[go: up one dir, main page]

JPH02968B2 - - Google Patents

Info

Publication number
JPH02968B2
JPH02968B2 JP57028594A JP2859482A JPH02968B2 JP H02968 B2 JPH02968 B2 JP H02968B2 JP 57028594 A JP57028594 A JP 57028594A JP 2859482 A JP2859482 A JP 2859482A JP H02968 B2 JPH02968 B2 JP H02968B2
Authority
JP
Japan
Prior art keywords
polypeptide
casein
oil
emulsifier
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57028594A
Other languages
Japanese (ja)
Other versions
JPS58174232A (en
Inventor
Kunio Yamauchi
Shuichi Uenokawa
Makoto Shimizu
Takeshi Takahashi
Kenkichi Ahiko
Masatoshi Kako
Toshiaki Kimura
Shunichi Dosemari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP57028594A priority Critical patent/JPS58174232A/en
Publication of JPS58174232A publication Critical patent/JPS58174232A/en
Publication of JPH02968B2 publication Critical patent/JPH02968B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は党ガれむンを或いはαs−ガれむン及
び又はβ−ガれむンを蛋癜質分解酵玠で分解し
お埗られるポリペプチドから成る乳化剀に関す
る。 埓来、゚マルゞペンの補造には乳化剀ずしお脂
肪酞モノグリセラむド、゜ルビタン脂肪酞゚ステ
ル、卵黄、レシチン、アルギン酞、れラチン䞊び
にその他の蛋癜質が甚いられおおり、このほかに
プロセスチヌズの補造ではリン酞塩融解塩も
乳化剀ずしお甚いられおいる。 しかし、䞀般的に䜿甚されおいるモノグリセラ
むド系乳化剀は颚味䞊の芳点から食品゚マルゞペ
ンの補造には適圓でない。曎に、蛋癜質系乳化剀
は䞀般に乳化力が匱く、加うるに颚味を損ねるず
いう欠点がみられる。 なお蛋癜質系乳化剀ずしおガれむンの郚分加氎
分解物が乳化剀ずしお甚いられるこずの報告特
開昭54−95747号の第頁がみられるが、この
報告では特定な数のアミノ酞を有するペプチドそ
のものを乳化剀ずしお甚いるこずに぀いおは䜕ら
蚀及しおおらず、たた、ポリペプチドの乳化特性
に぀いおも䜕ら瀺唆しおいない。たた、倧豆蛋癜
質の酵玠分解物を乳化剀ずしお甚いるこずの報告
特開昭55−39725号、特開昭56−26171号及び特
開昭56−42555号もみられるが、該酵玠分解物
は䞀般に颚味が悪く、栄逊化も必ずしも満足でき
るものではない。加うるに倧豆蛋癜質は比范的硬
質rigidであるため予め加熱或いはアルコヌ
ルによる倉性凊理を斜さないず酵玠䜜甚を受けに
くいずいう欠点がある。 本発明は䞊述したごずきに珟状に鑑みおなされ
たものであ぀お、゚マルゞペン補品の颚味を損ね
るこずがなく、栄逊䞊の欠点もなく、䞔぀乳化安
定性、特に加熱時の乳化安定性の優れた乳化剀を
提䟛するこずを目的ずする。 因みに、ここで蚀う“゚マルゞペン”ずは、氎
䞭油型、油䞭氎型の各゚マ
ルゞペン及び二重゚マルゞペンを意味するもので
あ぀お、゚マルゞペンずしおはチヌズ、ス
ヌプ類、゜ヌス、クリヌム、ゞナヌス、マペネヌ
ズ、ドレツシング、スプレツド等の食品のほかに
シダンプヌ、化粧品、液状栄逊剀等を䟋瀺し埗、
たた゚マルゞペンずしおはマヌガリン、バ
タヌ等の食品を䟋瀺し埗る。 したが぀お、本発明に係る乳化剀はこれらの゚
マルゞペン補品の補造に適甚できるものである。 以䞋本発明を詳しく説明する。 本発明に係る乳化剀は、党ガれむン或いはαs
−ガれむン及び又はβ−ガれむンに蛋癜質分解
酵玠を䜜甚させお埗られる反応混合物から、ゲル
濟過、むオン亀換クロマグラフむヌ、高速液䜓ク
ロマグラフむヌ又は電気泳動等の䞀皮以䞊を適甚
しお分離しお埗られる、乃至50個のアミノ酞か
ら構成されるポリペプチドから成るこずを特城ず
する。 本発明の乳化剀の調敎に出発原料ずしお甚いら
れるガれむンは前述した倧豆蛋癜質ずは異なり、
比范的ゆるやかな高次構造を有するため加熱或い
はアルコヌル凊理ずいう前凊理を斜すこずなく、
生のたたでも酵玠分解を受け易い利点がある。 䞊蚘出発原料ずしおの党ガれむンは党乳、脱脂乳
或いは脱脂乳のPHを4.6付近に調敎しお埗られる
酞ガれむン又は乳酞菌発酵しお埗られる乳酞ガれ
むンであり、αs−ガれむン䞊びにβ−ガれむン
は党ガれむンを䟋えば尿玠法で分画しお埗られる
〔αs−ガれむンに぀いおはZittle et alJ.Dairy
Sci.46、11831963、β−ガれむンに぀いおは
Hipp et al、J.Am.Chem.Soc.74、48221952
参照〕。 これらの原料においお、酵玠分解により埗られ
るポリペプチドの分離及び粟補の芳点からすれば
党ガれむンから予め分画しお埗られるαs−ガれ
むン及び又はβ−ガれむンを甚いるこずが奜た
しい。 本発明では党ガれむン或はαs−ガれむン及
び又はβ−ガれむンを蛋癜質分解酵玠で分解し
お埗られる、〜50個のアミノ酞から構成される
ポリペプチドを乳化剀ずしお利甚するものである
が、ここで甚いる蛋癜質分解酵玠は特に制限的で
なく広範囲の皮類の酵玠が䜿甚可胜であり、䟋え
ばキモシン、パパむン、ペプシン、プラスミン、
トリプシン、α−キモトリプシン、乳酞菌由来の
ペプチダヌれ等を包含する。 なお、䞊蚘酵玠分解により埗られるペプチドに
高い乳化力を付䞎させるにはそれの芪氎性ず疎氎
性のバランスが重芁であり、したが぀お、本発明
では埓来の蛋癜質の酵玠分解物にみられるような
ランダムに酵玠分解するものでなく、蛋癜質分解
酵玠ずしお或る皋床分解䞊特異性の高い酵玠を甚
いるこずが奜たしい。このような酵玠ずしおキモ
シン、ペプシン等を䟋瀺し埗る。 本発明でこれらの蛋癜質分解酵玠を䞊蚘出発原
料に䜜甚させる条件は、䜿甚酵玠の皮類によ぀お
倧きく異なるが、䞀般的にはαs−ガれむンの堎
合では0.1〜20重量濃床においお該ガれむンに
察しお1/2〜1/50000の酵玠濃床でPH〜12、反応
枩床〜60℃で分〜週間䜜甚させる。䟋え
ば、酵玠ずしおキモシンレンネツト及び出発
原料ずしおαs−ガれむンを甚いるずきには、αs
−ガれむンの濃床1.5重量、レンネツト濃床0.4
重量でPH6.4、30℃の枩床にお時間䜜甚させ
るずよい。因みに、この酵玠分解によりαs−ガ
れむンの80以䞊が末端から23〜24個のアミノ
酞を有するポリペプチドず残䜙がαs−ガれむ
ンを生成する。なお、αs−ガれむンに蛋癜質分
解酵玠を䜜甚させる堎合の分解床は、簡䟿的には
TCAトリクロル酢酞に可溶な窒玠量を定量す
るこずにより枬定できるが、より正確に枬定する
にはHill et alによる電気泳動法〔J.Dairy
Res.411471974〕を適甚しお酵玠分解反応混
合物の泳動パタヌンを解析するずよく、この枬定
によりαs−ガれむンの䜕がどのようなペプチ
ドに分解されたかを知るこずが可胜ずなる。 䞊蚘のより酵玠分解しお埗られる反応混合物か
ら目的のポリペプチドを分離するにはゲル過、
むオン亀換クロマグラフむ、高速液䜓クロマグラ
フむ、分離甚電気泳動等の各手法を適甚するずよ
く、又これらの手法を組合せおもよい。 本発明で甚いるポリペプチドは䞊述のごずくし
お乃至50個、奜たしくは10乃至30個のアミノ酞
から構成されるものを分離したものであ぀お、芪
氎性基ず疎氎性基のバランスのずれたのが奜たし
い。 すなわち、ポリペプチドの乳化力を高めるには
ポリペプチド内の芪氎性ず疎氎性のバランスが重
芁であり、このバランスのずれた䞡芪媒性構造を
ポリペプチドに付䞎するにはアミノ酞数を乃至
50個にするこずが必芁である。換蚀するず、アミ
ノ酞数が個より少なくおも又50個より倚くおも
䞊蚘バランスがずりにくくなる。 このような芪氎性ず疎氎性の䞡芪媒性を有する
ポリペプチドは公知の乳化剀ず同様に疎氎性基は
脂肪球ず結合し、䞀方芪氎性基は氎䞭に出お安定
な゚マルゞペンを圢成するようになる。 次に、本発明におけるポリペプチドの乳化性に
぀いお述べる。 型゚マルゞペンであるチヌズに察する乳
化性を䟋瀺的に瀺す。熟床ケ月のチ゚ダヌチヌ
ズをチペツパヌで粉砕したもののKgに、埌蚘実
斜䟋に瀺すようにしお調補したアミノ酞を23個
又は24個有するポリペプチドの也燥粉末25
ã‚’æ°Ž180mlに溶解しお加えた混合物を乳化釜に䟛
絊しお40℃で800rpmの回転数の撹拌で乳化を行
い、次いで加熱殺菌90℃で30分間しお埗られ
るプロセスチヌズに぀いお乳化安定性を調べた。 なお、比范ずしおポリペプチドの代りに埓来か
ら乳化剀ずしお甚いられおいるリン酞塩融解
塩䞊びに゜ヌダ・ガれむンを適甚しお同様にし
おプロセスチヌズを埗おそれらの乳化安定性も調
べた。 その結果、ポリペプチドを添加した堎合は玄
分間の撹拌でチヌズ䞭の脂肪は蛋癜質−氎盞に均
䞀に分散しお安定な乳化系が埗られたが、゜ヌ
ダ・ガれむンを添加したものではいくら撹拌を続
けおも加枩により分離した脂肪は蛋癜質−氎盞に
分散せず、乳化しなか぀た。たた、リン酞塩を添
加した堎合は玄分間の撹拌で乳化系が埗られ
た。 次いで、ポリペプチドずリン酞塩をそれぞれ添
加しお調敎したチヌズに぀いお䞋蚘手法によりオ
むルオフ倀を枬定したずころ䞋蚘のずおりであ぀
た。 オむルオフ倀の枬定 玙䞊にチヌズ詊料を眮き30℃の恒枩槜湿床
90に24時間保持した埌のチヌズ詊料における
脂肪の浞出面積詊料面積の倀を枬定倀ずする。この数
倀 の小さいものが乳化安定性が良い。 オむルオフ倀 ポリペプチド添加のチヌズ 1.2 リン酞塩添加のチヌズ 2.3 䞊蚘結果にみられるように、本発明によるポリ
ペプチドを乳化剀ずしお甚いお調敎したプロセス
チヌズの乳化安定性が埓来法によるものに比し顕
著に優れおいる。 本発明の乳化剀は䞊述した乳脂のほかに皮々の
油脂の乳化に適甚でき、䟋えば怍物油ではダシ
油、サフラワヌ油、ヒマシ油、綿実油、コヌン
油、パヌム油、パヌム栞油、なたね油、倧豆油、
ピヌナツツ油、ヒマワリ油、オリヌブ油、カカオ
バタヌ等であり、動物油ではラヌド、ヘツト、マ
トン・タロヌ、鯚油等である。 本発明の乳化剀ずしおのポリペプチドをこれら
の油脂の乳化に甚いるにはポリペプチドを氎に溶
解し乳化操䜜前に油脂に添加し、高速乳化機のよ
うな乳化機を適甚しお゚マルゞペンを圢成する。
ポリペプチドの添加量は乳化すべき油脂の皮類に
より異なるが通垞は油脂に察しお0.01乃至30重量
の範囲でよい。䟋えばプロセスチヌズの補造で
は原料のチヌズが半硬質であるずきは該チヌズに
察しお0.2〜30重量、奜たしくは〜10重量
の範囲である。 本発明によるポリペプチドを乳化剀ずしお甚い
お調補した゚マルゞペンは前述したように乳化安
定性に優れおおり、特に熱に察する安定性が良奜
であるので食品加工に応甚する際殺菌工皋での゚
マルゞペンの砎壊や盞転換が生ぜず、又高枩の゚
マルゞペンをそのたた容噚等に充填可胜なので゚
マルゞペン食品の品質及び衛生の改善䞊特に奜郜
合である。 加うるに、ポリペプチドは盞圓量甚いおも補品
の颚味に悪圱響を䞎えるこずがなく、䞔぀栄逊䞊
の欠点もなく、むしろ栄逊匷化になる利点があ
る。 以䞋に実斜䟋を瀺す。 実斜䟋  ポリペプチドの調補 αs−ガれむン15を0.1M酢酞緩衡液PH6.4
に溶解し、30℃に加枩した。埗られる溶液に
レンネツト0.7mgを添加し、時間反応させた埌
80℃で10分間加熱しおレンネツトを倱掻させた。
埗られる反応液酵玠分解液を宀枩たで冷华し
た埌、ゲル濟過及びむオン亀換クロマグラフむを
適甚しお該反応液から䞋蚘に瀺す䞀次構造を有す
るポリペプチド玄を埗た。 Arg−Pro−Lys−His−Pro−Ile−Lys−His
−Gln−Gly−Leu−Pro−Gln−Glu−Val−Leu
−Asn−Glu−Asn−Leu−Leu−Arg−Phe−
Phe 次に、このようにしお埗られたポリペプチドの
各皮乳化食品に察する応甚を䟋瀺する。 ポリペプチドのマヌガリンに察する乳化性 䞊蚘により埗られたポリペプチドを乳化剀ずし
お甚い䞋蚘衚に瀺す配合のものをボテヌタヌで
垞法によりマヌガリンを補造した。なお、比范ず
しお䞊蚘ポリペプチドに代えおモノグリセラむド
及びレシチンを乳化剀ずしお甚い同様にしマヌガ
リンを補造し、䞡方のマヌガリンの乳化安定性を
調べた。
The present invention relates to an emulsifier comprising a polypeptide obtained by decomposing whole casein or αs-casein and/or β-casein with a protease. Traditionally, fatty acid monoglycerides, sorbitan fatty acid esters, egg yolk, lecithin, alginic acid, gelatin, and other proteins have been used as emulsifiers in the production of emulsions, and phosphates (molten salts) have also been used as emulsifiers in the production of processed cheese. It is used as. However, commonly used monoglyceride emulsifiers are not suitable for producing food emulsions from the viewpoint of flavor. Furthermore, protein-based emulsifiers generally have a weak emulsifying power and have the disadvantage of impairing flavor. There is a report that a partial hydrolyzate of casein is used as a protein emulsifier (Japanese Unexamined Patent Publication No. 1983-95747, page 1), but this report does not use the peptide itself, which has a specific number of amino acids. There is no mention of its use as an emulsifier, nor is there any suggestion of emulsifying properties of the polypeptide. There are also reports on the use of enzymatically decomposed products of soybean protein as emulsifiers (JP-A-55-39725, JP-A-56-26171, and JP-A-56-42555); The flavor is bad, and the nutritional value is not always satisfactory. In addition, since soybean protein is relatively rigid, it has the disadvantage that it is not susceptible to enzyme action unless it is heated or denatured with alcohol in advance. The present invention has been made in view of the current situation as described above, and provides an emulsion product that does not impair the flavor of emulsion products, has no nutritional defects, and has excellent emulsion stability, especially emulsion stability during heating. The purpose is to provide emulsifiers. Incidentally, the term "emulsion" used here refers to oil-in-water (O/W), water-in-oil (W/O) emulsions, and double emulsions. Examples include foods such as cheese, soups, sauces, creams, juices, mayonnaise, dressings, and spreads, as well as shampoos, cosmetics, liquid nutritional supplements, etc.
Examples of W/O emulsions include foods such as margarine and butter. Therefore, the emulsifier according to the present invention can be applied to the production of these emulsion products. The present invention will be explained in detail below. The emulsifier according to the present invention is made of whole casein or αs
- A reaction mixture obtained by treating casein and/or β-casein with a protease is separated by applying one or more methods such as gel filtration, ion exchange chromatography, high performance liquid chromatography, or electrophoresis. It is characterized by consisting of a polypeptide composed of 5 to 50 amino acids. Casein used as a starting material for preparing the emulsifier of the present invention is different from the above-mentioned soybean protein,
Because it has a relatively loose higher-order structure, it can be used without pretreatment such as heating or alcohol treatment.
It has the advantage of being easily subject to enzymatic degradation even when raw. The above-mentioned whole casein as a starting material is whole milk, skim milk, or acid casein obtained by adjusting the pH of skim milk to around 4.6, or lactic acid casein obtained by fermentation with lactic acid bacteria. Casein can be obtained by fractionating it, for example, by the urea method [for αs-casein, see Zittle et al, J.Dairy
Sci.46, 1183 (1963), for β-casein
Hipp et al, J.Am.Chem.Soc.74, 4822 (1952)
reference〕. Among these raw materials, from the viewpoint of separation and purification of polypeptides obtained by enzymatic decomposition, it is preferable to use αs-casein and/or β-casein obtained by pre-fractionation from whole casein. In the present invention, a polypeptide composed of 5 to 50 amino acids obtained by decomposing whole casein or αs-casein and/or β-casein with a protease is used as an emulsifier. The proteolytic enzyme used is not particularly limited and a wide variety of enzymes can be used, such as chymosin, papain, pepsin, plasmin,
Includes trypsin, α-chymotrypsin, peptidase derived from lactic acid bacteria, and the like. In addition, in order to impart high emulsifying power to the peptide obtained by the above-mentioned enzymatic degradation, the balance between hydrophilicity and hydrophobicity is important. It is preferable to use an enzyme with a certain degree of specificity in terms of decomposition as a proteolytic enzyme, rather than one that enzymatically decomposes the protein randomly. Examples of such enzymes include chymosin and pepsin. In the present invention, the conditions under which these proteolytic enzymes act on the above-mentioned starting materials vary greatly depending on the type of enzyme used, but generally in the case of αs-casein, the conditions are 0.1 to 20% by weight for αs-casein. The enzyme concentration is 1/2 to 1/50,000, the pH is 2 to 12, and the reaction temperature is 3 to 60°C for 1 minute to 1 week. For example, when using chymosin (rennet) as the enzyme and αs-casein as the starting material, αs
- Casein concentration 1.5% by weight, rennet concentration 0.4
It is preferable to act for 3 hours at a pH of 6.4 (weight%) and a temperature of 30°C. Incidentally, by this enzymatic decomposition, more than 80% of αs-casein produces a polypeptide having 23 to 24 amino acids from the N-terminus, and the remainder produces αs-I casein. The degree of decomposition when a proteolytic enzyme is applied to αs-casein can be simply expressed as:
It can be measured by quantifying the amount of nitrogen soluble in TCA (trichloroacetic acid), but a more accurate method is the electrophoresis method by Hill et al [J.Dairy
Res. 41: 147 (1974)] to analyze the migration pattern of the enzymatic degradation reaction mixture, and this measurement makes it possible to know what percentage of αs-casein has been degraded into what kind of peptides. . To separate the desired polypeptide from the reaction mixture obtained by the enzymatic digestion described above, gel filtration,
Techniques such as ion exchange chromatography, high performance liquid chromatography, and separation electrophoresis may be applied, or these techniques may be combined. The polypeptide used in the present invention is an isolated polypeptide consisting of 5 to 50 amino acids, preferably 10 to 30 amino acids, as described above, and has a well-balanced composition of hydrophilic and hydrophobic groups. is preferable. In other words, the balance between hydrophilicity and hydrophobicity within a polypeptide is important in order to increase the emulsifying power of a polypeptide, and in order to impart this balanced amphipathic structure to a polypeptide, the number of amino acids must be increased from 5 to 5.
It is necessary to make it 50 pieces. In other words, if the number of amino acids is less than 5 or more than 50, it will be difficult to maintain the above balance. Polypeptides with hydrophilic and hydrophobic amphipathic properties are similar to known emulsifiers, with hydrophobic groups binding to fat globules, while hydrophilic groups exit into water to form a stable emulsion. Become. Next, the emulsifying properties of the polypeptide in the present invention will be described. The emulsifying property of O/W emulsion for cheese is exemplarily shown. 25 g of dry powder of a polypeptide having 23 (or 24) amino acids prepared as shown in the example below for 1 kg of cheddar cheese with a maturity of 4 months crushed using a chiyotsupar.
A mixture of dissolved in 180 ml of water is supplied to an emulsifying pot, emulsified by stirring at 800 rpm at 40°C, and then heat sterilized (at 90°C for 30 minutes) to obtain a stable emulsion. I looked into gender. For comparison, processed cheese was obtained in the same manner using phosphate (molten salt) and soda casein, which are conventionally used as emulsifiers, instead of polypeptide, and their emulsion stability was also investigated. As a result, when polypeptide was added, approximately 3
After stirring for several minutes, the fat in the cheese was uniformly dispersed in the protein-water phase, resulting in a stable emulsified system, but in the case of the cheese containing soda and casein, no matter how much stirring was continued, the fat separated by heating remained. It did not disperse or emulsify in the protein-aqueous phase. Furthermore, when phosphate was added, an emulsified system was obtained after stirring for about 4 minutes. Next, the oil-off value of cheese prepared by adding polypeptide and phosphate was measured by the following method, and the results were as follows. Measurement of oil-off value: Place the cheese sample on paper and place it in a constant temperature bath at 30°C (humidity
The measured value is the fat leaching area/sample area in the cheese sample after being held at 90%) for 24 hours. The smaller this number is, the better the emulsion stability is. Oil-off value Cheese added with polypeptide 1.2 Cheese added with phosphate 2.3 As seen in the above results, the emulsion stability of the processed cheese prepared using the polypeptide according to the present invention as an emulsifier is higher than that of the processed cheese prepared using the conventional method. Remarkably superior. The emulsifier of the present invention can be applied to emulsify various oils and fats in addition to the milk fat mentioned above, such as vegetable oils such as coconut oil, safflower oil, castor oil, cottonseed oil, corn oil, palm oil, palm kernel oil, rapeseed oil, soybean oil,
Peanut oil, sunflower oil, olive oil, cocoa butter, etc., and animal oils such as lard, head, mutton tallow, and whale oil. In order to use the polypeptide as an emulsifier of the present invention to emulsify these oils and fats, the polypeptide is dissolved in water, added to the oil and fat before the emulsification operation, and an emulsion is formed by applying an emulsifier such as a high-speed emulsifier. .
The amount of polypeptide added varies depending on the type of fat or oil to be emulsified, but is usually in the range of 0.01 to 30% by weight based on the fat or oil. For example, in the production of processed cheese, when the raw material cheese is semi-hard, it is 0.2 to 30% by weight, preferably 1 to 10% by weight of the cheese.
is within the range of As mentioned above, the emulsion prepared using the polypeptide of the present invention as an emulsifier has excellent emulsion stability, and in particular has good stability against heat, so when applied to food processing, the emulsion can be easily destroyed during the sterilization process. This method is particularly advantageous for improving the quality and hygiene of emulsion foods because phase conversion does not occur and the high-temperature emulsion can be directly filled into containers. In addition, polypeptides do not adversely affect the flavor of the product even when used in significant amounts, and have the advantage of being nutritionally enriched rather than nutritionally disadvantageous. Examples are shown below. Example 1 Preparation of polypeptide: 15g of αs-casein in 0.1M acetic acid buffer (PH6.4)
1 and heated to 30°C. After adding 0.7 mg of rennet to the resulting solution and reacting for 3 hours,
Rennet was inactivated by heating at 80°C for 10 minutes.
After the resulting reaction solution (enzyme digestion solution) was cooled to room temperature, about 2 g of a polypeptide having the primary structure shown below was obtained from the reaction solution by applying gel filtration and ion exchange chromatography. Arg−Pro−Lys−His−Pro−Ile−Lys−His
−Gln−Gly−Leu−Pro−Gln−Glu−Val−Leu
−Asn−Glu−Asn−Leu−Leu−Arg−Phe(−
Phe) Next, the application of the thus obtained polypeptide to various emulsified foods will be illustrated. Emulsifiability of polypeptide in margarine: Using the polypeptide obtained above as an emulsifier, margarine having the formulation shown in Table 1 below was produced in a conventional manner using a votator. For comparison, margarine was produced in the same manner using monoglyceride and lecithin as emulsifiers instead of the above polypeptide, and the emulsion stability of both margarines was examined.

【衚】【table】

【衚】 䞊蚘䞡マヌガリンに぀いお分散状態の氎滎の平
均埄を顕埮鏡で枬定した結果は䞋蚘のずおりであ
る。 本 発 明 1.9ÎŒ 比 范 䟋 4.3ÎŒ 䞊蚘氎滎の平均埄はマヌガリンの乳化安定性の
状態を瀺すものであ぀お埄の倀が小さいほど乳化
安定性が良い。 ポリペプチドのクリヌムに察する乳化性 䞊蚘により埗られたポリペプチド重量を乳
化剀ずしお甚い䞋蚘に瀺す配合のクリヌムを䞋蚘
手順により補造した。たた、比范ずしお乳化剀無
添加のもの、ポリペプチドに代えお゜ヌダ・ガれ
むンNa−casein重量䞊びにシペ糖脂肪
酞゚ステルDKF1600.4重量をそれぞれ甚
いお同様にしおクリヌムを補造した。 クリヌムの配合 サラダ油 34重量 脱脂粉乳  æ°Ž 66 クリヌムの補造手順 䞊蚘配合の脱脂粉乳を各乳化剀ずずもに氎に分
散し、60℃に加枩し、これに60℃に加枩したサラ
ダ油を加えた混合物を、ポリトロンを甚いお
1000rpmの回転数で撹拌しおクリヌムを圢成し
た。埗られた各クリヌムに぀いお油滎の倧きさを
顕埮鏡䞋に芳察しお乳化状態を調べた。結果は衚
に瀺すずおりである。
[Table] The average diameter of water droplets in the dispersed state of both margarines was measured using a microscope and the results are as follows. Present invention 1.9ÎŒ Comparison example 4.3ÎŒ The above average diameter of water droplets indicates the state of emulsion stability of margarine, and the smaller the diameter value, the better the emulsion stability. Emulsifying property of polypeptide in cream: Using 1% by weight of the polypeptide obtained above as an emulsifier, a cream having the formulation shown below was manufactured according to the following procedure. For comparison, creams were produced in the same manner without the addition of an emulsifier and using 1% by weight of soda casein (Na-casein) and 0.4% by weight of sucrose fatty acid ester (DKF160) in place of the polypeptide. Cream composition: Salad oil 34 (wt%) Skimmed milk powder 4 Water 66 Cream manufacturing procedure: Skim milk powder of the above composition is dispersed in water with each emulsifier and heated to 60℃, followed by salad oil heated to 60℃. Using a Polytron, add the mixture to
The cream was formed by stirring at a rotation speed of 1000 rpm. The size of oil droplets in each of the obtained creams was observed under a microscope to examine the emulsification state. The results are shown in Table 2.

【衚】 衚に芋られるように、゜ヌダ・ガれむンを甚
いたものでは油滎の倧きさは乳化剀無添加のもの
ず同様に倧きくお乳化状態が悪いが、本発明によ
るポリペプチドを甚いたものでは、珟圚甚いられ
おいるシペ糖脂肪酞゚ステルの堎合に匹敵するほ
ど油滎が小さく乳化状態が良奜である。 ポリペプチドのチヌズ様補品に察する乳化
性 ナチナラルチヌズにバタヌオむルを加えおチヌ
ズ様補品を補造する堎合におけるポリペプチドの
乳化性を䞋蚘により調べた。 䞋蚘に瀺す組成の配合物にポリペプチドの1.5
溶液29重量䞊びに3.8溶液23重量をそれ
ぞれに加えお、40℃でフヌドカツタヌを甚いお玄
2000rpmで撹拌しお乳化し、埗られる乳化物の乳
化状態を調べた。 原料配合物の組成 脂肪 68(重量%) ナチナラルチヌズ由来の脂肪13重量 バタヌオむル由来の脂肪55重量 蛋癜 13 灰分 2.3 その他 0.5 æ°Ž 16.2 結果は、ポリペプチドの1.5溶液29重量を
加えお乳化したものでは乳化物の脂肪球の倧きさ
は2.4Όであり、ポリペプチドの3.8溶液23重量
加えお乳化したものでは1.9Όであ぀た。 なお、ポリペプチドを添加しない察照ではバタ
ヌオむルが分離しお乳化物は埗られなか぀た。 実斜䟋  ポリペプチドの調補 β−ガれむン20をPH6.4の0.01Mりん酞緩衝
液に溶解し、これにペプシン0.4を添加し
お37℃10時間反応させた。塩酞でPHを4.6に調敎
した結果、沈柱物を生じたため、これを遠心分離
しお陀いた。䞊柄液のPHを氎酞化ナトリりムで
7.8に調敎埌、トリプシン10mgを添加し、37℃で
さらに10時間反応させた。 次いで、80℃10分間加熱しお酵玠を倱掻させた
埌、宀枩たで冷华した。埗られた分解液をDEAE
−セフアセルカラムに通液し、食塩の濃床募配に
よるむオン亀換クロマトを行い、䞋蚘に瀺す構造
を有するポリペプチドを含むフラクシペンを埗
た。 Val−Leu−Pro−Val−Pro−Glu−Lys 尚、アミノ酞分析よりペプチド濃床を枬定した
結果、䞊蚘ペプチドの濃床は0.02であ぀た。 乳化掻性の枬定 䞊蚘ポリペプチドを含むフラクシペンを70℃に
お枛圧濃瞮し濃床ずした埌に、塩酞でPHを
に調敎した。これにより倧豆油を最終20ずなる
ように加え、高速ホモゲナむザヌポリトロン
を甚い、最高回転数にお分間均質化した。盎ち
に、0.1SDS溶液で垌釈し、500nmにおける濁
床を求め、乳化掻性m2で衚わした。乳化
掻性は脂肪球が均䞀に分散されおいる皋高い倀を
瀺す。尚、比范䟋ずしお䞊蚘ポリペプチドの代り
に未分解のβ−ガれむンを甚いた。PHにおける
乳化掻性は、未分解β−ガれむンでは7.3m2
であ぀たのに察し、ポリペプチドでは10.4m2
であり、酞性䞋ですぐれた乳化胜を有しおいた。 実斜䟋  ポリペプチドの調補 乳酞ガれむンKgã‚’æ°Ž10に分散させ、氎酞化
ナトリりムでPHを6.4に調敎し぀぀溶解した。こ
れにキモシンを加え、42℃にお10分間反応さ
せた埌、CaCl2を70mMずなるように加えた。生
じたカヌドを陀去しお埗た䞊柄液を70℃30分
間加熱しおキモシンを倱掻させた埌、15℃に冷华
した。 次いで、これに塩酞を加えPHをに調敎し、ペ
プシンを加え、20分間反応させた。氎酞化ナ
トリりムでPHをに戻した埌、80℃にお10分間加
熱し、酞玠を倱掻させた。液量がになるたで
70℃にお枛圧濃瞮し、−セフアロ−スカラムに
通液した。食塩の濃床募配によるむオン亀換クロ
マトを行い、溶出液をセフアデツクス−15によ
るゲル濟過で脱塩し、凍結也燥した。こおように
しお䞋に瀺す構造を有するポリペプチドを埗
た。 Met−Ala−Ile−Pro−Pro−Lys−Lys−Asn
−Gln−Asp−Lys−Thr−Glu−Ile−Pro−Thr
−Ile−Asn−Thr−Ile−Ala−Ser−Gly−Glu−
Pro−Thr−Ser−Thr−Pro−Thr−Ile−Glu−
Ala−Val−Glu−Ser−Thr−Val−Ala−Thr−
Leu−Glu−Ala−Ser−Pro−Glu−Val ポリペプチドのドレツシングに察する安定性 䞊蚘により埗られたポリペプチドを乳化剀ずし
お甚い、衚に瀺す配合でドレツシングを詊䜜
し、その乳化安定性を調べた。尚、比范䟋ずしお
ポリペプチドの代りに党ガれむンを配合した。 è¡š  重量 æ°Ž 27.1 食酢 6.5 コヌンスタヌチ 3.1 食塩 1.0 砂糖 6.2 調味料 0.6 ポリペプチド 5.5 菜皮油 50 蚈 100 衚に瀺す配合のうち菜皮油を加えおいない氎
溶液を90℃に加熱埌、宀枩に冷华し、ホモミキサ
ヌで均質化した。次いで、これに菜皮油をゆ぀く
り滎䞋し、再床均質化した。これを60℃の枩湯䞭
で時間むンキナベヌトし、2800xgで10分間遠心
分離した。分離した湯は捚おた。乳化安定性は、 遠心分離埌の重量遠心前の重量 ずしお衚わした。党ガれむンでは87.4であ぀た
のに察し䞊蚘ポリペプチドでは94.2であ぀た。
[Table] As shown in Table 2, the size of oil droplets in the casein using soda casein was as large as in the casein without emulsifier, and the emulsification state was poor, but in the casein using the polypeptide according to the present invention, the oil droplet size was as large as in the casein without emulsifier. The oil droplets are so small and the emulsification state is good that it is comparable to the case of currently used sucrose fatty acid esters. Emulsifying properties of polypeptides for cheese-like products: The emulsifying properties of polypeptides when producing cheese-like products by adding butter oil to natural cheese were investigated as follows. 1.5 of the polypeptide in a formulation with the composition shown below.
Add 29% by weight of the % solution and 23% by weight of the 3.8% solution, and cut the mixture at 40°C using a food cutter to approx.
The mixture was emulsified by stirring at 2000 rpm, and the emulsification state of the resulting emulsion was examined. Composition of raw material formulation: Fat 68 (wt%) Fat 13% by weight from natural cheese Fat 55% by weight from butter oil Protein 13 Ash 2.3 Other 0.5 Water 16.2 Results show that 29% by weight of a 1.5% solution of polypeptide was added The size of the fat globules in the emulsion was 2.4Ό, and the size of the fat globules in the emulsion with 23% by weight of a 3.8% polypeptide solution was 1.9Ό. In addition, in a control in which no polypeptide was added, butter oil was separated and no emulsion was obtained. Example 2 Preparation of polypeptide: 20 g of β-casein was dissolved in 0.01M phosphate buffer 1 of pH 6.4, 0.4 g of pepsin was added thereto, and the mixture was reacted at 37° C. for 10 hours. As a result of adjusting the pH to 4.6 with hydrochloric acid, a precipitate was generated, which was removed by centrifugation. Adjust the pH of the supernatant liquid with sodium hydroxide.
After adjusting the temperature to 7.8, 10 mg of trypsin was added, and the reaction was further carried out at 37°C for 10 hours. Next, the enzyme was inactivated by heating at 80°C for 10 minutes, and then cooled to room temperature. DEAE the obtained decomposition liquid
- The solution was passed through a Sephacel column and subjected to ion exchange chromatography using a concentration gradient of sodium chloride to obtain a fraction containing a polypeptide having the structure shown below. Val-Leu-Pro-Val-Pro-Glu-Lys In addition, as a result of measuring the peptide concentration by amino acid analysis, the concentration of the above peptide was 0.02%. Measurement of emulsifying activity: The fraction containing the above polypeptide was concentrated under reduced pressure at 70°C to a concentration of 2%, and then the pH was reduced to 3 with hydrochloric acid.
Adjusted to. Add soybean oil to a final concentration of 20% and use a high-speed homogenizer (Polytron).
Homogenization was carried out for 3 minutes using the highest rotation speed. Immediately, it was diluted with a 0.1% SDS solution, the turbidity at 500 nm was determined, and it was expressed as emulsifying activity (m 2 /g). The more uniformly the fat globules are dispersed, the higher the emulsifying activity is. As a comparative example, undegraded β-casein was used instead of the above polypeptide. The emulsifying activity at PH3 is 7.3 m 2 /g for undegraded β-casein.
whereas for polypeptide it was 10.4m 2 /g.
It had excellent emulsification ability under acidic conditions. Example 3 Preparation of polypeptide: 1 kg of lactic acid casein was dispersed in 10 parts of water and dissolved while adjusting the pH to 6.4 with sodium hydroxide. After adding 7 g of chymosin to this and reacting at 42° C. for 10 minutes, CaCl 2 was added to give a concentration of 70 mM. The supernatant liquid 8 obtained by removing the resulting curd was heated at 70°C for 30 minutes to inactivate chymosin, and then cooled to 15°C. Next, hydrochloric acid was added to adjust the pH to 2, 1 g of pepsin was added, and the mixture was reacted for 20 minutes. After returning the pH to 7 with sodium hydroxide, the mixture was heated at 80°C for 10 minutes to deactivate oxygen. Until the liquid level reaches 2
The residue was concentrated under reduced pressure at 70°C and passed through a Q-Sepharose column. Ion exchange chromatography using a concentration gradient of sodium chloride was performed, and the eluate was desalted by gel filtration using Sephadex G-15 and freeze-dried. In this way, 8 g of a polypeptide having the structure shown below was obtained. Met−Ala−Ile−Pro−Pro−Lys−Lys−Asn
−Gln−Asp−Lys−Thr−Glu−Ile−Pro−Thr
−Ile−Asn−Thr−Ile−Ala−Ser−Gly−Glu−
Pro−Thr−Ser−Thr−Pro−Thr−Ile−Glu−
Ala−Val−Glu−Ser−Thr−Val−Ala−Thr−
Stability of the Leu-Glu-Ala-Ser-Pro-Glu-Val polypeptide in dressing: Using the polypeptide obtained above as an emulsifier, a dressing was prepared with the formulation shown in Table 2, and its emulsion stability was investigated. Ta. In addition, as a comparative example, whole casein was blended instead of polypeptide. Table 3 Weight% Water 27.1 Vinegar 6.5 Cornstarch 3.1 Salt 1.0 Sugar 6.2 Seasoning 0.6 Polypeptide 5.5 Rapeseed oil 50 Total 100 An aqueous solution of the formulation shown in Table 3 without rapeseed oil was heated to 90°C, cooled to room temperature, and homogenized. Homogenized with a mixer. Next, rapeseed oil was slowly added dropwise to this, and the mixture was homogenized again. This was incubated in warm water at 60° C. for 1 hour and centrifuged at 2800 ×g for 10 minutes. The separated hot water was discarded. Emulsion stability was expressed as (weight after centrifugation)/(weight before centrifugation)%. It was 87.4% for total casein, while it was 94.2% for the above polypeptide.

Claims (1)

【特蚱請求の範囲】  党ガれむンに蛋癜質分解酵玠を䜜甚させお埗
られる反応混合物から、ゲル濟過、むオン亀換ク
ロマトグラフむヌ、高速液䜓クロマトグラフむヌ
又は電気泳動の䞀皮以䞊を甚いお分離しお埗られ
る乃至50個のアミノ酞から構成されるポリペプ
チドから成る乳化剀。  αs−ガれむン及び又はβ−ガれむンに蛋
癜質分解酵玠を䜜甚させお埗られる反応混合物か
ら、ゲル濟過、むオン亀換クロマトグラフむヌ、
高速液䜓クロマトグラフむヌ又は電気泳動の䞀皮
以䞊を甚いお分離しお埗られる乃至50個のアミ
ノ酞から構成されるポリペプチドから成る乳化
剀。  ポリペプチドが10乃至30個のアミノ酞から構
成される特蚱請求の範囲第項又は第項のいず
れかに蚘茉の乳化剀。
[Scope of Claims] 1. Obtained by separating whole casein from a reaction mixture obtained by acting on a protease using one or more of gel filtration, ion exchange chromatography, high performance liquid chromatography, or electrophoresis. An emulsifier consisting of a polypeptide composed of 5 to 50 amino acids. 2. Gel filtration, ion exchange chromatography,
An emulsifier consisting of a polypeptide composed of 5 to 50 amino acids obtained by separation using one or more of high-performance liquid chromatography or electrophoresis. 3. The emulsifier according to claim 1 or 2, wherein the polypeptide is composed of 10 to 30 amino acids.
JP57028594A 1982-02-24 1982-02-24 Polypeptide emulsifier Granted JPS58174232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57028594A JPS58174232A (en) 1982-02-24 1982-02-24 Polypeptide emulsifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57028594A JPS58174232A (en) 1982-02-24 1982-02-24 Polypeptide emulsifier

Publications (2)

Publication Number Publication Date
JPS58174232A JPS58174232A (en) 1983-10-13
JPH02968B2 true JPH02968B2 (en) 1990-01-10

Family

ID=12252912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57028594A Granted JPS58174232A (en) 1982-02-24 1982-02-24 Polypeptide emulsifier

Country Status (1)

Country Link
JP (1) JPS58174232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108633A1 (en) 2010-03-04 2011-09-09 味の玠株匏䌚瀟 Coffee whitener, process for producing same, and process for producing beverage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200305445A1 (en) * 2017-10-26 2020-10-01 Basf Se Protein hydrolysates as emulsifier for baked goods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108633A1 (en) 2010-03-04 2011-09-09 味の玠株匏䌚瀟 Coffee whitener, process for producing same, and process for producing beverage

Also Published As

Publication number Publication date
JPS58174232A (en) 1983-10-13

Similar Documents

Publication Publication Date Title
US4034124A (en) Emulsions
US3944680A (en) Preparation of whippable emulsions
US5024849A (en) Liquid coffee whitener
EP0284026B1 (en) Process for preparing emulsified fat composition
JPH0581228B2 (en)
JP2023515120A (en) HYPOALLERGENIC RECOMBINANT MILK PROTEINS AND COMPOSITIONS CONTAINING THE SAME
JPH0335895B2 (en)
JPH0279940A (en) Endible plastic composition
IE48559B1 (en) Process for the manufacture of cheese products
JP3119496B2 (en) Method for producing oil-in-water emulsion
JPH0622461B2 (en) Method for producing oil-in-water emulsified food
US3782971A (en) Food emulsions containing modified proteins
AU784071B2 (en) Butterfat fractions for use in food products
JP4239390B2 (en) Emulsifier for whipped cream and whipped cream containing the same
JP4771542B2 (en) Method for producing non-aged cheese food having aged cheese flavor
JPH02968B2 (en)
JP3103494B2 (en) Fatty oil emulsion composition for food and method for producing the same
JPH1156281A (en) Production of oil-in-water type emulsion
JPH069476B2 (en) Method for producing creamy emulsified oil / fat composition
JP3272511B2 (en) Fresh cream emulsion having acid resistance and heat resistance and method for producing the same
US4148930A (en) Margarine
EP0085499A1 (en) Hydrolyzed whey or hydrolyzed whey fraction as an emulsifier, production and use in food dressings
JPS6062951A (en) Production of creamy oil and fat composition containing egg yolk
JP2007275026A (en) Cheese-like taste food
JP3489418B2 (en) Oil-in-water emulsified fat composition