[go: up one dir, main page]

JPH0296640A - Method for measuring dispersion of refractive index and thickness of film - Google Patents

Method for measuring dispersion of refractive index and thickness of film

Info

Publication number
JPH0296640A
JPH0296640A JP24958988A JP24958988A JPH0296640A JP H0296640 A JPH0296640 A JP H0296640A JP 24958988 A JP24958988 A JP 24958988A JP 24958988 A JP24958988 A JP 24958988A JP H0296640 A JPH0296640 A JP H0296640A
Authority
JP
Japan
Prior art keywords
refractive index
estimated
film thickness
dispersion
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24958988A
Other languages
Japanese (ja)
Other versions
JPH0643957B2 (en
Inventor
Seiichiro Sato
誠一郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP63249589A priority Critical patent/JPH0643957B2/en
Publication of JPH0296640A publication Critical patent/JPH0296640A/en
Publication of JPH0643957B2 publication Critical patent/JPH0643957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To calculate the dispersion of the refractive index of a membrane and the thickness of said membrane by a spectral method by selecting the estimated dispersion of a refractive index smooth in wavelength dependence among the estimated dispersions of the refractive indice of a plurality of respective membrane thickness estimated values. CONSTITUTION:A sample 2 to be measured wherein a membrane 2a is formed on a substrate 2b is used and the reflection spectrum of the sample 1 is measured by a microscopic spectral device 1 to set a plurality of membrane thickness estimated values with respect to the membrane 2a and a plurality of the estimated dispersions of the refractive indice corresponding to the respective estimated values are subsequently calculated. Then, on the basis of a predetermined standard showing the smoothness of the wavelength dependence of the estimated dispersions of refractive indice, the estimated dispersion of the refractive index of the membrane 2a is selected from a plurality of the estimated dispersions of the refractive indice and the membrane thickness estimated value corresponding to said selected dispersion is set to the estimated value of the thickness of the membrane 2a. When the membrane thickness estimated value corresponding to the estimated dispersion of the refractive index is different from a real membrane thickness value, the wavelength dependence thereof does not become smooth and, therefore, a measured value can be selected on the basis of smoothness.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、いわゆる薄膜の屈折率分散と膜厚の測定方
法に関し、特に膜厚と屈折率分散とを同時に測定するこ
とができる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for measuring so-called refractive index dispersion and film thickness of a thin film, and particularly to a method capable of simultaneously measuring film thickness and refractive index dispersion.

(従来の技術) 半導体製造プロセスにおける検査工程などにおいて、例
えばシリコン基板上に形成されたシリコン酸化膜などの
薄膜の膜〃を光学的に測定するために、分光法による膜
厚測定方法が広く使用されでいる。
(Prior art) Film thickness measurement methods using spectroscopy are widely used to optically measure thin films such as silicon oxide films formed on silicon substrates in inspection steps in semiconductor manufacturing processes. It's been done.

このgm厚測定方法では、まず可視白色光を試料面に照
射し、薄膜の表面からの反射光と、基板表面と薄膜との
界面からの反射光の干渉光の分光反射スペクトルを検出
する。この分光反射スペクトルからは(屈折率)×(膜
厚)の値が算出されるので、薄膜について既知の屈折率
を用いて膜Iすを求めることができる。
In this gm thickness measurement method, visible white light is first irradiated onto the sample surface, and the spectral reflection spectrum of the interference light of the reflected light from the surface of the thin film and the reflected light from the interface between the substrate surface and the thin film is detected. Since the value of (refractive index)×(film thickness) is calculated from this spectral reflection spectrum, the film thickness can be determined using the known refractive index of the thin film.

(発明が解決しようとする課題) L /)’ L・、序みが数μn目52′1;のaj!
では屈折率が薄膜の形成方法などに依存し9、その薄膜
材料の固有の屈折率とは異なる値にな一ンでしまうとい
う問題があった。従って、分光法のみでは薄膜の膜厚を
測定できないという問題があった。
(Problem to be solved by the invention) L/)' L., aj of several μnth 52'1;
However, there is a problem in that the refractive index depends on the method of forming the thin film, etc.9, and the refractive index is adjusted to a value different from the inherent refractive index of the thin film material. Therefore, there was a problem in that the thickness of the thin film could not be measured using spectroscopy alone.

また、屈折率の波長依存性、すなわち屈折率分散そのも
のを、光学定数として測定したい場合がある。しかし、
分光法では基本的に屈折率と膜厚の積の値が得られるだ
けなので、膜厚と屈折率分散が未知の薄膜について屈折
率分散を求めるのは不可能であった。
Further, there are cases where it is desired to measure the wavelength dependence of the refractive index, that is, the refractive index dispersion itself as an optical constant. but,
Since spectroscopy basically only provides the value of the product of refractive index and film thickness, it has been impossible to determine the refractive index dispersion of a thin film whose film thickness and refractive index dispersion are unknown.

(発明の目的) この発明は従来技術における上述の課題の解決を意図し
ており、屈折率分散と膜厚とが未知の薄膜について、分
光法により薄膜の屈折率分散と膜厚とを求めることので
きる屈折率分散の測定方法および膜厚測定方法を提供す
ることを目的とする。
(Purpose of the Invention) The present invention is intended to solve the above-mentioned problems in the prior art, and is to obtain the refractive index dispersion and film thickness of a thin film by spectroscopy for a thin film whose refractive index dispersion and film thickness are unknown. An object of the present invention is to provide a method for measuring refractive index dispersion and a method for measuring film thickness.

C1題を解決するための手段) 上述の課題を解決するため、この発明の第1の構成では
、基板上に表面膜が形成された被測定試料を用いて前記
裏面膜の屈折率分散を測定する屈折率分散の測定方法に
おいて、(a)ftJ記被測定試料の分光反射スペクト
ルを測定し、(b)前記表面膜について複数の膜厚推定
値を設定した襖、(c)前記分光反射スペクトルに基づ
いて、前記複数の膜厚推定値のそれぞれに対応した前記
表面膜の複数の推定屈折率分散を算出するとともに、(
d)推定屈折率分散の波長依存性のなめらかさを示す所
定の基準に基づいて、分配複数の推定屈折率分散のうち
から1つを選択することにより、これを前記表面膜の屈
折率分散の測定値とする。
Means for Solving Problem C1) In order to solve the above-mentioned problem, in the first configuration of the present invention, the refractive index dispersion of the back film is measured using a sample to be measured in which a front film is formed on a substrate. In the method for measuring refractive index dispersion, (a) measuring the spectral reflection spectrum of the sample to be measured, (b) setting a plurality of film thickness estimates for the surface film, (c) the spectral reflection spectrum A plurality of estimated refractive index dispersions of the surface film corresponding to each of the plurality of film thickness estimation values are calculated based on (
d) Based on a predetermined criterion indicating the smoothness of the wavelength dependence of the estimated refractive index dispersion, one of the plurality of estimated refractive index dispersions is selected, and this is used as the refractive index dispersion of the surface film. Measured value.

また、この発明の第2の構成では、基板上に表面膜が形
成された被測定試料を用いて前記表面膜のIII厚を測
定する膜厚測定方法において、(a)前記被測定試料の
分光反射スペクトルを測定し、(b)前記表面膜につい
て複数の膜厚推定値を設定した侵、(c)前記分光反射
スペクトルに基づいて、前記層数の膜厚推定値のそれぞ
れに対応した前記表面膜の複数の推定屈W1!$分散を
枠出し、(d)推定屈折率分散の波長依存性のなめらか
さを示す所定の基準に従って、前記複数の推定屈折率分
散のうちから1つを選択するとともに、(e)It択さ
れた前記推定屈折率分散に対応する前記膜厚推定値を前
記表面膜の膜厚の測定値とする。
Further, in a second configuration of the present invention, in the film thickness measuring method of measuring the III thickness of the surface film using a test sample having a surface film formed on a substrate, (a) spectroscopy of the test sample measuring a reflection spectrum; (b) setting a plurality of film thickness estimates for the surface film; (c) based on the spectral reflection spectrum, the surface corresponding to each of the film thickness estimation values of the number of layers; Multiple estimated bending W1 of the membrane! (d) selecting one of the plurality of estimated refractive index dispersions according to a predetermined criterion indicating smoothness of the wavelength dependence of the estimated refractive index dispersion, and (e) selecting one of the plurality of estimated refractive index dispersions; The estimated film thickness value corresponding to the estimated refractive index dispersion is taken as a measured value of the film thickness of the surface film.

なお、上記第1または第2の構成のステップ(d)にお
いて、?!数の推定屈折率分散について所定の関数形を
hづるフィッティング関数をそれぞれ求めた後、前記フ
ィッティング関数と、これに対応する前記推定屈折率分
散との不一致の程度を示す統計量を求めるとともに、前
記統!i′tffiが最も小さいことを所定の基準とし
て前記複数の推定屈折率分散のうちから1つの推定屈折
率分散を選択するようにしてもよい。
Note that in step (d) of the first or second configuration, ? ! After obtaining a fitting function that creates a predetermined functional form h for the estimated refractive index dispersion, a statistical amount indicating the degree of mismatch between the fitting function and the corresponding estimated refractive index dispersion is obtained, and Control! One estimated refractive index dispersion may be selected from among the plurality of estimated refractive index dispersions using the smallest i'tffi as a predetermined criterion.

なお、この明細書における「屈折率分散」とは、屈折率
の波長依存性を意味する用語であり、単に「分散」と呼
ばれている特性と同じ意味である。
In this specification, "refractive index dispersion" is a term meaning the wavelength dependence of the refractive index, and has the same meaning as the characteristic simply called "dispersion."

(作用) ?!数の膜厚推定値のそれぞれに対応して求められた複
数の推定屈折率分散は、対応する膜厚推定値が真のyA
膜厚値異なる場合に、その波長依存性がなめらかでなく
なる性質を有する。
(effect)? ! A plurality of estimated refractive index dispersions obtained corresponding to each of the film thickness estimation values are calculated so that the corresponding film thickness estimation value is the true yA.
When the film thickness values are different, the wavelength dependence is not smooth.

一方、真の屈折率分散は表面膜の物理的性質であるので
、波長に対してなめらかな変化を示すはずである。
On the other hand, since true refractive index dispersion is a physical property of the surface film, it should show a smooth change with respect to wavelength.

従って、推定屈折率分散の波長依存性のなめらかさを示
す所定の基準に従って、1つの推定屈折率分散を選択す
れば、それを屈折率分散の測定値とすることができる。
Therefore, if one estimated refractive index dispersion is selected according to a predetermined criterion indicating the smoothness of the wavelength dependence of the estimated refractive index dispersion, it can be used as the measured value of the refractive index dispersion.

また、選択された推定屈折率分散に対応する膜厚推定値
は真の膜厚値に極めて近いはずであり、これを膜厚の測
定値とすることができる。
Further, the estimated film thickness value corresponding to the selected estimated refractive index dispersion should be extremely close to the true film thickness value, and can be used as the measured value of the film thickness.

なお、推定屈折率分散の選択に際しては、そのなめらか
さを判断するための基準は種々のものが考えられるが、
所定の関数形を有するフィッティング関数で推定屈折率
分散をフィッティングし、このフィッティング関数と推
定屈折率分散との不一致を示す統計量(標準lI差、誤
差など)を求め、この統81凹の小さいことを基準とす
ることができる。
When selecting the estimated refractive index dispersion, various criteria can be considered to judge its smoothness.
The estimated refractive index dispersion is fitted with a fitting function having a predetermined functional form, the statistical amount (standard lI difference, error, etc.) indicating the discrepancy between this fitting function and the estimated refractive index dispersion is determined, and the smallness of this concavity is calculated. can be used as a standard.

(実施例) 第1図は、本発明の一実施例を適用する装置の概略構成
図である。図において、顕微分光装置1は被測定試料2
に白色光を照射し、その反射光を分光することにより膜
厚および屈折率分散を求める装置である。この被測定試
料2は、例えばシリコン基板などの基板2b上に、シリ
コン酸化膜などの′ag12aが形成されたものである
。この基板2bの表面は、薄IA2aの膜厚の測定範囲
内で鏡面であることが必要とされる。
(Embodiment) FIG. 1 is a schematic configuration diagram of an apparatus to which an embodiment of the present invention is applied. In the figure, a microspectroscopy device 1 is connected to a sample to be measured 2.
This is a device that determines film thickness and refractive index dispersion by irradiating white light onto the surface of the film and dispersing the reflected light. The sample 2 to be measured has a 'ag12a such as a silicon oxide film formed on a substrate 2b such as a silicon substrate. The surface of this substrate 2b is required to be a mirror surface within the measurement range of the film thickness of the thin IA 2a.

測定に際しては、ハロゲンランプなどの白色光源10か
ら照射された入射光り、が集光素子12により集光され
、ハーフミラ−16で反射された侵、対物レンズ18を
介して被測定訳FI2の上表面に照射される。被測定試
料2で反射された反射光LRは対物レンズ18.ハーフ
ミラ−16およびピンホールミラー20を介して分光器
32に入射する。また、反射光しRの一部はピンホール
ミラー20およびミラー22によって順次反射され、結
像レンズ24を介してカメラユニット26に入射する。
During measurement, incident light emitted from a white light source 10 such as a halogen lamp is focused by a condensing element 12, reflected by a half mirror 16, and transmitted through an objective lens 18 to the upper surface of the object to be measured FI2. is irradiated. The reflected light LR reflected by the sample to be measured 2 is transmitted through the objective lens 18. The light enters a spectrometer 32 via a half mirror 16 and a pinhole mirror 20. Further, a part of the reflected light R is sequentially reflected by the pinhole mirror 20 and the mirror 22, and enters the camera unit 26 via the imaging lens 24.

オペレータは、カメラユニット26によってIl像され
CRT (図示せず)に映し出されただ被測定試料2の
表面の画像を見ながら、被測定試料2が載置された図示
しない試料台を操作して、適当な測定個所に位置決めす
る。
The operator operates the sample table (not shown) on which the sample 2 to be measured is placed while viewing the image of the surface of the sample 2 to be measured which is imaged by the camera unit 26 and projected on a CRT (not shown). Position at the appropriate measurement location.

第2図は、被測定試料2の縦断面を示す要部模式断面図
である。媒質A。(すなわち空気)を透過して来た入射
光L1の一部は、蒲F12aで反射されて反射光LR1
となる。また、残りの入射光L1は薄膜2aを透過し、
基板2bの表面で反射されて反射光’R2となる。ここ
で、薄膜2aおよび基板2bの表面に対して入射光L1
が垂直に入射されると仮定し、また基板2bと簿膜2a
は光を吸収しないと仮定すると、エネルギー反射率Rは
次式で表わされる。
FIG. 2 is a schematic sectional view of main parts showing a longitudinal section of the sample to be measured 2. FIG. Medium A. A part of the incident light L1 that has passed through (that is, air) is reflected by the cap F12a, and the reflected light LR1
becomes. In addition, the remaining incident light L1 passes through the thin film 2a,
It is reflected by the surface of the substrate 2b and becomes reflected light 'R2. Here, the incident light L1 is applied to the surfaces of the thin film 2a and the substrate 2b.
is assumed to be incident perpendicularly, and the substrate 2b and the film 2a
Assuming that R does not absorb light, the energy reflectance R is expressed by the following equation.

ここで N : 空気の屈折率 N : 薄膜2aの屈折率 N : 基板2bの屈折率 δ : =4πN1D/λ D : 薄膜2aの膜厚 λ : 波長 なお、(1)式と等価な式は、例えば「応用物理学選麿
3.薄膜」 (金原粟他、裳華房、昭和57年)第19
8頁に(5,168)式として記載されている。
Here, N: refractive index of air N: refractive index of thin film 2a N: refractive index of substrate 2b δ: =4πN1D/λ D: thickness of thin film 2a λ: wavelength Note that an equation equivalent to equation (1) is: For example, "Applied Physics Selection 3. Thin Films" (Awa Kanehara et al., Shokabo, 1981) No. 19
It is described as the formula (5,168) on page 8.

(1)式に含まれるパラメータのうち、屈折率N  、
N  、N  はそれぞれ入射光し夏の波長に対する波
長依存性(すなわち、「分散」)を有する。また、空気
AQの屈折率N0と基板2bの屈折率N2の分散は既知
である。従って、分光器32によって、異なる波長λ 
、λ2.・・・に対する反射率R,R2,・・・が得ら
れたとき、各反射率R,R,、、・・・は(1)式に従
って、次のように屈折率N1 (λ)および膜厚りを未
知数とする式で表わされる: R1=R1(N1 (λ1 ) 、 D )   ・(
2a)R−R(N   (λ  ) 、D)    ・
・・(2b)ここで、N (λ )は、波長λ1におけ
る屈折率N1の値を意味する。
Among the parameters included in equation (1), the refractive index N,
N 1 and N 2 each have wavelength dependence (ie, “dispersion”) on the wavelength of the incident light. Further, the dispersion of the refractive index N0 of the air AQ and the refractive index N2 of the substrate 2b is known. Therefore, by the spectrometer 32, different wavelengths λ
, λ2. When the reflectances R, R2, . . . are obtained, each reflectance R, R, . It is expressed by the formula where the thickness is the unknown: R1=R1(N1 (λ1), D) ・(
2a) R-R(N (λ), D) ・
...(2b) Here, N (λ ) means the value of the refractive index N1 at the wavelength λ1.

(2a)、 (2b)式のような関係式のみでは、式の
数よりも未知数り、N1 (λ1)、N1 (λ2)。
With only relational expressions such as equations (2a) and (2b), there are more unknowns than the number of equations, N1 (λ1) and N1 (λ2).

・・・の数が常に1つ多いので、数値解法によりこれら
の値を求めることができない。しかし、膜厚りの値を与
えれば、屈折率N1 (λ1)、N1 (λ2)、・・
・の値は求めることができる。
Since the number of ... is always one more, these values cannot be determined by numerical solution. However, if the film thickness values are given, the refractive index N1 (λ1), N1 (λ2),...
・The value of can be found.

そこで、この発明では、まず躾厚りの推定1lID。、
Dl、・・・を設定し、これらの各膜厚推定値DO2D
I、””ごとに、屈折率N1 (λ、)、N1(λ2)
、・・・の値を求める。すなわち、各S1推定値oo、
D1.・・・ごとに薄1112bの推定屈折率分散を求
める。そして、このようにして求められた複数の推定屈
折率分散の中から、所定の判定基準に従って最適なもの
を選び、これを簿膜2bの屈折率分散の測定値とする。
Therefore, in this invention, firstly, the estimated 1l ID of discipline thickness. ,
Dl,... are set, and each of these estimated film thicknesses DO2D
For each I, "", refractive index N1 (λ,), N1 (λ2)
Find the value of ,... That is, each S1 estimated value oo,
D1. ..., the estimated refractive index dispersion of the thin layer 1112b is calculated for each time. Then, from among the plurality of estimated refractive index dispersions obtained in this way, the optimum one is selected according to a predetermined criterion, and this is used as the measured value of the refractive index dispersion of the film 2b.

また、この最適な推定屈折率分散に対応する膜厚推定値
を膜厚の測定値とするのである。
Further, the estimated film thickness value corresponding to this optimal estimated refractive index dispersion is used as the measured value of the film thickness.

ここで、「所定の判定基準」は「屈折率N1は波長λに
対して連続的に変化し、かつ、その変化は単調である。
Here, the "predetermined criterion" is "the refractive index N1 changes continuously with respect to the wavelength λ, and the change is monotonous.

」という仮定に基づいて定められる。例えば、各膜厚推
定値Do、D1.・・・に対する推定屈折率分散を、波
長λを変数とする所定の多項式でそれぞれ近似し、近似
誤差が最も小さいことを「所定の判定基準」とすること
ができる。
It is determined based on the assumption that For example, each estimated film thickness Do, D1 . The estimated refractive index dispersion for ... can be approximated by a predetermined polynomial with the wavelength λ as a variable, and the smallest approximation error can be used as a "predetermined criterion".

以下、このような方法を具体例に沿って説明する。Hereinafter, such a method will be explained along with a specific example.

第3図は、この発明の一実施例の手順を示すフローチャ
ートである。まず、第3A図のステップS1において、
絶対反射率が既知な標準試料P(図示せず)を顕微分光
装置1に装荷し、その反射光LRの分光スペクトルを求
める。標準試料Pは、復述するステップで1!f!2b
の反射率を求める時に用いられる分光データを得るため
のものであり、絶対反射率の波長依存性が既知のもので
あれば何でもよい、標準試料Pとしては、例えば薄膜2
aが形成されていないシリコン基板などが用いられる。
FIG. 3 is a flowchart showing the procedure of one embodiment of the present invention. First, in step S1 of FIG. 3A,
A standard sample P (not shown) whose absolute reflectance is known is loaded into the microspectroscope 1, and the spectroscopic spectrum of the reflected light LR is determined. The standard sample P is 1! in the step to be described again! f! 2b
The standard sample P is for obtaining spectral data used in determining the reflectance of
A silicon substrate or the like on which a is not formed is used.

このような標準試料Pの反射光LRが分光器32に入力
されると、分光器32内の図示しないCODなどの検出
器によって、反射光LRのエネルギーE、が波長λに依
存して検出され、その結果、分光スペクトルE、(λ)
が求められる。このように測定された標準試料Pの分光
スペクトルE、(λ)はマイクロコンピュータ34に配
憶される。また、図示しないキーボード等の入力手段を
介して、標準試料Pの既知の絶対反射率R,(λ)がマ
イクロコンピュータ34に記憶される。
When such reflected light LR from the standard sample P is input to the spectrometer 32, a detector such as a COD (not shown) in the spectrometer 32 detects the energy E of the reflected light LR depending on the wavelength λ. , As a result, the spectroscopic spectrum E, (λ)
is required. The spectroscopic spectrum E, (λ) of the standard sample P thus measured is stored in the microcomputer 34. Further, the known absolute reflectance R, (λ) of the standard sample P is stored in the microcomputer 34 via an input means such as a keyboard (not shown).

次に、ステップS2において、標準試PIFのかわりに
被測定試料2を顕微分光i置1に装荷し、その反射光L
Rの分光スペクトルE(λ)を測定する。被測定試料2
の分光スペクトルE(λ)もマイクロコンピュータ34
に記憶される。
Next, in step S2, the sample to be measured 2 is loaded in place of the standard sample PIF into the microspectroscopy device 1, and the reflected light L
The optical spectrum E(λ) of R is measured. Sample to be measured 2
The optical spectrum E(λ) of the microcomputer 34
is memorized.

ステップS3以降は、マイクロコンピュータ34の内部
で行なわれる処理である。まず、ステップS3では、ス
テップ81.N2の結果から、被測定試料2の反射率測
定値R(λ)を以下の式に従って算出する。
Step S3 and subsequent steps are processes performed inside the microcomputer 34. First, in step S3, step 81. From the result of N2, the measured reflectance value R(λ) of the sample to be measured 2 is calculated according to the following formula.

(3)式は、反射率R,,Rと反射光のエネルギーE、
Eとはそれぞれ比例し、その比例定数は試料の種類に依
存せず、その値は同一の装置を用いた測定では一定とな
るという事実から導かれる。
Equation (3) is the reflectance R,,R and the energy E of the reflected light,
It is derived from the fact that E is proportional to each other, and its proportionality constant does not depend on the type of sample, and its value remains constant when measured using the same device.

このように求められた反射率測定値R(λ)を第4A図
に示す。反射率測定[aR(λ)は、簿膜2aからの反
射光LR1と基板2bからの反射光しR2(第2図参照
)の干渉によって、顕著な波長依存性を示す。
The reflectance measurement value R(λ) obtained in this way is shown in FIG. 4A. Reflectance measurement [aR(λ)] exhibits remarkable wavelength dependence due to interference between reflected light LR1 from the film 2a and reflected light R2 from the substrate 2b (see FIG. 2).

次に、ステップS4では、i1!12aについて複数の
膜厚推定[Do、ol、・・・を設定し、それぞれに対
応する推定屈折率分散を求める。第38図はステップS
4の手順を更に詳細に示すフローチャートである。まず
、ステップ541で膜厚推定値をo□と設定する。そし
て、ステップ542〜846で、膜厚推定1laDoお
よび波長λ。〜λ1に対する1!!J2aの推定屈折率
NDo (λo)〜NDo (λ・)を算出する。推定
屈折率1’JD。
Next, in step S4, a plurality of film thickness estimates [Do, ol, . . . ] are set for i1!12a, and the estimated refractive index dispersion corresponding to each is determined. Figure 38 shows step S
4 is a flowchart showing the procedure in step 4 in more detail. First, in step 541, the estimated film thickness is set to o□. Then, in steps 542 to 846, the film thickness estimation 1laDo and the wavelength λ are determined. ~1 for λ1! ! The estimated refractive index NDo (λo) to NDo (λ·) of J2a is calculated. Estimated refractive index 1'JD.

■ (λo)〜NDo (λi)は、上述(7)(1) 4
GCオける屈折率N1の値として帥出されるが、(1)
式が三角開数5in2(δ/2)を含むためにその手順
に次のステップ343〜345のような工夫を要する。
■ (λo) ~ NDo (λi) is as described above (7) (1) 4
It is expressed as the value of the refractive index N1 in the GC, but (1)
Since the equation includes a triangular numerical value 5 in 2 (δ/2), the procedure requires the following steps 343 to 345.

ステップ843では、taU准定go−oo、波長λ−
λ0を(1)式に代入し、屈折率N1の所定の範囲の値
に対して反射率の計$’jli!ICRを求める。
In step 843, taU quasi-determined go-oo, wavelength λ-
Substituting λ0 into equation (1), the total reflectance $'jli! for a predetermined range of values of the refractive index N1 is calculated. Find ICR.

この屈折率N1の範囲はi1g!2aの屈折率として予
想される値の範囲であり、また、屈折率N1の値は例え
ば一定の幅ごとに離散的に設定される。
The range of this refractive index N1 is i1g! 2a, and the value of the refractive index N1 is set discretely for each fixed width, for example.

なお、前述のように、屈折率N。、N2は既知である。Note that, as described above, the refractive index N. , N2 are known.

(1)式は、三角関数を含むので、反0−J率計算値C
Rは、屈折率N1に対して第4B図のように変化する。
Since equation (1) includes trigonometric functions, the calculated value of the inverse 0-J ratio C
R changes as shown in FIG. 4B with respect to the refractive index N1.

図において、白丸は求められた反射率計算11icRを
例示的に示す点である。第4A図において、波長λ。に
対する反射率測定値Rの値がR8であるとすると、第4
B図かられかるように、計算値CRが測定値R8とばば
一致する複数の屈折率n C□ ”−n Ck(以下、
「算出屈折率」と呼ぶ。)が存在する。ステップS44
ではこれらの算出屈折1 n CO−n Ckの値がそ
れぞれ求められる。
In the figure, white circles are points that exemplarily show the calculated reflectance 11icR. In FIG. 4A, wavelength λ. If the value of the measured reflectance R for the
As can be seen from Figure B, there are multiple refractive indices n C□ ”-n Ck (hereinafter referred to as
It is called "calculated refractive index." ) exists. Step S44
Then, the values of these calculated refractions 1 n CO-n Ck are determined.

ステップ845では、これらの算出屈折率ncm ”−
n Ckの中から、不適当なものを排除し、最適な算出
屈折率を選んで推定屈折率NO(λ0)の値とする。第
4C図はこの選択方法を示す図であり、第4A図の一部
を拡大して示したものである。すなわち、第4C図に示
すように、まず現在対宋としている波長λ。に微小差Δ
λを加えた波長λ。、(=λ0+Δλ)に対する反射率
測定値ROa (−R+ΔRo)を舶記ステップS3の
算出結果から求める。一方、膜厚推定値り。、波長λO
aの条件下で、各算出屈折率n C6−n Ckに対す
る反射率RC−RC,を(1)式から算出する。
In step 845, these calculated refractive indices ncm ”−
From among n Ck, unsuitable ones are excluded, and the optimum calculated refractive index is selected as the value of the estimated refractive index NO(λ0). FIG. 4C is a diagram showing this selection method, and is a partially enlarged view of FIG. 4A. That is, as shown in FIG. 4C, first, the wavelength λ that is currently used against the Song Dynasty. minute difference Δ
λ plus wavelength λ. , (=λ0+Δλ), the reflectance measurement value ROa (−R+ΔRo) is determined from the calculation result in step S3. On the other hand, the estimated film thickness. , wavelength λO
Under the conditions of a, the reflectance RC-RC for each calculated refractive index nC6-nCk is calculated from equation (1).

第4C図には、これらの反射率RCo−RC,の値の例
が白丸で示されている。この際、(1)式における屈折
率N1がp比屈折率n C□ −n Ckに、また反射
率Rが反射率RCo−RCkにそれぞれ対応する。微小
な波長差Δλの範囲では屈折率N、は一定であるとみな
せるので、波長λOaにおいて正しい屈折率を用いて算
出された反射率の値は測定値ROaと一致しているはず
である。そこで、反射率RCo−RC,の中で、測定I
 ROaと最も近い値を選び、これに対応する算出屈折
率の値を推定屈折率NDo (λ0)の値として採用す
る。
In FIG. 4C, examples of the values of these reflectances RCo-RC are shown by white circles. At this time, the refractive index N1 in equation (1) corresponds to the p-relative refractive index nC□-nCk, and the reflectance R corresponds to the reflectance RCo-RCk. Since the refractive index N can be considered to be constant in the range of a small wavelength difference Δλ, the reflectance value calculated using the correct refractive index at the wavelength λOa should match the measured value ROa. Therefore, in the reflectance RCo-RC, the measurement I
The value closest to ROa is selected, and the corresponding calculated refractive index value is adopted as the estimated refractive index NDo (λ0).

第4C図の例ではRC2#Roaなので、算出屈折率n
c  がH1定屈折率NDo (λ0)の値として採用
される。
In the example of FIG. 4C, since RC2#Roa, the calculated refractive index n
c is adopted as the value of H1 constant refractive index NDo (λ0).

なお、(1)式において、波長λと膜厚りとは(D/λ
)の形で含まれているので、ステップS45にて、算出
屈折率nC”nCkのうちから最適値を選択するために
、前記のように波長λ。
In addition, in equation (1), the wavelength λ and the film thickness are (D/λ
), so in step S45, in order to select the optimum value from among the calculated refractive indexes nC''nCk, the wavelength λ is included as described above.

を微小差Δλ変化させる代りに、膜厚推定llID。Instead of changing the film thickness by a small difference Δλ, the film thickness is estimated.

を微小差ΔD変化させてもよい。つまり、ステップ84
5において、膜厚推定値り。に微小差ΔDを加え、膜厚
推定ID  (=Do+ΔD)、波長a λ0の条件下で上記反射率RCo−RC,を算出しても
よい。このとき、上記反射率測定値R8,を第4C図の
ように求めるときの波長λ。、(=λ+Δλ)は次式で
求められる。
may be changed by a minute difference ΔD. That is, step 84
5, the estimated film thickness. The reflectance RCo-RC may be calculated by adding a small difference ΔD to the film thickness estimation ID (=Do+ΔD) and the wavelength a λ0. At this time, the wavelength λ at which the reflectance measurement value R8 is determined as shown in FIG. 4C. , (=λ+Δλ) is determined by the following formula.

λ −λ D/(D  +ΔD)  ・・・(4)Oa
OOO また、このときの反射率測定[ROaおよびr+ i値
RCo・・・RC,の比較は、それぞれもとの値からの
偏差ΔR(−R8,−R8)およびΔRC6(=RCo
−CRo)、−・・ΔRC,(=RCk−CRk)を比
較してもよい。ここで、CRo−CRは、膜厚推定1i
1’jD  、波長λ。及び枠出屈折kO 率nc  −nc、に対して(1)式で計算された反射
率計埠値である。このときは、偏差ΔRCo・・・ΔR
Cのうちで偏差ΔRoに最も近いものを選及 び、これに対応する算出屈折率が推定屈折率ND0 (
λ0)の埴となる。
λ −λ D/(D +ΔD) ... (4) Oa
OOO Also, the comparison of the reflectance measurement [ROa and r+ i value RCo...RC, at this time is the deviation ΔR (-R8, -R8) and ΔRC6 (=RCo) from the original value, respectively.
-CRo), -...ΔRC, (=RCk-CRk) may be compared. Here, CRo-CR is the film thickness estimation 1i
1'jD, wavelength λ. This is the reflectance meter value calculated using equation (1) for the out-of-frame refraction kO rate nc - nc. At this time, the deviation ΔRCo...ΔR
Among C, the one closest to the deviation ΔRo is selected, and the calculated refractive index corresponding to this is the estimated refractive index ND0 (
λ0).

以上のようにして、1つの膜厚推定値り。および1つの
波長λ。について1つの推定屈折率ND(λ )が求め
られる。そして、ステップS42〜S46が繰り返され
て、1つの膜厚推定値D0に対して波長範囲λ0〜λj
における推定屈折率分散NDo (λ)が求められる。
As described above, one film thickness estimate is obtained. and one wavelength λ. One estimated refractive index ND(λ) is determined for . Steps S42 to S46 are then repeated to determine the wavelength range λ0 to λj for one film thickness estimate D0.
The estimated refractive index dispersion NDo (λ) at is determined.

この波長範囲λ0〜λjは例えば200〜800止程麿
の範囲で数niごとに設定されている。なお、以下では
1つの波長(例えばλ0)に対する推定屈折率ND。
This wavelength range λ0 to λj is set, for example, in the range of 200 to 800 steps, every several ni. Note that the estimated refractive index ND for one wavelength (for example, λ0) will be described below.

(λ0)の値を、甲に「推定屈折率」と呼び、その波長
依存性NDQ  (λ)を「推定屈折率分散」と呼ぶこ
ととする。
The value of (λ0) will be referred to as the "estimated refractive index", and its wavelength dependence NDQ (λ) will be referred to as the "estimated refractive index dispersion".

ステップ841〜S47のループでは、膜厚推定値り。In the loop from steps 841 to S47, the estimated film thickness is calculated.

〜D、のそれぞれについて推定屈折率分散NDo (λ
〉〜ND(λ)が求められる。薄膜2aの膜厚りは、測
定前にある程度予想されるので、膜厚推定1’fDo−
Diの値もこの予想値を中心として定められ、例えば数
nlごとに設定される。
The estimated refractive index dispersion NDo (λ
>~ND(λ) is determined. Since the thickness of the thin film 2a can be estimated to some extent before measurement, the film thickness estimation 1'fDo-
The value of Di is also determined around this predicted value, and is set, for example, every several nl.

第5図は、推定屈折率分散の例を示す図である。FIG. 5 is a diagram showing an example of estimated refractive index dispersion.

第3A図のステップS5では、これらの推定屈折率分散
ND。 (λ)〜NDi  (λ)に基づいて、gl厚
の測定値及び屈折率分散の測定値が同時に決定される。
In step S5 of FIG. 3A, these estimated refractive index dispersions ND. Based on (λ) to NDi (λ), the measured value of the GL thickness and the measured value of the refractive index dispersion are determined simultaneously.

第3C図は、ステップS5の手順の詳細を示すフローチ
ャートである。ステップ851では、各推定屈折率分子
1lND。 (λ)〜NDi  (λ)について、波長
λに関する所定の関数G(λ)を用いた最小自乗フィッ
ティングを行なう。
FIG. 3C is a flowchart showing details of the procedure of step S5. In step 851, each estimated refractive index molecule 11ND. (λ) to NDi (λ), least squares fitting is performed using a predetermined function G(λ) regarding the wavelength λ.

関数G(λ)としては、例えば次に示すコーシーの式を
適用することかできる。
As the function G(λ), for example, the Cauchy equation shown below can be applied.

G(λ) −A+B/λ +C/λ  ・・・(5)こ
こでA、B、Cは定数である。
G(λ) −A+B/λ +C/λ (5) where A, B, and C are constants.

このフィッティングによって、各推定屈折率分散ND0
 (λ)〜NDi  (λ)に対してフィッティング関
数G、Q(λ)〜G、、(λ)が求められ、ステップ8
52ではその標準偏差σ。〜σiがそれぞれ求められる
Through this fitting, each estimated refractive index dispersion ND0
(λ) ~ NDi (λ), the fitting functions G, Q(λ) ~ G, , (λ) are determined, and step 8
52, its standard deviation σ. ~σi are determined respectively.

ステップS53では、各推定屈折率分散ND。In step S53, each estimated refractive index dispersion ND.

(λ)〜NDi  (λ)において、それぞれ±1.5
σ0〜± 1.5σi−1を外れる推定屈折率の値を不
要なものとして除去する。このような推定屈折率の値は
測定時の誤差などによって他の値から大きくずれており
、信頼すべき値とは占えないからである。なお、この範
囲± 1.5σ0〜± 1,5σiは適宜変更しうるこ
とは言うまでもない。第5A図〜第5C図は、このよう
な不要な値を除いた推定屈折率分散NDQ  (λ)〜
ND2 (λ)の例を示している。
(λ) ~ NDi (λ), each ±1.5
Estimated refractive index values that deviate from σ0 to ±1.5σi−1 are removed as unnecessary. This is because such an estimated refractive index value deviates significantly from other values due to errors during measurement, and cannot be considered a reliable value. It goes without saying that this range of ±1.5σ0 to ±1.5σi can be changed as appropriate. Figures 5A to 5C show the estimated refractive index dispersion NDQ (λ) ~ excluding such unnecessary values.
An example of ND2 (λ) is shown.

次に、ステップ854ではこれらの推定屈折率分散ND
0 (λ)〜ND、(λ)について、再度(5)式の関
数G(λ)と同一の関数形を有するフィッティング関数
GfiQ(λ)〜Gbi(λ)が求められる。
Next, in step 854, these estimated refractive index dispersions ND
For 0 (λ) to ND, (λ), fitting functions GfiQ(λ) to Gbi(λ) having the same functional form as the function G(λ) in equation (5) are found again.

ステップ355では、各推定屈折率分散ND。In step 355, each estimated refractive index dispersion ND.

(λ)〜NO,(λ)について、それぞれフィッティン
グ関数Qb。(λ)〜Gbi(λ)に対する誤ここで、
 n=1.・・・、1        ・・・(6)そ
して、ステップ856において、誤差Eo〜E、のうち
最小となっているものを特定し、当該最小誤差に対応す
る推定屈折率分散NDo (λ)を屈折率分散の測定値
と決定する。また、これに対応する膜厚推定値り。を膜
厚の測定値りと決定する。第5図の例では、第5B図の
推定屈折率分散ND  (λ)と膜厚推定値D1とが、
それぞれの測定値として採用される。
Fitting function Qb for (λ) to NO, (λ), respectively. (λ) ~ Gbi(λ) where,
n=1. . . . , 1 . Determine the rate variance measurement. Also, the corresponding estimated film thickness. is determined as the measured value of film thickness. In the example of FIG. 5, the estimated refractive index dispersion ND (λ) and the estimated film thickness D1 of FIG. 5B are
It is adopted as each measurement value.

第5A図や第5C図のように、屈折率の波長依存性の一
部でフィッティング関数からのずれが大きなものは、簿
膜2aの物理的性質である屈折率分散として妥当でない
。以上の手順は、このような屈折率分散についての物理
的・定性的な考察に基づいて、(6)式で示される誤差
E。を具体的な判断基準として定めたものである。この
結果、波長λに対して連続的に変化し、かつ、その変化
が単調となるような推定屈折率分散ND、(λ)と膜厚
推定値D1を同時に求めることが可能である。
As shown in FIGS. 5A and 5C, a part of the wavelength dependence of the refractive index that deviates largely from the fitting function is not valid as refractive index dispersion, which is a physical property of the film 2a. The above procedure is based on the physical and qualitative consideration of refractive index dispersion, and the error E expressed by equation (6) is calculated. has been established as a specific criterion. As a result, it is possible to simultaneously obtain the estimated refractive index dispersion ND,(λ) and the estimated film thickness D1, which change continuously with respect to the wavelength λ and whose change is monotonous.

なお、この発明は上記実施例に限らず、以下のような変
形も可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and the following modifications are also possible.

■ 基板2bとしては、シリコン基板に限らず、GaA
Sなどの他の半導体基板や、クロムメツキ付き石英基板
などであってもよい。また、薄膜2aとしてはシリコン
酸化膜のばかシリコン窒化膜やレジストなどであっても
よい。また、この発明は膜厚が1100n〜1.5μm
程度の薄膜についての測定に特に適している。
■ The substrate 2b is not limited to a silicon substrate, but may also be a GaA substrate.
Other semiconductor substrates such as S, chromium-plated quartz substrates, etc. may also be used. Further, the thin film 2a may be a silicon oxide film, a silicon nitride film, a resist, or the like. In addition, this invention has a film thickness of 1100n to 1.5μm.
It is particularly suitable for measurements on thin films of approximately

■ ステップ856において、最終的に膜厚と屈折率分
散の測定値を決定する際の判断基準は(6)式で表わさ
れる誤差に限らず、他の基準を適用することもできる。
(2) In step 856, the criterion for finally determining the measured values of film thickness and refractive index dispersion is not limited to the error expressed by equation (6), but other criteria may also be applied.

例えば、フィッティング関数Gbo(λ)〜Gbi(λ
)に対する各推定屈折率分散NDo (λ)〜ND、(
λ) (7)[!偏差ヲ判断基準としてもよい。すなわ
ち、フィッティング関数Gbo(λ)〜Gb、(λ)と
推定屈折率分散ND。(λ)〜NO,(λ)との不一致
の程度を示す他の統計量を基準としてもよい。このよう
に、フィッティング関数との不一致の程度を示す統計量
を基準とすれば、推定屈折率分散のなめらかさを窓層的
に評価できる。
For example, the fitting function Gbo(λ) ~ Gbi(λ
) for each estimated refractive index dispersion NDo (λ) ~ ND, (
λ) (7) [! The deviation may also be used as a criterion. That is, the fitting function Gbo(λ) to Gb,(λ) and the estimated refractive index dispersion ND. (λ) to NO, other statistics indicating the degree of mismatch with (λ) may be used as the standard. In this way, the smoothness of the estimated refractive index dispersion can be evaluated in a window-like manner by using the statistical value indicating the degree of mismatch with the fitting function as a standard.

また、次式で示される誤差EEoを基準としてらよい。Further, the error EEo expressed by the following equation may be used as a reference.

EEo= J@1 (Σ IND   (λ  )−ND   (λ   
)、二〇        n       k    
       n       k+1(NO(λo)
−NDo(λj))) /(j+1)                 ・・
・(1)ここで、n=1.・・・ この誤差EE  は、波長範囲λ。〜λj1.:おける
屈折率ND、(λ)の平均的な傾きに対する凹凸の程度
を示すm標である。
EEo= J@1 (Σ IND (λ )−ND (λ
), 20nk
n k+1(NO(λo)
-NDo(λj))) /(j+1)...
・(1) Here, n=1. ... This error EE is within the wavelength range λ. ~λj1. : m mark showing the degree of unevenness with respect to the average slope of the refractive index ND, (λ).

すなわち、上記判断基準は、屈折率の波長依存性のなめ
らかさを示すものであればよい。なお、(7)式によっ
て誤差を求める場合にはフィッティング関数Gbo(λ
)〜Gbi(λ)を求める必要がないので、第3C図の
ステップS54は不要である。
That is, the above-mentioned criterion may be anything that indicates the smoothness of the wavelength dependence of the refractive index. Note that when calculating the error using equation (7), the fitting function Gbo(λ
) to Gbi(λ), step S54 in FIG. 3C is unnecessary.

■ 上記実施例では垂直入射の場合について説明したが
、垂直入射以外の場合にも本発明が適用できることは言
うまでもない。この場合には、反tA率を示す(1)式
が入射角を含むものとなる。
(2) In the above embodiment, the case of vertical incidence was explained, but it goes without saying that the present invention can be applied to cases other than vertical incidence. In this case, equation (1) representing the anti-tA rate includes the angle of incidence.

また、基板2bは光を吸収しないものとしたが、基板2
bに吸収がある場合にも(1)式に複素屈折率を代入す
れば本発明が適用可能である。例えば、基板2bに吸収
がある場合の反射率は、次式で表わされる。
In addition, although the substrate 2b was assumed not to absorb light, the substrate 2b
Even when there is absorption in b, the present invention is applicable by substituting the complex refractive index into equation (1). For example, the reflectance when the substrate 2b has absorption is expressed by the following equation.

R12=(c+Cb十CC a +2(cCcos6R C ” CbCc  5in6 R) ) /(1+C十C( +2(ccos6R +C,5in6R))    =−(8)ここで、Ro
二反射光の振幅屈折率 Ca、Cb :薄膜2aと基板2bとの境界面の複素反
射率r。の実数部と虚数部 Cc    :空気層A。と薄膜2aとの境界面の廖素
反rA>* r 、の実数部C,C,:複素反射率r。
R12=(c+Cb×CC a +2(cCcos6R C ” CbCc 5in6 R) ) /(1+C×C( +2(ccos6R +C,5in6R)) =−(8) Here, Ro
Amplitude refractive index Ca, Cb of double reflected light: Complex reflectance r of the interface between the thin film 2a and the substrate 2b. Real part and imaginary part Cc: Air layer A. The real part C, C, of the fluorine anti-reflection rA>* r of the interface between and the thin film 2a: the complex reflectance r.

、rlの積の実数部と虚部、すなわち Co−C,C6 c、−c、c。, the real and imaginary parts of the product of rl, i.e. Co-C, C6 c, -c, c.

D  :14m2aのn厚 δ :=4πNID/λ N、:R1112aの屈tfl (発明の効果) 以上説明したように、この発明によれば、分光反射スペ
クトルの測定に基づいて、複数のiwW1定鎮について
複数の推定屈折率分散をそれぞれ求め、このうち波長依
存性のなめらがなものを選択して屈折率分散の測定値と
するので、屈折率分散とFi!厚とが未知の薄膜につい
て、分光法により屈折率分散の測定値を求めることがで
きるという効果がある。
D: n thickness of 14 m2a δ:=4πNID/λ N,: bending tfl of R1112a (Effects of the Invention) As explained above, according to the present invention, a plurality of iwW1 fixed stations are determined based on the measurement of the spectral reflection spectrum. A plurality of estimated refractive index dispersions are obtained for each, and the one with a smooth wavelength dependence is selected as the measured value of the refractive index dispersion, so that the refractive index dispersion and Fi! This method has the advantage that the measured value of refractive index dispersion can be determined by spectroscopy for a thin film of unknown thickness.

また、選択された推定屈折率分散に対応する膜厚推定値
を膜厚の測定値とすることにより、膜厚の測定値も得る
ことができるという効果がある。
Further, by using the estimated film thickness value corresponding to the selected estimated refractive index dispersion as the measured value of the film thickness, there is an effect that the measured value of the film thickness can also be obtained.

さらに、複数の屈折率分散についてそれぞれフィッティ
ング関数を求め、このフィッティング関数との不一致を
示す統計量を基に上記推定屈折率分散の選択を行なうこ
とにより、屈折率分散のなめらかさを定量的に評価でき
るという効果がある。
Furthermore, by determining a fitting function for each of multiple refractive index dispersions and selecting the above estimated refractive index dispersion based on the statistics indicating the discrepancy with the fitting function, the smoothness of the refractive index dispersion is quantitatively evaluated. There is an effect that it can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を適用して膜厚および屈折
率分散を求める顕微分光装置の構成を示すブロック図、 第2図は被測定試料の要部模式断面図、第3図は実施例
の手順を示すフローチャート、第4図は実施例における
反射率の測定値および計算値を示す説明図、 第5図は実施例における屈折率分散を示す説明図である
。 1・・・顕微分光装置、 2・・・被測定試料、2a・
・・薄膜、    2b・・・基板、R・・・反射率測
定値、 CR・・・反射率tl粋値、D・・・膜厚、 
    D0〜D2・・・膜厚推定値、λ・・・波長、 ND、(λ)〜ND2 〈λ)・・・推定屈折率分散、
Gbo(λ)〜Gb2(λ)・・・フィッティング関数
代即人
FIG. 1 is a block diagram showing the configuration of a microspectroscopy apparatus for determining film thickness and refractive index dispersion by applying an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the main part of a sample to be measured. FIG. 4 is an explanatory diagram showing measured values and calculated values of reflectance in the example. FIG. 5 is an explanatory diagram showing refractive index dispersion in the example. DESCRIPTION OF SYMBOLS 1...Microspectroscopy device, 2...Measurement sample, 2a.
...Thin film, 2b...Substrate, R...Reflectance measurement value, CR...Reflectance tl value, D...Film thickness,
D0~D2...Estimated film thickness, λ...Wavelength, ND, (λ)~ND2 <λ)...Estimated refractive index dispersion,
Gbo(λ) ~ Gb2(λ)...Fitting function substitute

Claims (4)

【特許請求の範囲】[Claims] (1)基板上に表面膜が形成された被測定試料を用いて
前記表面膜の屈折率分散を測定する屈折率分散の測定方
法であって、 (a)前記被測定試料の分光反射スペクトルを測定し、 (b)前記表面膜について複数の膜厚推定値を設定した
後、 (c)前記分光反射スペクトルに基づいて、前記複数の
膜厚推定値のそれぞれに対応した前記表面膜の複数の推
定屈折率分散を算出するとともに、(d)推定屈折率分
散の波長依存性のなめらかさを示す所定の基準に基づい
て、前記複数の推定屈折率分散のうちから1つを選択す
ることにより、これを前記表面膜の屈折率分散の測定値
とすることを特徴とする屈折率分散の測定方法。
(1) A method for measuring refractive index dispersion in which the refractive index dispersion of the surface film is measured using a test sample having a surface film formed on a substrate, the method comprising: (a) measuring the spectral reflection spectrum of the test sample; (b) after setting a plurality of film thickness estimates for the surface film; (c) based on the spectral reflection spectrum, determining a plurality of film thickness estimates of the surface film corresponding to each of the plurality of film thickness estimation values; While calculating the estimated refractive index dispersion, (d) selecting one from the plurality of estimated refractive index dispersions based on a predetermined criterion indicating smoothness of wavelength dependence of the estimated refractive index dispersion, A method for measuring refractive index dispersion, characterized in that this is used as a measured value of refractive index dispersion of the surface film.
(2)ステップ(d)における推定屈折率分散の選択は
、複数の推定屈折率分散について所定の関数形を有する
フィッティング関数をそれぞれ求めた後、 前記フィッティング関数と、これに対応する前記推定屈
折率分散との不一致の程度を示す統計量を求めるととも
に、 前記統計量が最も小さいことを所定の基準として行なう
請求項1記載の屈折率分散の測定方法。
(2) The selection of the estimated refractive index dispersion in step (d) involves determining a fitting function having a predetermined functional form for each of a plurality of estimated refractive index dispersions, and then selecting the fitting function and the corresponding estimated refractive index. 2. The method for measuring refractive index dispersion according to claim 1, wherein a statistic indicating the degree of mismatch with the dispersion is determined, and the measurement is performed using the smallest statistic as a predetermined standard.
(3)基板上に表面膜が形成された被測定試料を用いて
前記表面膜の膜厚を測定する膜厚測定方法であつて、 (a)前記被測定試料の分光反射スペクトルを測定し、 (b)前記表面膜について複数の膜厚推定値を設定した
後、 (c)前記分光反射スペクトルに基づいて、前記複数の
膜厚推定値のそれぞれに対応した前記表面膜の複数の推
定屈折率分散を算出し、 (d)推定屈折率分散の波長依存性のなめらかさを示す
所定の基準に従って、前記複数の推定屈折率分散のうち
から1つを選択するとともに、(e)選択された前記推
定屈折率分散に対応する前記膜厚推定値を前記表面膜の
膜厚の測定値とすることを特徴とする膜厚測定方法。
(3) A film thickness measurement method for measuring the film thickness of the surface film using a test sample having a surface film formed on a substrate, the method comprising: (a) measuring the spectral reflection spectrum of the test sample; (b) after setting a plurality of film thickness estimates for the surface film; (c) based on the spectral reflection spectrum, a plurality of estimated refractive indices of the surface film corresponding to each of the plurality of film thickness estimates; (d) selecting one of the plurality of estimated refractive index dispersions according to a predetermined criterion indicating smoothness of the wavelength dependence of the estimated refractive index dispersion; and (e) selecting one of the plurality of estimated refractive index dispersions; A method for measuring film thickness, characterized in that the estimated film thickness value corresponding to the estimated refractive index dispersion is used as a measured value of the film thickness of the surface film.
(4)ステップ(d)における推定屈折率分散の選択は
、複数の推定屈折率分散について所定の関数形を有する
フィッティング関数をそれぞれ求めた後、 前記フィッティング関数と、これに対応する前記推定屈
折率分散との不一致の程度を示す統計量を求めるととも
に、 前記統計量が最も小さいことを所定の基準として行なう
請求項3記載の膜厚測定方法。
(4) Selection of the estimated refractive index dispersion in step (d) involves determining fitting functions each having a predetermined functional form for a plurality of estimated refractive index dispersions, and then selecting the fitting function and the corresponding estimated refractive index. 4. The film thickness measuring method according to claim 3, wherein a statistic indicating the degree of discrepancy with the variance is obtained, and the measurement is performed using the smallest statistic as a predetermined standard.
JP63249589A 1988-10-03 1988-10-03 Refractive index dispersion measuring method and film thickness measuring method Expired - Lifetime JPH0643957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63249589A JPH0643957B2 (en) 1988-10-03 1988-10-03 Refractive index dispersion measuring method and film thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63249589A JPH0643957B2 (en) 1988-10-03 1988-10-03 Refractive index dispersion measuring method and film thickness measuring method

Publications (2)

Publication Number Publication Date
JPH0296640A true JPH0296640A (en) 1990-04-09
JPH0643957B2 JPH0643957B2 (en) 1994-06-08

Family

ID=17195264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63249589A Expired - Lifetime JPH0643957B2 (en) 1988-10-03 1988-10-03 Refractive index dispersion measuring method and film thickness measuring method

Country Status (1)

Country Link
JP (1) JPH0643957B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269306A (en) * 1990-03-20 1991-11-29 Japan Aviation Electron Ind Ltd Method and instrument for measuring film thickness and refractive index
JPH05240783A (en) * 1992-02-28 1993-09-17 Shimadzu Corp Spectrophotometer
US6521470B1 (en) * 2001-10-31 2003-02-18 United Microelectronics Corp. Method of measuring thickness of epitaxial layer
JP2006214778A (en) * 2005-02-02 2006-08-17 National Institute Of Advanced Industrial & Technology Method and apparatus for simultaneous determination of Langmuir-Blodgett film thickness and dielectric constant dispersion
JP2007198771A (en) * 2006-01-24 2007-08-09 Ricoh Co Ltd Method and apparatus for measuring film thickness
JP2008020451A (en) * 2006-07-10 2008-01-31 Tokyo Electron Ltd Optimizing selected variable of optical metrology system
JP2009097857A (en) * 2007-10-12 2009-05-07 Otsuka Denshi Co Ltd Optical characteristic measuring apparatus and optical characteristic measuring method
JP2009250877A (en) * 2008-04-09 2009-10-29 Nitto Denko Corp Film thickness measurement method, film thickness measurement program, film thickness measurement apparatus
CN106482651A (en) * 2016-11-14 2017-03-08 山东省科学院自动化研究所 A kind of method that capsule housing thickness is measured based on terahertz time-domain spectroscopic technology

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149040A (en) * 1986-12-12 1988-06-21 Hitachi Ltd Preparation of lost-wax mold
JPS63241321A (en) * 1987-03-28 1988-10-06 Shigeo Minami Spectral analysis of membrane like specimen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149040A (en) * 1986-12-12 1988-06-21 Hitachi Ltd Preparation of lost-wax mold
JPS63241321A (en) * 1987-03-28 1988-10-06 Shigeo Minami Spectral analysis of membrane like specimen

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269306A (en) * 1990-03-20 1991-11-29 Japan Aviation Electron Ind Ltd Method and instrument for measuring film thickness and refractive index
JPH05240783A (en) * 1992-02-28 1993-09-17 Shimadzu Corp Spectrophotometer
US6521470B1 (en) * 2001-10-31 2003-02-18 United Microelectronics Corp. Method of measuring thickness of epitaxial layer
JP2006214778A (en) * 2005-02-02 2006-08-17 National Institute Of Advanced Industrial & Technology Method and apparatus for simultaneous determination of Langmuir-Blodgett film thickness and dielectric constant dispersion
JP2007198771A (en) * 2006-01-24 2007-08-09 Ricoh Co Ltd Method and apparatus for measuring film thickness
JP2008020451A (en) * 2006-07-10 2008-01-31 Tokyo Electron Ltd Optimizing selected variable of optical metrology system
JP2009097857A (en) * 2007-10-12 2009-05-07 Otsuka Denshi Co Ltd Optical characteristic measuring apparatus and optical characteristic measuring method
JP2009250877A (en) * 2008-04-09 2009-10-29 Nitto Denko Corp Film thickness measurement method, film thickness measurement program, film thickness measurement apparatus
CN106482651A (en) * 2016-11-14 2017-03-08 山东省科学院自动化研究所 A kind of method that capsule housing thickness is measured based on terahertz time-domain spectroscopic technology

Also Published As

Publication number Publication date
JPH0643957B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
KR960013677B1 (en) Thin film thickness measuring device
KR970011746B1 (en) Thin Film Thickness Measurement Apparatus and Method
US8112246B2 (en) Apparatus for and a method of determining surface characteristics
US4999014A (en) Method and apparatus for measuring thickness of thin films
KR100508007B1 (en) Process for forming a thin film and apparatus therefor
US7924422B2 (en) Calibration method for optical metrology
US20110032541A1 (en) Film thickness measuring device and film thickness measuring method
JPH07134007A (en) Device for measuring thin film thickness with high spatial resolution
CN113834430B (en) Method for measuring film thickness and refractive index
US8107073B2 (en) Diffraction order sorting filter for optical metrology
JPH0296640A (en) Method for measuring dispersion of refractive index and thickness of film
CN101331376A (en) Apparatus for and a method of determining surface characteristics
US20070174014A1 (en) Method for matching a model spectrum to a measured spectrum
US7123365B1 (en) Method of calibrating an interferometer optics and method of processing an optical element having an aspherical surface
Kupinski et al. Measurement considerations when specifying optical coatings
JPH08338709A (en) Device and method for measuring thickness of thin film and manufacture of optical filter
US11592392B2 (en) Wave front reconstruction for dielectric coatings at arbitrary wavelength
US20120019822A1 (en) Method for measuring and method for viewing a wave surface using spectrophotometry
JPH11160013A (en) Shearing interferometer
Rastgou et al. Optimizing Measurement Accuracy in Microscope-Based Reflectometry for Thin Film Optical Properties
GB2440164A (en) Apparatus for and a method of determining surface characteristics
van den Born et al. Cryogenic optical characteristics of S-FPL51 and S-LAH71: refractive index, transmission and thermal expansion
JP2022052246A (en) Film thickness estimation method and film thickness determination device
Yang et al. Characterizing optical properties of red, green, and blue color filters for automated film-thickness measurement
이윤혁 Thin-flim Thickness Profile Measurement Using Color Camera Imaging Reflectometry