JPH0295213A - Vortex flowmeter - Google Patents
Vortex flowmeterInfo
- Publication number
- JPH0295213A JPH0295213A JP63247196A JP24719688A JPH0295213A JP H0295213 A JPH0295213 A JP H0295213A JP 63247196 A JP63247196 A JP 63247196A JP 24719688 A JP24719688 A JP 24719688A JP H0295213 A JPH0295213 A JP H0295213A
- Authority
- JP
- Japan
- Prior art keywords
- vortex
- signal
- flow rate
- ultrasonic
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/20—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
- G01F1/32—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
- G01F1/325—Means for detecting quantities used as proxy variables for swirl
- G01F1/3282—Means for detecting quantities used as proxy variables for swirl for detecting variations in infrasonic, sonic or ultrasonic waves, due to modulation by passing through the swirling fluid
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
Abstract
Description
【発明の詳細な説明】
薮宜分見
本発明は、主として自動車用エンジンに供給する常圧空
気を広い流量範囲に亘って計測可能とする渦流量計に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vortex flowmeter that is capable of measuring normal pressure air supplied to an automobile engine over a wide flow rate range.
従来技術
自動車用エンジンは大馬力、高効率、低NO2化等の技
術的課題に対応して空気流量を広い流量範囲に亘って高
精度に計測して5該空気量により完全燃焼を可能とする
燃料の噴射する流量計が求められている。この流量計と
して渦流量計は好適であり、流量計本体、形状、渦検出
方式等に関し数多くの提案がなされている。本出願人は
、特公昭58−19970号公報に開示された″渦流量
計″において、断面角形平行導管と該角形平行導管の上
流側を整流器を装着した断面角形として拡大した流入口
を具備した本体と、該本体角形平行導管内に配設した渦
発生体と、該渦発生体後流の導管側面に、渦を超音波に
よる位相変調信号として検出する圧電素子からなる一対
の超音波送受波素子を配設した構成の渦流量計を提案し
た。また、前記一対の超音波送受波素子による渦の検出
方式については1本出願人が提案した実公昭57−25
140号公報に示されている。この方式は、超音波送波
素子を励振する高周波電圧を発生する電圧制御発振器と
1発生渦により変調された超音波信号を受波した超音波
変換素子の出力信号の位相φ2=φ2′±Δφ(φ2′
:φ2の平均位相値、±△φ:渦によって生ずるφ2の
変動成分)と発振器の出力信号の位相φ□との差を比較
する位相比較器と、該位相比較器の出力信号から位相差
φ、−φ2′のみを取り出すローパスフィルタと±Δφ
のみを取り出すバンドパスフィルタとからなりφ1−φ
2/を常に一定にするように電圧制御発振器を制御して
渦信号上△φを出力するものである。Conventional technology Automotive engines respond to technical issues such as large horsepower, high efficiency, and low NO2 by measuring air flow rate with high accuracy over a wide flow rate range and enabling complete combustion based on the air flow rate. There is a need for a flow meter that injects fuel. A vortex flowmeter is suitable as this flowmeter, and many proposals have been made regarding the flowmeter body, shape, vortex detection method, etc. The present applicant has proposed a "vortex flow meter" disclosed in Japanese Patent Publication No. 58-19970, which is equipped with a rectangular parallel conduit and an enlarged inlet with a square cross section equipped with a rectifier on the upstream side of the rectangular parallel conduit. A pair of ultrasonic wave transmitting/receiving devices consisting of a main body, a vortex generator disposed in the rectangular parallel conduit of the main body, and a piezoelectric element on the side of the conduit downstream of the vortex generator for detecting the vortex as a phase modulated signal by ultrasonic waves. We proposed a vortex flowmeter with a configuration in which elements are arranged. Furthermore, regarding the vortex detection method using the pair of ultrasonic wave transmitting/receiving elements, one proposed by the applicant was published in Japanese Utility Model Publication No. 57-25.
It is shown in the No. 140 publication. This method consists of a voltage-controlled oscillator that generates a high-frequency voltage that excites an ultrasonic transmitting element, and a phase of an output signal of an ultrasonic transducer that receives an ultrasonic signal modulated by one generated vortex φ2 = φ2' ± Δφ (φ2′
: average phase value of φ2, ±△φ: fluctuation component of φ2 caused by vortices) and the phase φ□ of the output signal of the oscillator. , a low-pass filter that extracts only −φ2′ and ±Δφ
It consists of a bandpass filter that extracts only the φ1−φ
The voltage controlled oscillator is controlled so that 2/ is always constant, and the vortex signal Δφ is output.
従来技術の問題占
上述の渦流量計においては、渦信号を渦による超音波の
変調信号として非接触に検出するものであり、発生渦か
らエネルギを取り出すものでないので小流量の検出感度
は極めて高く、しかもS/Nの優れた渦信号が得られる
が、流速が大きい場合は位相検波範囲0〜2πを超えた
検出はできないという基本的な問題があり、更に、流速
の増大に伴なう流れ雑音の周波数の中に超音波成分が多
くなり渦による超音波変調信号と近接した周波数により
S/N比の悪化をもたらすとか、超音波の伝播速度が無
視できない流速に達したとき受波エネルギが減少しS/
N比を悪化するとか、また、バイモルフ圧電素子からな
る超音波受波素子が流速の2乗に比例して増大する渦変
動圧力を受けて生ずる圧電差が更に加わりS/N比を悪
化する等の問題点が生ずる。即ち、超音波による渦の検
出は、渦に非接触に直接渦の存在を検知するものである
から極く小流量域で渦のエネルギの小さいところまで検
出することができる反面、高流量域においては流速の2
乗に比例して増大する過変動差圧のため超音波渦検出方
法に適用できず、流量測定範囲も限定され要求される高
流量域の測定に適用できないという問題があった。Problems with the Prior Art The above-mentioned vortex flowmeter detects the vortex signal in a non-contact manner as an ultrasonic modulation signal caused by the vortex, and does not extract energy from the generated vortex, so the detection sensitivity for small flow rates is extremely high. , and a vortex signal with excellent S/N ratio can be obtained, but when the flow velocity is large, there is a basic problem that detection exceeding the phase detection range of 0 to 2π is not possible. There are many ultrasonic components in the noise frequency and the frequency is close to the ultrasonic modulation signal due to the vortex, resulting in a deterioration of the S/N ratio, and when the propagation speed of the ultrasonic wave reaches a flow velocity that cannot be ignored, the received wave energy decreases. Decrease S/
This may worsen the S/N ratio, or the piezoelectric difference that occurs when the ultrasonic receiving element made of a bimorph piezoelectric element receives eddy fluctuation pressure that increases in proportion to the square of the flow velocity will further worsen the S/N ratio. The problem arises. In other words, since ultrasonic vortex detection directly detects the presence of vortices without contacting them, it is possible to detect small vortices in extremely low flow areas, but on the other hand, in high flow areas is the flow velocity 2
There were problems in that it could not be applied to the ultrasonic vortex detection method because of the excessively fluctuating differential pressure that increases in proportion to the power, and the flow rate measurement range was also limited and it could not be applied to measurements in the required high flow rate range.
問題−気 決のための
本発明は、上述の問題点に鑑みなされたもので、小流量
域においては超音波位相検出方式、高流量域においては
圧力検出方式を切換えて渦を検出することにより1つの
渦流量計で広範囲に流量を計測することを可能にするも
ので、前記超音波位相検出方式または圧力検出方式の何
れかを気体の流量に応じて判別して選択する判別回路に
より切換えることによって広範囲な気体流量を連続して
高精度に計測可能とする渦流量計を提供するものである
。The present invention for determination has been made in view of the above-mentioned problems, and detects vortices by switching between an ultrasonic phase detection method in a small flow region and a pressure detection method in a high flow region. It is possible to measure the flow rate over a wide range with one vortex flowmeter, and it is possible to switch between the ultrasonic phase detection method or the pressure detection method using a discrimination circuit that discriminates and selects according to the gas flow rate. The present invention provides a vortex flow meter that can continuously measure a wide range of gas flow rates with high accuracy.
スー」し二匹
第1図は1本発明の一実施例を説明するためのブロック
図で、図中、1は自動車エンジン用の空気流量計の本体
で、エアクリーナ内に収容されるもので、格子状の整流
器2が流入口に配設され、渦発生体3へ流入する空気の
流れを整流している。Figure 1 is a block diagram for explaining an embodiment of the present invention. In the figure, 1 is the main body of an air flow meter for an automobile engine, which is housed in an air cleaner. A grid-shaped rectifier 2 is disposed at the inlet and rectifies the flow of air flowing into the vortex generator 3.
該渦発生体3の後流側の本体1の壁面に超音波送波素子
(以降、単に送波素子と呼ぶ)4および超音波受波素子
(以降、単に受波素子と呼ぶ)5が対をなし対向して装
着されている。図においては、超音波の伝播路は空気流
速により流れ方向に偏角するので、流速が音速に対し無
視できなくなる流速の流量を検出する場合には、受波素
子5を最大流速を勘案して僅かに後流に配置している。An ultrasonic wave transmitting element (hereinafter simply referred to as a wave transmitting element) 4 and an ultrasonic wave receiving element (hereinafter simply referred to as a wave receiving element) 5 are mounted on the wall surface of the main body 1 on the downstream side of the vortex generator 3. are mounted facing each other. In the figure, the propagation path of the ultrasonic wave is deviated in the flow direction by the air flow velocity, so when detecting a flow rate where the flow velocity cannot be ignored compared to the sound velocity, the wave receiving element 5 must be set in consideration of the maximum flow velocity. It is placed slightly downstream.
送受波素子4,5は同一の圧電素子1例えば、PZT・
バイモルフの圧電素子板の直交軸上に超音波インピーダ
ンスマツチング用のコーンを取付けたものである。20
は超音波発振器で、送波素子4を駆動する一方受波素子
5で受波された渦の変調信号との位相差を比較する位相
検波回路6の位相比較信号となる。また、受波素子5の
受波信号は圧力検出回路7に入力される。受波素子5の
受波信号は超音波の搬送信号の中に渦により位相変調さ
れた渦信号が重畳している。しかし、受波素子5には、
流速の増大とともに流速の2乗に比例して増大する過変
動差圧も印加されるので、変動圧に応じた圧電信号が雑
音として発生する。この様子を第5図に示す。該圧電信
号は、最大流量Qを1.0として無次元化し、Q=0.
0.8,0.9゜1.0の流量におけるもので、位相変
調信号から渦信号を検波できるのは、Q=0.8以下で
あり、図の2.3.4は従来においては測定不能の流量
範囲に属する。該圧電信号には超音波信号が含まれるの
で、圧力信号として渦を検出するために、該超音波信号
を除去する回路として超音波周波数に同調する対称Tw
in −T形のフィルタ8を用いる。The wave transmitting and receiving elements 4 and 5 are made of the same piezoelectric element 1, for example, PZT.
A cone for ultrasonic impedance matching is attached to the orthogonal axis of a bimorph piezoelectric element plate. 20
is an ultrasonic oscillator which drives the wave transmitting element 4 and serves as a phase comparison signal for the phase detection circuit 6 which compares the phase difference with the vortex modulation signal received by the wave receiving element 5. Further, the wave reception signal of the wave reception element 5 is input to the pressure detection circuit 7. The received signal of the wave receiving element 5 includes a vortex signal whose phase is modulated by a vortex superimposed on an ultrasonic carrier signal. However, in the receiving element 5,
As the flow rate increases, an overfluctuation differential pressure that increases in proportion to the square of the flow rate is also applied, so a piezoelectric signal corresponding to the fluctuating pressure is generated as noise. This situation is shown in FIG. The piezoelectric signal is made dimensionless with a maximum flow rate Q of 1.0, and Q=0.
At a flow rate of 0.8, 0.9° 1.0, the vortex signal can be detected from the phase modulation signal at Q = 0.8 or less, and 2.3.4 in the figure is a conventional measurement method. Belongs to the impossible flow rate range. Since the piezoelectric signal includes an ultrasonic signal, in order to detect the vortex as a pressure signal, a symmetrical Tw tuned to the ultrasonic frequency is used as a circuit to remove the ultrasonic signal.
An in-T type filter 8 is used.
第5図において、(b)は(a)の信号から前記対称T
win−T形のフィルタ8を通過して得たものである。In FIG. 5, (b) is obtained from the signal of (a) by the symmetric T
It is obtained by passing through a win-T type filter 8.
圧力検出回路7は該対称Twin−T形のフィルタ8と
、該フィルタ8の出力である(b)の信号を増幅して一
定の波動値と幅を有するパルス信号とするトリガ回路9
とで形成され、位相検波回路6と、点線で囲まれる圧力
検出回路7どの出力は判別回路10に入力され、渦信号
を、小流足載では位相検波回路6からの信号とし出力し
、高流量域では圧力検出回路7からの信号として出力す
る。The pressure detection circuit 7 includes the symmetrical Twin-T type filter 8 and a trigger circuit 9 that amplifies the signal (b) which is the output of the filter 8 to generate a pulse signal having a constant wave value and width.
The output of the phase detection circuit 6 and the pressure detection circuit 7 surrounded by the dotted line is input to the discrimination circuit 10, which outputs the vortex signal as a signal from the phase detection circuit 6 in the case of small flow foot loading, and outputs the vortex signal as a signal from the phase detection circuit 6, In the flow rate range, it is output as a signal from the pressure detection circuit 7.
第2図は、判別回路10の詳細を示す図で、圧力検出回
路7の出力は、端子102より周波数−電圧変換回路(
F/V)13に入力され、電圧変換され、流量、例えば
、Q=0.8に相当する基準電圧と比較器14で比較さ
れる。位相検波回路6より入力端子101に入力された
低流量域の渦信号は、端子101.ANDゲート12.
ORゲート16から出力されるが、この信号は基準電圧
を越えた流量において、インバータ15により、AND
ゲート12で閉止され、端子102における高流量域の
信号はOR回路16より端子11に出力され、低流量域
から従来計測不能であった高流量域迄の広範囲に亘って
連続して針側できる。FIG. 2 is a diagram showing details of the discrimination circuit 10, in which the output of the pressure detection circuit 7 is connected to the frequency-voltage conversion circuit (
F/V) 13, converted into voltage, and compared with a reference voltage corresponding to a flow rate, for example, Q=0.8, in a comparator 14. The vortex signal in the low flow rate region input from the phase detection circuit 6 to the input terminal 101 is input to the input terminal 101. AND gate 12.
This signal is output from the OR gate 16, but at a flow rate exceeding the reference voltage, the signal is ANDed by the inverter 15.
It is closed by the gate 12, and the signal in the high flow rate range at the terminal 102 is outputted from the OR circuit 16 to the terminal 11, allowing the needle side to be continuously measured over a wide range from the low flow rate range to the high flow rate range, which was previously impossible to measure. .
第3図は1本発明の他の実施例を示す図で、この実施例
は、第1@における受波素子5を低流量域の位相検波回
路6の位相比較信号発信用として専用化し、該受波素子
5に隣接して、圧電素子5aを配設し、該圧電素子5a
を圧力検出用として専用化したものである。従って、第
1図の構成回路要素において受波素子5は位相検波回路
6のみに、圧電素子5aは圧力検出回路7のみに入力す
るもので、その他は第1図に等しい符号の回路要素と作
用をもっている。尚、圧電素子5aは受波素子5と同一
仕様のものでもよい。FIG. 3 is a diagram showing another embodiment of the present invention. In this embodiment, the wave receiving element 5 in the first @ is dedicated for transmitting the phase comparison signal of the phase detection circuit 6 in the low flow rate region, and A piezoelectric element 5a is disposed adjacent to the wave receiving element 5, and the piezoelectric element 5a
is specialized for pressure detection. Therefore, in the circuit elements shown in FIG. 1, the wave receiving element 5 is inputted only to the phase detection circuit 6, the piezoelectric element 5a is inputted only to the pressure detection circuit 7, and the other circuit elements act with the same symbols as in FIG. have. Note that the piezoelectric element 5a may have the same specifications as the wave receiving element 5.
第4図は、他の実施例をしめすもので、圧電素子5aは
送波素子4の後流側に隣接し、受波素子5に対向する本
体1壁面に配設されている。該圧電素子5aと受波素子
5とは各々渦変動圧力を検出する圧力検出素子で各々の
検出信号は圧力検出回路71に導入される。該圧力検出
回路71は、超音波発振器20より発振される送波素子
4の励振周波数に同期して減衰させる濾波器である受波
素子5側の対称Twin−T形フィルタ8と圧電素子5
a側の対称Twin−T形フィルタ81および、各々の
対称Ttgin−’r形フィルタ8.81の出力信号を
減算する差動増幅器回路等からなる減算回路82、該減
算回路82の所定レベル以上の信号をパルス変換するト
リガ回路9とからなっている。FIG. 4 shows another embodiment, in which a piezoelectric element 5a is arranged on the wall surface of the main body 1 adjacent to the downstream side of the wave transmitting element 4 and facing the wave receiving element 5. The piezoelectric element 5a and the wave receiving element 5 are pressure detection elements that detect eddy fluctuation pressure, and each detection signal is introduced into a pressure detection circuit 71. The pressure detection circuit 71 includes a symmetrical Twin-T filter 8 on the receiving element 5 side, which is a filter that attenuates the excitation frequency of the transmitting element 4 oscillated by the ultrasonic oscillator 20, and a piezoelectric element 5.
A subtraction circuit 82 consisting of a differential amplifier circuit or the like that subtracts the output signals of the a-side symmetric Twin-T filter 81 and each of the symmetric Ttgin-'r filters 8.81; It consists of a trigger circuit 9 that converts the signal into pulses.
位相検波回路6および判別回路10は第1図と同一であ
り説明を省く。上述の構成における作用は、本体1内を
流通する空気流れに含まれる乱れ成分の同相分雑音を相
殺し、反対位相成分の渦信号を倍加しS/N比を向上さ
せるものである。従って図においてはフィルタ回路とし
て対称Twin−T形フィルタ8,81をあげているが
、高域フィルタすることにより高域乱流成分の雑音信号
も除去されるので好適である。尚、判別回路10の一実
施例として第2図をあげて説明したが、スロットルバル
ブの開度およびエンジンの回転数とから予め空気流量が
推定できるので、これらをパラメータとして定められた
流量値に基づいて判別することも可能であり2本発明は
、第2図の実施例のみに限定されるものではなく、他の
流量判別手段も含むものである。The phase detection circuit 6 and the discrimination circuit 10 are the same as those shown in FIG. 1, and their explanation will be omitted. The effect of the above-described configuration is to cancel the in-phase noise of the turbulence component contained in the air flow flowing through the main body 1, and double the vortex signal of the opposite phase component, thereby improving the S/N ratio. Therefore, in the figure, symmetrical Twin-T filters 8 and 81 are shown as filter circuits, but high-pass filtering is preferable because it also removes noise signals of high-frequency turbulence components. Although the explanation has been given with reference to FIG. 2 as an example of the discrimination circuit 10, since the air flow rate can be estimated in advance from the opening degree of the throttle valve and the rotation speed of the engine, these can be used as parameters to set the flow rate value. The present invention is not limited to the embodiment shown in FIG. 2, but also includes other flow rate determination means.
効 果
救主の如く1本発明における渦流量計によれば、従来少
滴感度に優れ、少流量限の小さい計測を可能にした超音
波位相検出方式による渦流量計が、送受波素子に作用す
る渦の変動圧力の雑音により高流域では計測不能であっ
たものを、変動圧力を圧力信号として渦を検出し、超音
波位相検出方式と、圧力検出方式とを判別して連続して
出力することにより同一の渦流量計により広範囲の流量
の計測が可能となり、自動車エンジン用の空気流量計と
して広い馬力範囲に同一の流量計を適用でき、経済的効
果が大きい。Effects Like a Savior 1 According to the vortex flowmeter of the present invention, the vortex flowmeter using the ultrasonic phase detection method, which conventionally had excellent small droplet sensitivity and enabled measurement with a small flow limit, acts on the wave transmitting and receiving element. What was impossible to measure in high flow areas due to the noise of the fluctuating pressure of the vortex, the fluctuating pressure is used as a pressure signal to detect the vortex, distinguish between the ultrasonic phase detection method and the pressure detection method, and output it continuously. This makes it possible to measure a wide range of flow rates using the same vortex flowmeter, and the same flowmeter can be applied to a wide horsepower range as an air flowmeter for automobile engines, which is highly economical.
第1図は、本発明の渦流量計の一実施例を説明するため
のブロック図、第2図は、第1図における判別回路の詳
細ブロック図、第3図及び第4図は、それぞれ本発明の
他の実施例を説明するためのブロック図、第5図は、超
音波受波素子の受波信号と本発明による渦信号を示す図
である。
1・・・本体、2・・・整流器、3・・・渦発生体、4
,5゜5a・・・圧電素子板、6・・・位相検波回路、
7・・・圧力検出回路、8・・・対称Twin−T回路
、9・・・1〜リガ回路、10・・・判別回路、11・
・・出力、20・・・超音波発振器。FIG. 1 is a block diagram for explaining one embodiment of the vortex flowmeter of the present invention, FIG. 2 is a detailed block diagram of the discrimination circuit in FIG. 1, and FIGS. FIG. 5, a block diagram for explaining another embodiment of the invention, is a diagram showing a received signal of an ultrasonic receiving element and a vortex signal according to the present invention. 1... Main body, 2... Rectifier, 3... Vortex generator, 4
, 5゜5a...piezoelectric element plate, 6...phase detection circuit,
7... Pressure detection circuit, 8... Symmetrical Twin-T circuit, 9... 1~Riga circuit, 10... Discrimination circuit, 11...
...Output, 20...Ultrasonic oscillator.
Claims (1)
配設された渦発生体と、該渦発生体後流の本体壁に対向
して装着され対をなす板状の圧電素子とからなる渦流量
計において、渦の検出手段を、低流量時は、前記対をな
す圧電素子の一方を超音波の送波素子、他方を受波素子
とし、受波された超音波の渦による変調信号を検波する
位相検波回路で構成し、高流量時は、前記圧電素子に作
用する渦の変動圧力により生ずる圧電信号を分離する圧
力検出回路と、前記位相検波回路または圧力検出回路を
気体の流量に応じて判別し選択する判別回路で構成した
ことを特徴とする渦流量計。 2、低流量時においては、渦信号を対をなす圧電素子に
よる超音波の渦による位相変調信号とし、高流量時にお
いては、前記圧電素子の何れかに隣接して配設された圧
電素子に作用する渦変動圧力の圧電信号としたことを特
徴とする請求項第1項記載の渦流量計。 3、圧電素子に作用する渦変動圧力を、該圧電素子に作
用する渦変動圧力信号と超音波信号との変調信号から、
該超音波信号周波数に同調周波数をもつ対称形Twin
−T回路により超音波信号を除去したことを特徴とする
請求項第1項又は第2項記載の渦流量計。 4、高流量時においては超音波送波素子の後流側に隣接
し、受波素子に対向する本体位置に圧電素子を配設し、
高流量時の渦信号を該圧電素子および受波素子の渦変動
圧力信号の高域雑音を除去するフィルタ要素と、各々の
フィルタの出力の差動出力を得る減算回路と該減算回路
の出力から渦信号に対応したパルス信号を出力するトリ
ガ回路とからなる圧力検出回路より検出したことを特徴
とする請求項第1項に記載の渦流量計。[Scope of Claims] 1. A main body through which gas flows, a vortex generator disposed within the main body facing the flow, and a pair mounted opposite to the wall of the main body downstream of the vortex generator. In a vortex flowmeter consisting of a plate-shaped piezoelectric element, when the flow rate is low, one of the piezoelectric elements in the pair is used as an ultrasonic wave transmitting element and the other as a wave receiving element. The phase detection circuit includes a phase detection circuit that detects a modulated signal caused by the vortex of the ultrasonic wave produced by the piezoelectric element, and a pressure detection circuit that separates the piezoelectric signal generated by the fluctuating pressure of the vortex acting on the piezoelectric element at high flow rates, and the phase detection circuit. Alternatively, a vortex flowmeter characterized in that the pressure detection circuit is configured with a discrimination circuit that discriminates and selects according to the flow rate of gas. 2. When the flow rate is low, the vortex signal is a phase modulation signal generated by the ultrasonic vortex produced by the pair of piezoelectric elements, and when the flow rate is high, the vortex signal is a phase modulation signal generated by the ultrasonic vortex produced by the piezoelectric elements that form a pair, and when the flow rate is high, the vortex signal is generated by a piezoelectric element disposed adjacent to one of the piezoelectric elements. 2. A vortex flowmeter according to claim 1, characterized in that the piezoelectric signal is a piezoelectric signal of the applied vortex fluctuating pressure. 3. The vortex fluctuation pressure acting on the piezoelectric element is determined from the modulation signal of the vortex fluctuation pressure signal acting on the piezoelectric element and the ultrasonic signal,
A symmetric Twin having a frequency tuned to the ultrasound signal frequency.
3. The vortex flowmeter according to claim 1, wherein the ultrasonic signal is removed by a -T circuit. 4. At high flow rates, a piezoelectric element is placed adjacent to the downstream side of the ultrasonic transmitting element and facing the receiving element,
A filter element that removes high-frequency noise from the vortex fluctuation pressure signal of the piezoelectric element and wave receiving element, a subtraction circuit that obtains a differential output of the output of each filter, and the output of the subtraction circuit are used to convert the vortex signal at a high flow rate. 2. The vortex flowmeter according to claim 1, wherein the pressure is detected by a pressure detection circuit comprising a trigger circuit that outputs a pulse signal corresponding to the vortex signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63247196A JPH0295213A (en) | 1988-09-30 | 1988-09-30 | Vortex flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63247196A JPH0295213A (en) | 1988-09-30 | 1988-09-30 | Vortex flowmeter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0295213A true JPH0295213A (en) | 1990-04-06 |
Family
ID=17159877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63247196A Pending JPH0295213A (en) | 1988-09-30 | 1988-09-30 | Vortex flowmeter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0295213A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5736649A (en) * | 1995-08-23 | 1998-04-07 | Tokico Ltd. | Vortex flowmeter |
CN102116649A (en) * | 2011-01-11 | 2011-07-06 | 上海科洋科技发展有限公司 | Ultrasonic vortex flow meter and installation method thereof |
-
1988
- 1988-09-30 JP JP63247196A patent/JPH0295213A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5736649A (en) * | 1995-08-23 | 1998-04-07 | Tokico Ltd. | Vortex flowmeter |
CN102116649A (en) * | 2011-01-11 | 2011-07-06 | 上海科洋科技发展有限公司 | Ultrasonic vortex flow meter and installation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7093502B2 (en) | Ultrasonic gas flowmeter as well as device to measure exhaust flows of internal combustion engines and method to determine flow of gases | |
US4815324A (en) | Intake air meter for an internal combustion engine | |
JPH0771987A (en) | Ultrasonic fluid vibration flowmeter | |
US4240299A (en) | Method and apparatus for determining fluid density and mass flow | |
EP0237343B1 (en) | Device for detecting the amount of the air intaken by an internal combustion engine | |
JPH0295213A (en) | Vortex flowmeter | |
WO1988000686A1 (en) | Apparatus for measuring the amount of the air intaken by the engine | |
CN215833429U (en) | Doppler acoustic bidirectional flow velocity meter | |
EP0095516B1 (en) | Detection arrangement suitable for detecting the intake air flow rate in an internal combustion engine | |
RU97105999A (en) | METHOD FOR DIAGNOSTIC OF TURBOCHARGER OPERATIONS | |
CA1139421A (en) | Method and apparatus for determining fluid density and mass flow | |
JP4405167B2 (en) | Ultrasonic vortex flowmeter | |
JP3077570B2 (en) | Ultrasonic fluid flow meter | |
Casula et al. | Transient surface velocity measurements in a liquid by an active ultrasonic probe | |
JP2501851B2 (en) | Engine fuel control device | |
JPS63256820A (en) | Vortex flowmeter | |
SU1635121A1 (en) | Device for detecting alien inclusion in fluid stream | |
JP2710399B2 (en) | Flow measurement method | |
JPS5815045B2 (en) | Karman Vortex Flowmeter for Automotive | |
JPS63256821A (en) | Vortex flowmeter | |
JPH0660829B2 (en) | Vortex flowmeter | |
JPH0432580Y2 (en) | ||
JPS5866056A (en) | Ultrasonic Doppler flowmeter | |
JPH037783Y2 (en) | ||
JPS63256823A (en) | Vortex flowmeter |