fuel cell
CN110277564B (en) A kind of direct liquid fuel cell anode catalyst and preparation method thereof
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
US3940510A (en) Process for the manufacture of silver-coated tungsten carbide electrode material
CN114899418A (en) Platinum catalyst and preparation method and application thereof
JP3890653B2 (en) Methanol fuel cell
JPH02114452A (en) Manufacture of fuel electrode catalyst for liquid fuel battery
CN112490452B (en) Fuel cell anode catalyst and preparation method and application thereof