JPH0293422A - Light shielding spectacles lens - Google Patents
Light shielding spectacles lensInfo
- Publication number
- JPH0293422A JPH0293422A JP24551988A JP24551988A JPH0293422A JP H0293422 A JPH0293422 A JP H0293422A JP 24551988 A JP24551988 A JP 24551988A JP 24551988 A JP24551988 A JP 24551988A JP H0293422 A JPH0293422 A JP H0293422A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- light
- synthetic resin
- color
- dyeing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000986 disperse dye Substances 0.000 claims abstract description 33
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 31
- 239000000057 synthetic resin Substances 0.000 claims abstract description 31
- 239000000178 monomer Substances 0.000 claims abstract description 13
- 239000011248 coating agent Substances 0.000 claims abstract description 8
- 238000000576 coating method Methods 0.000 claims abstract description 8
- 238000010030 laminating Methods 0.000 claims abstract description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 8
- 239000006097 ultraviolet radiation absorber Substances 0.000 claims description 8
- 241000083869 Polyommatus dorylas Species 0.000 claims description 7
- YXZRCLVVNRLPTP-UHFFFAOYSA-J turquoise blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Cu+2].NC1=NC(Cl)=NC(NC=2C=C(NS(=O)(=O)C3=CC=4C(=C5NC=4NC=4[N-]C(=C6C=CC(=CC6=4)S([O-])(=O)=O)NC=4NC(=C6C=C(C=CC6=4)S([O-])(=O)=O)NC=4[N-]C(=C6C=CC(=CC6=4)S([O-])(=O)=O)N5)C=C3)C(=CC=2)S([O-])(=O)=O)=N1 YXZRCLVVNRLPTP-UHFFFAOYSA-J 0.000 claims description 7
- 238000004043 dyeing Methods 0.000 abstract description 33
- 230000000694 effects Effects 0.000 abstract description 19
- 210000001508 eye Anatomy 0.000 abstract description 11
- 238000000034 method Methods 0.000 abstract description 11
- 230000000379 polymerizing effect Effects 0.000 abstract description 4
- 238000007740 vapor deposition Methods 0.000 abstract description 2
- 239000012801 ultraviolet ray absorbent Substances 0.000 abstract 2
- 210000000695 crystalline len Anatomy 0.000 description 82
- 239000010408 film Substances 0.000 description 25
- 239000000975 dye Substances 0.000 description 20
- 238000002834 transmittance Methods 0.000 description 20
- 239000000243 solution Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 10
- 230000003595 spectral effect Effects 0.000 description 10
- 241000511976 Hoya Species 0.000 description 9
- 235000019646 color tone Nutrition 0.000 description 9
- 239000003086 colorant Substances 0.000 description 9
- 239000003381 stabilizer Substances 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 229910001928 zirconium oxide Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- SYFOAKAXGNMQAX-UHFFFAOYSA-N bis(prop-2-enyl) carbonate;2-(2-hydroxyethoxy)ethanol Chemical compound OCCOCCO.C=CCOC(=O)OCC=C SYFOAKAXGNMQAX-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 210000001525 retina Anatomy 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229920000298 Cellophane Polymers 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000001045 blue dye Substances 0.000 description 2
- 210000003161 choroid Anatomy 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 231100000040 eye damage Toxicity 0.000 description 2
- 230000004313 glare Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- MEZZCSHVIGVWFI-UHFFFAOYSA-N 2,2'-Dihydroxy-4-methoxybenzophenone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1O MEZZCSHVIGVWFI-UHFFFAOYSA-N 0.000 description 1
- NFPBWZOKGZKYRE-UHFFFAOYSA-N 2-propan-2-ylperoxypropane Chemical compound CC(C)OOC(C)C NFPBWZOKGZKYRE-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- FBWSRAOCSJQZJA-UHFFFAOYSA-N 4-iminonaphthalen-1-one Chemical compound C1=CC=C2C(=N)C=CC(=O)C2=C1 FBWSRAOCSJQZJA-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010040925 Skin striae Diseases 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 206010014801 endophthalmitis Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 210000000554 iris Anatomy 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- -1 nitro, styryl Chemical group 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000001044 red dye Substances 0.000 description 1
- STZCRXQWRGQSJD-UHFFFAOYSA-N sodium;4-[[4-(dimethylamino)phenyl]diazenyl]benzenesulfonic acid Chemical compound [Na+].C1=CC(N(C)C)=CC=C1N=NC1=CC=C(S(O)(=O)=O)C=C1 STZCRXQWRGQSJD-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Landscapes
- Eyeglasses (AREA)
Abstract
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、遮光眼鏡レンズに関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a light shielding spectacle lens.
〈従来の技術〉
生体組織が放射線に作用されたとき、生体組織はこれら
を吸収し、その吸収特性は放射線の波長及び生体組織部
位により異なるが、眼の組織では可視光線および赤外線
は網膜まで達し、長時間もしくは強度に作用するときは
、虹彩、網膜、脈絡膜などに重いそして持続的な損傷を
おこすことは知られている。また、紫外線は角膜、水晶
体で良く吸収され、長時間もしくは強度に作用するとき
にはゆきめ、電気性眼炎の原因となり、白内障の遠因で
あるとの推定もある。また放射線の眼組織への影響度は
、生体がさらされている環境によっても相違するが、例
えば、職業的に航空パイロットは高高度を飛行する時、
長時間にわたり、地上とは比較にならない量の光線を浴
びている。飛行機のコクピット内での光線量は、コクピ
ットの窓によっても遮光されているが、上空では地上と
は比較にならない程の光線量があるので、光線の絶対量
は、コクピット内といえども、地上のそれを上回るとさ
れる。このように通常の太陽光のもとての生活環境と比
較して強い光線のもとて労働に従事する人々には、目の
保護のためにそのさらされている環境に即した遮光眼鏡
を装用することが好ましい。<Prior art> When living tissue is affected by radiation, the living tissue absorbs the radiation, and its absorption characteristics vary depending on the wavelength of the radiation and the location of the living tissue, but visible light and infrared rays reach the retina in eye tissue. , is known to cause severe and lasting damage to the iris, retina, choroid, etc. when it acts for a long time or with intensity. In addition, ultraviolet rays are well absorbed by the cornea and crystalline lens, and when they act for a long time or in a strong manner, they can eventually cause electrical ophthalmia, which is thought to be a remote cause of cataracts. The degree of influence of radiation on eye tissues also differs depending on the environment to which the living body is exposed. For example, when airline pilots fly at high altitudes professionally,
For a long time, it is exposed to an amount of light that is incomparable to the ground. The amount of light in the cockpit of an airplane is blocked by the cockpit windows, but the amount of light in the sky is incomparable to that on the ground. It is said to exceed that of . In this way, people who work under sunlight that is stronger than in their living environment under normal sunlight should wear light-blocking glasses that are suitable for the environment to which they are exposed to protect their eyes. It is preferable to wear it.
その遮光眼鏡用レンズの素材となる合成樹脂しンズはジ
エチレングリコールビスアリルカーボネートを主成分と
するものが知られており、ガラスL/ンズに比較して、
軽量性、耐衝撃性、染色性において優れた特性を有して
おり、安全性の高いレンズとして普及している。また遮
光眼鏡レンズは前記樹脂レンズにフッジョン性と紫外線
遮蔽効果機能を付加したものが特開昭52−15049
2号公報に提案されている。Synthetic resin lenses, which are the material for lenses for light-shielding glasses, are known to have diethylene glycol bisallyl carbonate as their main component.
It has excellent properties in light weight, impact resistance, and dyeability, and is popular as a highly safe lens. In addition, a light-shielding eyeglass lens has been developed in Japanese Patent Application Laid-Open No. 52-15049, which has fusion properties and ultraviolet shielding effects added to the above-mentioned resin lens.
This is proposed in Publication No. 2.
更に紫外線の光を吸収し、防眩効果の目的で特定の染料
と紫外線吸収剤を使用した合成樹脂レンズが特公昭53
−39910号公報に提案されている。また、市販のサ
ングラスは、その機能として可視光線の遮光を主眼にし
たものがほとんどでありその材質は上記樹脂以外にアク
リル系樹脂、ポリカーボネート系樹脂、ガラス等が使用
されており、素材モノマーに着色顔料を混入して、重合
したものや、その色調は多彩である。Furthermore, synthetic resin lenses that absorb ultraviolet light and use specific dyes and ultraviolet absorbers for the purpose of anti-glare effects were published in 1973.
This method is proposed in Japanese Patent No. -39910. In addition, most commercially available sunglasses are mainly designed to block visible light, and their materials include acrylic resin, polycarbonate resin, glass, etc. in addition to the resins mentioned above, and the material monomers are colored. There are a wide variety of colors, including those that are polymerized by mixing pigments.
更に、紫外線、可視光線、赤外線の遮光機能、ファツシ
ョン性を有したものが、特開昭62−254119号公
報において提案されている。Furthermore, a material having a function of blocking ultraviolet rays, visible light, and infrared rays and having fashionability has been proposed in Japanese Patent Laid-Open No. 62-254119.
〈発明が解決しようとする課題〉
このように、既存のサングラスはガラス製及びプラスチ
ック製ともに可視光線を遮光することが主眼であり、か
つファッション面での要求を満たす事も不可欠の要件で
ある為、紫外線、可視光線、赤外線といった各種光線か
らの眼の保護という要件についても必ずしも満足できる
ものではない。<Problem to be solved by the invention> As described above, the main purpose of existing sunglasses, both glass and plastic, is to block visible light, and it is also essential to meet fashion requirements. However, it is not always possible to satisfy the requirement of protecting the eyes from various types of light such as ultraviolet light, visible light, and infrared light.
また特開昭52−150492号公報、特公昭53−3
9910号公報に開示されているように、紫外線の遮光
を目的として紫外線吸収剤を添加し、レンズを成形する
ことが知られている。しかして紫外線吸収剤には、多く
の種類があり、例えばベンゾフェノン系紫外線吸収剤で
も、種類によって波長の吸収特性が異なり、同一使用量
においても、紫外線遮蔽効果が違うことがあげられ、さ
らに多量に紫外線吸収剤を使用した場合、レンズ重合を
妨げ、レンズ成形ができなくなること、さらに黄色にレ
ンズが着色して色調を変えてしまう等の問題点があった
。また前記レンズを染色するために用いられる染料は、
使用する染料の種類により色調及び波長の吸収特性が異
なり、遮光能力も異なるといった問題点があった。Also, Japanese Patent Application Publication No. 52-150492, Japanese Patent Publication No. 53-3
As disclosed in Japanese Patent No. 9910, it is known to add an ultraviolet absorber for the purpose of blocking ultraviolet rays and to form a lens. However, there are many types of UV absorbers; for example, even benzophenone UV absorbers have different wavelength absorption characteristics depending on the type, and even when used in the same amount, the UV shielding effect will differ, and even in larger amounts, When an ultraviolet absorber is used, there are problems such as interfering with lens polymerization, making it impossible to mold the lens, and furthermore causing the lens to be colored yellow and changing its color tone. The dye used to dye the lens is
There are problems in that the color tone and wavelength absorption characteristics vary depending on the type of dye used, and the light blocking ability also varies.
また特開昭62−254119号公報に記載の方法は紫
外線、可視光線、赤外線を遮光させることはできるもの
の、約620 nmを超える波長域の遮光が不十分なた
めにタングステンランプ、けい光ランプ、ハロゲンラン
プ等、種々の光源を利用した被照明物、透過型表示燈、
自己発光型標示燈等の色が裸眼で見た時と異った色に識
別されまた色表示、警告カラーの誤認が起こるなど遮光
眼鏡としての機能は十分とは言えない。Furthermore, although the method described in JP-A No. 62-254119 can block ultraviolet rays, visible light, and infrared rays, it does not sufficiently block light in the wavelength range exceeding about 620 nm, so it cannot be used with tungsten lamps, fluorescent lamps, Illuminated objects using various light sources such as halogen lamps, transmissive indicator lights,
The function of light-shielding glasses is not sufficient, as the colors of self-luminous indicator lights and the like can be perceived as different colors when viewed with the naked eye, and color displays and warning colors can be misidentified.
本発明は、かかる上記の問題点を解決するためになされ
たものであり、本発明の目的は、紫外線、可視光線、赤
外線の遮光機能に優れ、タングステンランプ、けい光ラ
ンプ、ハロゲンランプ等、種々の光源を利用した被照明
物、透過型表示燈、自己発光型標示燈等の色を明確に識
別できる遮光眼鏡レンズを提供することにある。The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide excellent light shielding functions for ultraviolet rays, visible light, and infrared rays, and to provide various lamps such as tungsten lamps, fluorescent lamps, and halogen lamps. It is an object of the present invention to provide a light-shielding eyeglass lens that can clearly identify the color of an illuminated object, a transmission type indicator light, a self-luminous type indicator light, etc. using a light source.
く課題を解決するための手段〉
上述の問題点は、合成樹脂用モノマーに紫外線吸収剤を
添加した後、重合して得た合成樹脂レンズをオレンジ系
、イエロー系及びレッド系分散染料の中から選ばれる2
種以上の分散染料とターキスブルー系分散染料を用いて
、ブラウン系またはグレー系の色調に染色加工し、次に
高屈折率膜と低屈折率膜を順次積層し、コーティング膜
を形成させたことを特徴とする遮光眼鏡レンズにより解
消された。The above-mentioned problem can be solved by adding an ultraviolet absorber to a synthetic resin monomer and then polymerizing the resulting synthetic resin lens using orange, yellow, and red disperse dyes. Chosen 2
The material was dyed to a brown or gray tone using a variety of disperse dyes and a turquoise blue disperse dye, and then a high refractive index film and a low refractive index film were sequentially laminated to form a coating film. This problem has been solved by the use of light-shielding eyeglass lenses.
本発明において合成樹脂用モノモーとしては、ジエチレ
ングリコールビスアリルカーボネートを主成分とするも
のが挙げられるが、重合によりプラスチックレンズを形
成するものであれば、他のモノマーも使用できる。In the present invention, monomers for synthetic resins include those containing diethylene glycol bisallyl carbonate as a main component, but other monomers can also be used as long as they form plastic lenses by polymerization.
本発明において、合成樹脂レンズ用モノマーに添加され
る紫外線吸収剤としては2.2′ −ジヒドロキシ−4
−メトキシベンゾフェノンが特に好ましく、その使用量
は、合成樹脂レンズ素材の主成分のモノマー量に対し、
好ましくは0,01重量%〜4重量%、特に好ましくは
、0.1重量%〜2重量%である。その理由は0.01
重量%未満では、紫外線カツト効果が弱く、さらに4重
量%を超えると、重合度に影響を与え、レンズがもろく
なり、成形性において好ましくないからである。In the present invention, the ultraviolet absorber added to the monomer for synthetic resin lenses is 2,2'-dihydroxy-4
-Methoxybenzophenone is particularly preferred, and the amount used is determined based on the amount of monomer as the main component of the synthetic resin lens material.
Preferably it is 0.01% to 4% by weight, particularly preferably 0.1% to 2% by weight. The reason is 0.01
If the amount is less than 4% by weight, the ultraviolet ray blocking effect will be weak, and if it exceeds 4% by weight, the degree of polymerization will be affected and the lens will become brittle, which is unfavorable in terms of moldability.
本発明に使用されるオレンジ系、イエロー系、レッド系
分散染料として、モノアゾ系、ジスアゾ系、アントラキ
ノン系、ニトロ系、スチリル系、メチン系、アロイレン
ベンズイミダクマリン系、キノナツタロン系、アミノナ
フチルイミド系、ナフトキノンイミン系、クマリン系等
の分散染料が挙げられる。Orange, yellow, and red disperse dyes used in the present invention include monoazo, disazo, anthraquinone, nitro, styryl, methine, aroylenebenzimidacumarin, quinonaphthalone, and aminonaphthylimide. Examples include disperse dyes such as naphthoquinoneimine, coumarin, and the like.
本発明において、オレンジ系、イエロー系り及びレッド
系分散染料の中から選ばれる2種以上の分散染料を用い
るとは、上記3種の分散染料の中から異種の分散染料を
2種以上用いることを意味し、2種以上の分散染料を用
いる理由は、後述するブルー系分散染料とともにブラウ
ンまたはグレー系の色調を出させるためである。In the present invention, using two or more types of disperse dyes selected from orange, yellow, and red disperse dyes means using two or more different types of disperse dyes from among the above three types of disperse dyes. The reason why two or more types of disperse dyes are used is to produce a brown or gray color tone together with the blue disperse dye described below.
またブルー系染料としては、ターキスブルー系分散染料
が用いられる。その理由は、後述する実施例からも明ら
かなようにターキスブルー系分散染料を用いてレンズを
染色処理した場合、620rv〜670r+mでの波長
域の遮光が可能だからである。このようなターキスブル
ー系分散染料の好ましい例として、カラーインデックス
(CI)kデイスパーズブルーフ、60,87,181
゜189.198のものが用いられる。Further, as the blue dye, a turquoise blue disperse dye is used. The reason for this is that when the lens is dyed using a turquoise blue disperse dye, it is possible to block light in the wavelength range of 620 rv to 670 r+m, as will be clear from the examples described below. A preferred example of such a turquoise blue disperse dye is Color Index (CI) K Disperse Blue, 60,87,181.
189.198° is used.
尚、前記した以外のブルー系分散染料を用いることは好
ましくない。ターキスブルー系分散染料以外のブルー系
分散染料を用いてレンズを染色処理した場合、約620
rvまでの波長は遮光できるが、620 nm〜67
0 rvでの波長域の遮光は不十分で、タングステンラ
ンプ、けい光ランプ、ハロゲンランプ等、種々の光源を
利用した被照明物、透過型表示燈、自己発光型標示燈等
による色の違いが明確に識別できなくなるからである。Note that it is not preferable to use blue disperse dyes other than those mentioned above. When lenses are dyed using a blue disperse dye other than turquoise blue disperse dye, approximately 620
Wavelengths up to rv can be blocked, but from 620 nm to 67
Light shielding in the wavelength range at 0 rv is insufficient, and color differences may occur due to illuminated objects using various light sources such as tungsten lamps, fluorescent lamps, halogen lamps, transmissive indicator lights, self-luminous indicator lights, etc. This is because they cannot be clearly identified.
本発明における染色加工の染色条件は、染色濃度、染色
温度及び浸漬時間の各要素技術で異なり、染色可能な適
用範囲は広いが遮光能力、染色の再現性から、染色濃度
は0,01重量%〜5重回%、浸漬時間は10分〜6時
間(好ましくは20分〜3時間)、染色温度は60℃〜
100℃(好ましくは80℃〜90℃)であるのが好ま
しい。The dyeing conditions for the dyeing process in the present invention vary depending on each element technology such as dyeing concentration, dyeing temperature, and immersion time, and the applicable range of dyeing is wide, but the dyeing concentration is 0.01% by weight from the viewpoint of light blocking ability and dyeing reproducibility. ~5 times%, immersion time is 10 minutes ~ 6 hours (preferably 20 minutes ~ 3 hours), dyeing temperature is 60 ° C ~
The temperature is preferably 100°C (preferably 80°C to 90°C).
本発明では、特にカラーバランスに優れた色調としてブ
ラウン系、グレー系に限定するものである。即ち、分光
透過率曲線は色調により波長の吸収帯が違い、例えば黄
色系レンズは57 S nm付近に吸収帯を有しており
、波長域500 rv〜670nm付近てはフラットな
透過率曲線が得られない。In the present invention, the color tones are limited to brown and gray as they have particularly excellent color balance. That is, the spectral transmittance curve has a different wavelength absorption band depending on the color tone. For example, a yellow lens has an absorption band around 57 S nm, and a flat transmittance curve can be obtained in the wavelength range of 500 rv to 670 nm. I can't.
従って波長域500 r+m〜670 nm付近の透過
率曲線の変化の仕方がフラットに近い色調としてブラウ
ン系、グレー系の色彩を選択するものである。Therefore, brown and gray colors are selected as colors in which the transmittance curve in the vicinity of the wavelength range of 500 r+m to 670 nm changes in a nearly flat manner.
この帯域の透過率は、使用目的によりコントロールする
ことができ、その遮光方法は、染色時間、浸漬時間等の
染色加工の染色条件で調整可能である。グレー系、ブラ
ウン系に着色されたレンズの色出しはオレンジ、イエロ
ー レッド、ブルー系染料を調合する方法と各単色染色
槽に浸漬して行なう方法があるが、方法については制限
を受けない。The transmittance in this band can be controlled depending on the purpose of use, and the method of blocking light can be adjusted by adjusting the dyeing conditions of the dyeing process, such as dyeing time and dipping time. Lenses colored gray or brown can be colored by mixing orange, yellow-red, or blue dyes, or by immersing them in a single-color dyeing tank, but there are no restrictions on the method.
本発明の遮光眼鏡レンズは、染色加工された合成樹脂レ
ンズ上に高屈折率膜と低屈折率膜を順次積層させたコー
ティング膜を有するものである。The light-shielding eyeglass lens of the present invention has a coating film in which a high refractive index film and a low refractive index film are sequentially laminated on a dyed synthetic resin lens.
このコーティング膜に用いる高屈折率膜用物質には、酸
化ジルコニウムが特に好ましく、酸化チタン、酸化セリ
ウム、酸化インジウム、酸化ネオジウム及び酸化タンタ
ルも使用できる。また低屈折率膜用物質には、酸化硅素
が特に好ましく、フッ化マグネシウムも使用できる。Zirconium oxide is particularly preferred as the material for the high refractive index film used in this coating film, and titanium oxide, cerium oxide, indium oxide, neodymium oxide, and tantalum oxide can also be used. Silicon oxide is particularly preferred as the material for the low refractive index film, and magnesium fluoride can also be used.
積層させる順番は、高、低、・・・・・・高、低の順で
あっても低、高、・・・・・・低、高であってもよく、
その層数は、4〜20層であれば好ましい効果が11?
られ、層数と反射波長域は反比例し、反射率の大きさは
比例する。The order of stacking may be high, low, ... high, low, or low, high, ... low, high,
If the number of layers is 4 to 20, the preferable effect is 11?
The number of layers and the reflected wavelength range are inversely proportional, and the reflectance is proportional.
その光学的膜厚は、λ/4(λは波長)が好ましく、ま
た蒸着物質の積層方法は、特に真空蒸着が好ましいが、
イオンスパッタリング法等も可能である。The optical film thickness is preferably λ/4 (λ is the wavelength), and the method of laminating the vapor deposition material is particularly preferably vacuum evaporation.
Ion sputtering method etc. are also possible.
く作 用〉
本発明の遮光眼鏡レンズは、紫外線吸収剤を添加した合
成樹脂用モノマーを重合して得られる。Effect> The light-shielding spectacle lens of the present invention is obtained by polymerizing a monomer for synthetic resins to which an ultraviolet absorber is added.
また該レンズは、分散染料でグレー系又はブラウン系に
染色され、レンズ表面に染色層が形成されている。更に
前記染色レンズの表面部に高屈折率膜と低屈折率膜とで
順次積層されたコーティング膜が形成されているので、
紫外線、可視線、赤外線は遮光され、眼に有害な紫外線
・赤外線の眼球への到達量が少なく、光線による眼障害
を未然に防ぐ。また、カラーバランスを損なわない色調
で防眩効果のある濃度に染色されているので、レンズを
通して、安楽に物体を視ることができ、かつ交通標識、
種々の光源を利用したメーター表示燈及び被照明物のカ
ラーを、レンズを通さずに見る時と何ら変化なく識別す
る事ができる。Further, the lens is dyed in a gray or brown color with a disperse dye, and a dyed layer is formed on the lens surface. Furthermore, since a coating film in which a high refractive index film and a low refractive index film are sequentially laminated is formed on the surface of the dyed lens,
Ultraviolet rays, visible rays, and infrared rays are blocked, and the amount of harmful ultraviolet rays and infrared rays that reach the eyeballs is small, preventing eye damage caused by light rays. In addition, it is dyed in a color tone that does not impair color balance and has an anti-glare density, so you can easily see objects through the lens, as well as traffic signs, etc.
The colors of meter display lights and illuminated objects using various light sources can be identified without any change from when viewed without passing through a lens.
〈実施例〉 以下、本発明の実施例を詳細に説明する。<Example> Examples of the present invention will be described in detail below.
〈実施例1〉
第1図は本発明の実施例の遮光眼鏡レンズ1の部分拡大
断面図であり、遮光眼鏡レンズ1はジエチレングリコー
ルビスアリルカーボネートを主成分とする合成樹脂用モ
ノマーを、これに紫外線吸収剤を添加した後、重合して
得た合成樹脂レンズを染色加工した染色合成樹脂レンズ
2に酸化ジルコニウムからなる高屈折率膜3と酸化ケイ
素からなる低屈折率膜4が積層されている。<Example 1> Fig. 1 is a partially enlarged sectional view of a light-shielding eyeglass lens 1 according to an example of the present invention. A dyed synthetic resin lens 2 obtained by dyeing a synthetic resin lens obtained by polymerization after addition of an absorbent is laminated with a high refractive index film 3 made of zirconium oxide and a low refractive index film 4 made of silicon oxide.
また前記染色合成樹脂レンズ2の表面層には分散染料で
ブラウンに染色された染色層2aが形成されている。Further, a dyed layer 2a dyed brown with a disperse dye is formed on the surface layer of the dyed synthetic resin lens 2.
又、前記高屈折率膜3、低屈折率膜4の光学的膜厚はλ
/4であり、例えば12層に積層されている。Further, the optical thickness of the high refractive index film 3 and the low refractive index film 4 is λ
/4, and is laminated in 12 layers, for example.
次に、この遮光眼鏡レンズ1の製造方法を詳細に説明す
るが、ここに述べた製造方法はあくまで一例であり、当
業者に自明な製造方法の改変により得られた遮光眼鏡レ
ンズも本発明に包含されるものである。Next, the manufacturing method of this light-shielding eyeglass lens 1 will be explained in detail, but the manufacturing method described here is just an example, and the present invention also includes light-shielding eyeglass lenses obtained by modification of the manufacturing method that is obvious to those skilled in the art. It is included.
合成樹脂レンズモノマーとしてジエチレングリコールビ
スアリルカーボネート99.85重量%、紫外線吸収剤
として2.2′ −ヒドロキシ−4−メトキシベンゾフ
ェノン0.15重量%を撹拌機で充分に撹拌し、重合開
始剤としてジイソプロピルパーオキシカーボネート(I
PP)をモノマー100に対し3の割合で添加、撹拌し
、混合液を得た。次に、ガラス型と樹脂製シールよりな
る、レンズ成型用型内に前記混合液を注入し、電気炉に
てキャスト重合を行って、合成樹脂レンズを得た。99.85% by weight of diethylene glycol bisallyl carbonate as a synthetic resin lens monomer and 0.15% by weight of 2,2'-hydroxy-4-methoxybenzophenone as an ultraviolet absorber were sufficiently stirred with a stirrer, and diisopropyl peroxide was added as a polymerization initiator. Oxycarbonate (I
PP) was added at a ratio of 3 parts to 100 parts of the monomer and stirred to obtain a mixed solution. Next, the mixed solution was poured into a lens molding mold consisting of a glass mold and a resin seal, and cast polymerization was performed in an electric furnace to obtain a synthetic resin lens.
スミカロンターキスブルー0 3g(住人化学
■製CIデイスパーズブルー60)レゾリンオレンジ3
GL 3g(バイエル社製オレンジ系分
散染料)
ダイアニックスレッドACE 3g(三菱化
成■製しッド系分散染料)
にそれぞれ水1g、界面活性剤(染色安定剤、ホーヤ■
製ホーヤスタビライザー)2gを加えて3種の染色液を
調整した後、上で得られた合成樹脂レンズをスミカロン
ターキスブルーG染料液に、染色温度85℃で3時間、
次にレゾリンオレンジ3GL染料液に染色温度85℃で
10分間、さらにダイアエックスレッドACE染料液に
染色温度85℃で10分間浸漬して染色層2aを有する
染色合成樹脂レンズ2を得た。染色合成樹脂レンズ2の
色はブラウンであった。Sumikaron Turkis Blue 0 3g (CI Daspurs Blue 60 manufactured by Jujutsu Kagaku) Resolin Orange 3
3g of GL (orange disperse dye manufactured by Bayer), 3g of Dianic Red ACE (hydrogen disperse dye manufactured by Mitsubishi Kasei), 1g of water each, surfactant (dyeing stabilizer, Hoya)
After preparing three types of dye solutions by adding 2 g of Hoya Stabilizer (manufactured by Hoya Stabilizer), the synthetic resin lenses obtained above were added to the Sumikalon Turquoise Blue G dye solution for 3 hours at a dyeing temperature of 85°C.
Next, it was immersed in Resolin Orange 3GL dye solution at a dyeing temperature of 85° C. for 10 minutes, and then in Diax Red ACE dye solution at a dyeing temperature of 85° C. for 10 minutes to obtain a dyed synthetic resin lens 2 having a dyed layer 2a. The color of the dyed synthetic resin lens 2 was brown.
次に、前記染色合成樹脂レンズ2を真空蒸着装置の真空
槽内に設置し、レンズ表面温度を120℃以下としなが
ら、高屈折率膜3の物質として酸化ジルコニウムを、低
屈折率膜4の物質として酸化硅素を使用して交互に真空
蒸着させ、赤外域の最大反射波長をλとした場合に各層
がλ/4の膜厚を有する合計12層(酸化ジルコニウム
6層、酸化硅素6層)の紫外、赤外線遮断膜を形成させ
遮光眼鏡レンズ1を得た。ここで膜厚制御は単色測光法
を用いモニターガラスを監視することにより行った。そ
の単色フィルタ波長は550 nmを用い、蒸着は電子
ビーム加熱法である。Next, the dyed synthetic resin lens 2 is placed in a vacuum chamber of a vacuum evaporation device, and while keeping the lens surface temperature at 120° C. or lower, zirconium oxide is added as the material for the high refractive index film 3, and zirconium oxide is added as the material for the low refractive index film 4. A total of 12 layers (6 layers of zirconium oxide, 6 layers of silicon oxide) each having a film thickness of λ/4, where λ is the maximum reflection wavelength in the infrared region, are alternately vacuum-deposited using silicon oxide as A light shielding spectacle lens 1 was obtained by forming an ultraviolet and infrared shielding film. Here, the film thickness was controlled by monitoring the monitor glass using monochromatic photometry. The monochromatic filter wavelength is 550 nm, and the deposition is by electron beam heating.
前記遮光眼鏡レンズ1の分光透過率曲線(日立製作所製
340自記分光度計を使用してn1定した)は第2図に
示す通りである。The spectral transmittance curve (n1 was determined using a 340 self-recording spectrometer manufactured by Hitachi, Ltd.) of the light-shielding eyeglass lens 1 is as shown in FIG.
第2図に示す分光透過率曲線より本実施例の遮光眼鏡レ
ンズの紫外線、可視光線、赤外線の遮光性能は、下記の
通りである。すなわち、紫外線領域(I)(約400n
a+以下)で、はぼ100%近く遮光しており、この紫
外線は角膜、水晶体に影響を及ぼすことは前述の通りで
あるので、その予防効果として優れている。Based on the spectral transmittance curve shown in FIG. 2, the light-shielding performance of the light-shielding spectacle lens of this example against ultraviolet rays, visible light, and infrared rays is as follows. That is, in the ultraviolet region (I) (approximately 400n
(a+ or less), it blocks nearly 100% of light, and as mentioned above, this ultraviolet ray affects the cornea and crystalline lens, so it is excellent as a preventive effect.
次に可視光線領域(■)(約400 nm 〜約78O
nlll)について述べる。第3図は人間の眼の光に対
する感度の波長による変化を表わす比視感度曲線で、波
長555na+を1として他の波長の視感度を対比させ
たもので、波長域(IV)の約500n■〜約620
t+m付近が人間が最も光の輝度を感じるところである
が、620 nwを超える波長帯域を遮光しない場合、
ハロゲンランプ、タングステンランプ等の光源を使用し
た被照明物、透過式表示燈の色を明確に識別できるので
670ns付近まで遮光する必要がある。そこで第3図
の比視感度曲線と第2図の可視光線(n)の領域の透過
率曲線を同時に図示した第4図を作成し、本実施例の透
過率曲線と人間の眼の比視感度曲線を比較し、実際に人
間の眼が感じる眩輝作用と本実施例の遮光眼鏡レンズを
対比させると、その約50 On+s〜約670 nm
の波長域で優れた遮光効果があり、ハロゲンランプ、タ
ングステンランプ等の光源を使用した被照明物、透過式
表示燈の色を識別できないという問題が起らないことが
わかる。Next, the visible light region (■) (approximately 400 nm to approximately 780
nllll). Figure 3 is a specific luminous efficiency curve showing the change in the sensitivity of the human eye to light depending on the wavelength.The luminous efficiency curve for other wavelengths is compared with the wavelength 555 na+ as 1, and it is approximately 500 nm in the wavelength range (IV). ~about 620
The area around t+m is where humans feel the brightest light, but if the wavelength band exceeding 620 nw is not blocked,
Since the color of objects illuminated using light sources such as halogen lamps and tungsten lamps and transmission type indicator lights can be clearly identified, it is necessary to block light until around 670 ns. Therefore, we created FIG. 4, which simultaneously shows the relative luminous efficiency curve in FIG. 3 and the transmittance curve in the visible light (n) region in FIG. Comparing the sensitivity curves and comparing the glare effect actually felt by the human eye with the light-shielding eyeglass lens of this example, the effect is approximately 50 On+s to approximately 670 nm.
It can be seen that it has an excellent light shielding effect in the wavelength range of 200 to 2000, and does not cause problems such as inability to distinguish the colors of illuminated objects using light sources such as halogen lamps and tungsten lamps, and of transmissive display lights.
次に、カラーバランスについて述べる。第5図は太陽光
のスペクトルの分布を示しており、この第5図の波長域
500 rv〜670 nIIの透過率曲線の変化の仕
方はほぼフラットな曲線を示している。Next, let's talk about color balance. FIG. 5 shows the spectral distribution of sunlight, and the transmittance curve in the wavelength range of 500 rv to 670 nII in FIG. 5 shows a substantially flat curve.
同様に、第2図の本実施例の遮光眼鏡レンズの透過率曲
線は、前記波長域(500rv 〜670 rv)にお
いて、太陽光とほぼ同様にフラットな透過率曲線の変化
を示しており、自然光と近い透過率曲線の変化を示して
いるのでカラーバランスを損うことなく遮光効果を奏し
ている。従って、前記遮光眼鏡レンズから見る物体の色
調は(光量としては波長域500ne 〜670nml
こおいては、70%〜80%程度遮光されているが)、
はぼ自然光とほぼ同様のカラーバランスの状態で像を見
ることができ、交通標識、計器類等の標示カラーもカラ
ーバランスを損うことなく見ることができる。Similarly, the transmittance curve of the light-shielding eyeglass lens of this example shown in FIG. 2 shows a flat transmittance curve change in the wavelength range (500 rv to 670 rv), which is almost the same as sunlight Since the transmittance curve shows a change close to that of , the light shielding effect is achieved without impairing the color balance. Therefore, the color tone of the object seen through the light-shielding eyeglass lens is within the wavelength range of 500nm to 670nm as the amount of light.
In this case, the light is blocked by about 70% to 80%).
Images can be viewed with almost the same color balance as natural light, and signs such as traffic signs and instruments can also be viewed without compromising color balance.
また、レーリーの散乱理論によれば、波長λの自然光が
小球に入射した時、散乱角θで小球からの距離gでの散
乱光強度Eは
周率、Hは小球の誘電率あるいは屈折率で定まる常数で
ある。According to Rayleigh's scattering theory, when natural light of wavelength λ is incident on a small sphere, the scattered light intensity E at the scattering angle θ and distance g from the small sphere is the periodicity, and H is the dielectric constant of the small sphere or It is a constant determined by the refractive index.
散乱光の強度は波長の4乗に逆比例しており、従って、
波長の短い光は強く散乱される。一方、散乱光は物体を
視認する際の外乱作用を有し特に遠方の物体の視認の妨
げとなる。特に航空パイロットに望まれる遮光レンズ機
能としては、遠方の物体の視認が良好である事が望まれ
、散乱光をカットする事が必要とされ、特に短波長(4
00〜500 tv)の光をカットする事が重要である
。The intensity of scattered light is inversely proportional to the fourth power of the wavelength, therefore,
Light with short wavelengths is strongly scattered. On the other hand, scattered light has a disturbing effect when viewing an object, and particularly obstructs the viewing of distant objects. In particular, the light-shielding lens function desired by airline pilots requires good visibility of distant objects, and it is necessary to cut out scattered light.
It is important to cut out the light of 00 to 500 tv).
本実施例の遮光眼鏡レンズは、500〜670nII+
において、はぼ平坦な分光透過率を有し、400〜50
0 nmの短波長の可視光線においては短波長はど小さ
い透過率を有しており、自然光に近い色調で、かつ外乱
作用の大きい散乱光をカットして物体を視認できる効果
を有する。また赤外線の750nffl〜1200nl
付近は、網膜、脈絡膜に影響を及ぼすとされ、細胞内に
熱が貯留することによって起こるといわれているが、本
実施例においてこの帯域は1l100n付近を中心に6
5%前後遮光されており、大きな遮光効果を奏している
ので、眼に有害とされる赤外線の特定波長域を遮光する
ことができる。The light-shielding eyeglass lens of this example has a 500 to 670 nII+
, has a nearly flat spectral transmittance of 400 to 50
In the case of visible light having a short wavelength of 0 nm, the short wavelength has a very small transmittance, and it has a color tone close to natural light and has the effect of making it possible to visually recognize objects by cutting out scattered light that has a large disturbance effect. Also, infrared 750nffl~1200nl
This area is said to affect the retina and choroid, and is said to be caused by heat accumulation within cells, but in this example, this band is centered around 1l100n
It blocks around 5% of light and has a great light blocking effect, making it possible to block specific wavelengths of infrared rays that are considered harmful to the eyes.
次にこの遮光眼鏡レンズのその他の性能評価(外観検査
、付着性テスト、耐溶剤性)を下記の方法で行なった。Next, other performance evaluations (appearance inspection, adhesion test, solvent resistance) of this light-shielding eyeglass lens were performed using the following method.
(1)外観検査
螢光灯を光源とする照明装置を用い、目視にて下記の1
)〜4)を満足するかどうかを観察した。(1) Visual inspection Using a lighting device with a fluorescent lamp as the light source, visually inspect the following items.
) to 4) were observed.
l)透明であること
2)表面の不規則性がないこと
3)脈理のないこと
4)表面にキズのないこと
(II)付着性テスト(クロスカット−セロハンテープ
剥離テスト)
コーティング膜に1關間隔に基材に達する切断線を縦、
横それぞれに11本、ナイフで入れて1m1s2の目数
を100個つくり、その上にセロハンテープを貼りつけ
、急激にはがす。このセロハンテープの貼りつけ、はが
しの操作を同一個所で3回くり返し剥離口のないかどう
かを観察した。l) Transparent 2) No irregularities on the surface 3) No striae 4) No scratches on the surface (II) Adhesion test (cross cut - cellophane tape peel test) 1 on the coating film Cut the cutting line vertically to reach the base material at the same intervals.
Insert 11 strips on each side with a knife to make 100 stitches of 1 m 1 s2, stick cellophane tape on top of it, and peel it off quickly. This operation of applying and peeling off the cellophane tape was repeated three times at the same location, and it was observed whether there were any peeling holes.
(I[[)耐溶剤性
アセトンを含ませた布によりレンズをふき、レンズ表面
に変化がないかどうかを観察した。(I [[) Solvent Resistance The lens was wiped with a cloth impregnated with acetone, and the lens surface was observed to see if there was any change.
性能評価(1)、(n)、(m)の結果はすべて満足す
べきものであった。The results of performance evaluations (1), (n), and (m) were all satisfactory.
〈実施例2〉
スミカロンターキスブルー0 3゜(住友化学
■製CIデイスパーズブルー60)ダイアエックスオレ
ンジBSE 3g(三菱化成■製オレンジ系分
散染料)
ダイアエックスレッドACE 3g(三菱化
成沖製レッド系分散染料)
にそれぞれ水IN、界面活性剤(染色安定剤、ホーヤ側
製ホーヤスタビライザー)2gを加えて3種の染色液を
調整した後、上で得られた合成樹脂レンズを先ずスミカ
ロンターキスブルーG染料液に染色温度85℃で3時間
、次にダイアニックスオレンジBSE染料液に染色温度
85℃で4分間、さらにダイアニックスレッドACE染
料液に染色温度85℃で15分間浸漬してグレーの色調
を有する遮光眼鏡レンズを得た。その分光透過率曲線は
第6図に示す通りであり、紫外線、可視光線、赤外線の
遮光効果及びカラーバランスにおいて実施例1と同様に
優れたものであった。<Example 2> Sumikalon Turkis Blue 0 3° (CI Dispers Blue 60 manufactured by Sumitomo Chemical ■) Diaex Orange BSE 3g (orange disperse dye manufactured by Mitsubishi Kasei ■) Diax Red ACE 3g (Red manufactured by Mitsubishi Kasei Oki) After preparing three types of dyeing solution by adding water IN and 2 g of surfactant (dyeing stabilizer, Hoya Stabilizer manufactured by Hoya) to each type of disperse dye, the synthetic resin lens obtained above was first dyed with Sumikalon tar. Immersed in Kiss Blue G dye solution at a dyeing temperature of 85°C for 3 hours, then in Dianex Orange BSE dye solution for 4 minutes at a dyeing temperature of 85°C, and then in Dianex Red ACE dye solution for 15 minutes at a dyeing temperature of 85°C to obtain gray. A light-shielding spectacle lens having a color tone of . Its spectral transmittance curve is as shown in FIG. 6, and it was as excellent as Example 1 in terms of shielding effect against ultraviolet rays, visible light, and infrared rays, and color balance.
また前記レンズを実施例1と同様に(1)〜(III)
の性能評価を行ったが、すべて満足すべきものであった
。In addition, the lenses (1) to (III) were prepared in the same manner as in Example 1.
Performance evaluations were conducted, and all results were satisfactory.
く比較例1〉
合成樹脂レンズ素材モノマーとしてジエチレングリコー
ルビスアリルカーボネートを99.97重量%、紫外線
吸収剤として2.2′ −ジヒドロキシ−4−n−オク
トキシベンゾフェノンを0.03重量%添加し、実施例
1と同様の重合方法で、合成樹脂レンズを製造した。さ
らにダイアニックスプルーRN−E3ir
(三菱化成■製CIデイスパーズブルー91)レゾリン
オレンジ3GL 3g(バイエル社製オ
レンジ系分散染料)
ダイアニックスレッドACE 3g(三菱化
成■製しッド系分散染料)
にそれぞれ水IJ7、界面活性剤(染色安定剤、ホーヤ
■製ホーヤスタビライザー)2gを加えて3種の染色液
を調整した後、上で得られた合成樹脂レンズをダイアニ
ックスプルーRN−E染料G1.:染色温度85℃で3
0分間、次にレゾリンオレンジ3GL染料液に染色温度
85℃で10分間、さらにダイアエックスレッドACE
染料液に染色温度85℃で10分間浸漬してブラウン色
の染色レンズを得た。その分光透過率曲線は第7図に示
す通り約620 rvを超える波長域の遮光が不十分で
、光源によっては対象物が赤く見えるなど、波長分布の
異なる光源により照明される対象物の色が明確に識別で
きない問題があり、遮光眼鏡レンズとして機能が充分で
ないことが明らかとなった。Comparative Example 1> 99.97% by weight of diethylene glycol bisallyl carbonate was added as a synthetic resin lens material monomer, and 0.03% by weight of 2.2'-dihydroxy-4-n-octoxybenzophenone was added as an ultraviolet absorber. A synthetic resin lens was manufactured using the same polymerization method as in Example 1. In addition, Dianic Sprue RN-E3ir (CI Dispers Blue 91 manufactured by Mitsubishi Kasei), Resolin Orange 3GL 3g (orange disperse dye manufactured by Bayer), and Dianic Red ACE 3g (hydrod disperse dye manufactured by Mitsubishi Kasei). Three types of staining solutions were prepared by adding water IJ7 and 2g of surfactant (dyeing stabilizer, Hoya Stabilizer manufactured by Hoya ■), respectively, and then the synthetic resin lenses obtained above were dyed with Dianic Sprue RN-E dye G1. :3 at dyeing temperature 85℃
0 minutes, then dyed with Resolin Orange 3GL dye solution for 10 minutes at a temperature of 85℃, and then dyed with Diax Red ACE.
A brown dyed lens was obtained by immersing it in a dye solution for 10 minutes at a dyeing temperature of 85°C. As shown in Figure 7, the spectral transmittance curve shows that the light shielding in the wavelength range exceeding about 620 rv is insufficient, and the color of objects illuminated by light sources with different wavelength distributions may vary, such as objects appearing red depending on the light source. It became clear that there was a problem that it could not be clearly identified, and that the function as a light-shielding eyeglass lens was insufficient.
く比較N2 >
実施例1と同様のモノマー組成及び重合方法で合成樹脂
レンズを製造した。さらに
ダイアニックスプルーACE 3g(三菱化
成■製CIデイスパーズブルー56)ダイアエックスオ
レンジBSE 3g(三菱化成■製オレンジ系
分散染料)
ダイアニックスレッドACE 3g(三菱化
成■製しッド系分散染料)
にそれぞれ水1g1界面活性剤(染色安定剤、ホーヤ■
製ホーヤスタビライザー)2gを加えて3種の染色液を
調整した後、上で得られた合成樹脂レンズを、ダイアニ
ックスプルーACE染料液に染色温度85℃で30分間
、次にダイアニックスオレンジBSE染料液に染色温度
85℃で5分間、さらにダイアエックスレッドACE染
料液に染色温度85℃で15分間浸漬してグレー色の染
色レンズを得た。その分光透過率曲線は、第8図に示す
通り約620 rvを超える波長域の遮光が不十分で、
光源によっては対象物が赤く見えるなど、波長分布の異
なる光源により照明される対象物の色が明確に識別でき
ない問題があり、遮光眼鏡レンズとして機能が充分でな
いことが明らかとなった。Comparison N2 > A synthetic resin lens was manufactured using the same monomer composition and polymerization method as in Example 1. In addition, Dianic Sprue ACE 3g (CI Disperse Blue 56 manufactured by Mitsubishi Kasei), Diax Orange BSE 3g (orange disperse dye manufactured by Mitsubishi Kasei), and Dianic Red ACE 3g (hydrod disperse dye manufactured by Mitsubishi Kasei). 1 g of water 1 surfactant (dyeing stabilizer, Hoya)
After preparing three types of dye solutions by adding 2 g of Hoya Stabilizer (manufactured by Manufacturer), the synthetic resin lenses obtained above were dyed in the Dianix Sprue ACE dye solution for 30 minutes at a temperature of 85°C, and then dyed with Dianix Orange BSE dye. A gray dyed lens was obtained by immersing the lens in the dyeing solution for 5 minutes at a dyeing temperature of 85°C, and then in the Diax Red ACE dye solution for 15 minutes at a dyeing temperature of 85°C. As shown in Figure 8, the spectral transmittance curve shows that the wavelength range exceeding about 620 rv is insufficiently blocked.
It has become clear that the function as a light-shielding eyeglass lens is insufficient, as there are problems in which the color of objects illuminated by light sources with different wavelength distributions cannot be clearly distinguished, such as objects appearing red depending on the light source.
〈発明の効果〉
本発明の遮光眼鏡レンズは、合成樹脂用七ツマ−に紫外
線吸収剤を混合させ、重合して得たレンズを、ブラウン
系もしくはグレー系の染料で染色し、更に該レンズ表面
に紫外・赤外線の遮光効果を有する真空蒸着膜を形成し
てなるので、紫外・赤外・可視の各帯域において遮光効
果を有している。従って高高度における強い太陽光のも
とで作業する航空パイロットの眼の保護において、角膜
、網膜等への眼障害に対して予防効果を有し、強烈な可
視光線を遮光することで、作業時における眩しさを柔ら
げ、安全な遮光眼鏡を提供することができる。又、本発
明の遮光眼鏡レンズは、その分光透過率が可視光域のほ
ぼ500 nm〜670 r+mの波長域において、平
坦であり、紫から青、緑、黄、橙、赤に至る各色の光を
平均して遮光しているため、通常のカラーバランスを損
うことなく、各色を感じることができる。<Effects of the Invention> The light-shielding eyeglass lens of the present invention is produced by mixing a UV absorber with a synthetic resin 7-mer, polymerizing the resulting lens, dyeing it with a brown or gray dye, and then dyeing the lens surface with a brown or gray dye. Since it is formed by forming a vacuum-deposited film that has an ultraviolet and infrared light shielding effect on the substrate, it has a light shielding effect in each of the ultraviolet, infrared, and visible bands. Therefore, in protecting the eyes of airline pilots who work under strong sunlight at high altitudes, it has the effect of preventing eye damage to the cornea, retina, etc., and by blocking strong visible light, It is possible to provide safe light-shielding glasses that reduce glare. In addition, the light-shielding eyeglass lens of the present invention has a flat spectral transmittance in the wavelength range of about 500 nm to 670 r+m in the visible light range, and can transmit light of various colors from violet to blue, green, yellow, orange, and red. Since the light is blocked on average, each color can be felt without affecting the normal color balance.
第1図は、実施例1の遮光眼鏡レンズの部分拡大図、第
2図は、実施例1の遮光眼鏡レンズの紫外域、可視域、
赤外域における透過率曲線図、第3図は、人間の眼の比
視感度曲線図、第4図は第2図と第3図の合成曲線図、
第5図は、太陽光のスペクトル分布図、第6図は、実施
例2の遮光眼鏡レンズの紫外域、可視域、赤外域におけ
る透過率曲線図、第7図は、比較例1の染色レンズの可
視域における透過率曲線図、第8図は、比較例2の染色
レンズの透過率曲線図である。
1・・・遮光眼鏡レンズ、2・・・染色合成樹脂レンズ
、2a・・・染色層、3・・・高屈折率膜、4・・・低
屈折率膜。FIG. 1 is a partially enlarged view of the light-shielding eyeglass lens of Example 1, and FIG. 2 is a partial enlarged view of the light-shielding eyeglass lens of Example 1 in the ultraviolet region, visible region,
Transmittance curve diagram in the infrared region, Figure 3 is a specific luminous efficiency curve diagram of the human eye, Figure 4 is a composite curve diagram of Figures 2 and 3,
Fig. 5 is a spectral distribution diagram of sunlight, Fig. 6 is a transmittance curve diagram in the ultraviolet region, visible region, and infrared region of the light-shielding eyeglass lens of Example 2, and Fig. 7 is a dyed lens of Comparative Example 1. FIG. 8 is a transmittance curve diagram of the dyed lens of Comparative Example 2. DESCRIPTION OF SYMBOLS 1... Light-shielding eyeglass lens, 2... Dyed synthetic resin lens, 2a... Dyed layer, 3... High refractive index film, 4... Low refractive index film.
Claims (1)
、重合して得た合成樹脂レンズをオレンジ系、イエロー
系及びレッド系分散染料の中から選ばれる2種以上の分
散染料とターキスブルー系分散染料とを用いて、ブラウ
ン系またはグレー系の色調に染色加工し、次に高屈折率
膜と低屈折率膜を順次積層し、コーティング膜を形成さ
せたことを特徴とする遮光眼鏡レンズ。(1) After adding an ultraviolet absorber to a synthetic resin monomer, a synthetic resin lens obtained by polymerization is mixed with two or more types of disperse dyes selected from orange, yellow, and red disperse dyes and turquoise blue. A light-shielding eyeglass lens characterized by being dyed to a brown or gray tone using a disperse dye, and then sequentially laminating a high refractive index film and a low refractive index film to form a coating film. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24551988A JPH0293422A (en) | 1988-09-29 | 1988-09-29 | Light shielding spectacles lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24551988A JPH0293422A (en) | 1988-09-29 | 1988-09-29 | Light shielding spectacles lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0293422A true JPH0293422A (en) | 1990-04-04 |
Family
ID=17134892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24551988A Pending JPH0293422A (en) | 1988-09-29 | 1988-09-29 | Light shielding spectacles lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0293422A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001201690A (en) * | 2000-01-18 | 2001-07-27 | Olympus Optical Co Ltd | Infrared microscope and observation column used for it |
US7009025B2 (en) | 1999-09-20 | 2006-03-07 | Hoya Corporation | Optical materials having good ultraviolet absorbability and method for producing them |
US7261845B2 (en) | 2003-09-30 | 2007-08-28 | Hoya Corporation | Plastic lens and process for preparing the lens |
JP2010511205A (en) * | 2006-11-28 | 2010-04-08 | ハイ・パフォーマンス・オプティクス・インコーポレーテッド | High-performance selective optical wavelength filtering provides improved contrast sensitivity |
KR20160130263A (en) | 2014-03-07 | 2016-11-10 | 와코 쥰야꾸 고교 가부시키가이샤 | Cynine coloring composition |
US9927635B2 (en) | 2006-03-20 | 2018-03-27 | High Performance Optics, Inc. | High performance selective light wavelength filtering providing improved contrast sensitivity |
US11701315B2 (en) | 2006-03-20 | 2023-07-18 | High Performance Optics, Inc. | High energy visible light filter systems with yellowness index values |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62254119A (en) * | 1986-04-28 | 1987-11-05 | Hoya Corp | Protective spectacle lens |
JPS63175824A (en) * | 1987-01-16 | 1988-07-20 | Hoya Corp | Light shielding lens |
-
1988
- 1988-09-29 JP JP24551988A patent/JPH0293422A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62254119A (en) * | 1986-04-28 | 1987-11-05 | Hoya Corp | Protective spectacle lens |
JPS63175824A (en) * | 1987-01-16 | 1988-07-20 | Hoya Corp | Light shielding lens |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7009025B2 (en) | 1999-09-20 | 2006-03-07 | Hoya Corporation | Optical materials having good ultraviolet absorbability and method for producing them |
JP2001201690A (en) * | 2000-01-18 | 2001-07-27 | Olympus Optical Co Ltd | Infrared microscope and observation column used for it |
US7261845B2 (en) | 2003-09-30 | 2007-08-28 | Hoya Corporation | Plastic lens and process for preparing the lens |
US9927635B2 (en) | 2006-03-20 | 2018-03-27 | High Performance Optics, Inc. | High performance selective light wavelength filtering providing improved contrast sensitivity |
US10551637B2 (en) | 2006-03-20 | 2020-02-04 | High Performance Optics, Inc. | High performance selective light wavelength filtering providing improved contrast sensitivity |
US11701315B2 (en) | 2006-03-20 | 2023-07-18 | High Performance Optics, Inc. | High energy visible light filter systems with yellowness index values |
US11774783B2 (en) | 2006-03-20 | 2023-10-03 | High Performance Optics, Inc. | High performance selective light wavelength filtering providing improved contrast sensitivity |
JP2010511205A (en) * | 2006-11-28 | 2010-04-08 | ハイ・パフォーマンス・オプティクス・インコーポレーテッド | High-performance selective optical wavelength filtering provides improved contrast sensitivity |
KR20160130263A (en) | 2014-03-07 | 2016-11-10 | 와코 쥰야꾸 고교 가부시키가이샤 | Cynine coloring composition |
US10253118B2 (en) | 2014-03-07 | 2019-04-09 | Fujifilm Wako Pure Chemical Corporation | Cyanine coloring composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4826286A (en) | Filter with three-band transmission for good seeing | |
EP1967891B1 (en) | Spectacle lens and spectacles | |
US5135298A (en) | Sunglass lens | |
EP0772572B1 (en) | Light-absorbing and anti-reflective coating for sunglasses | |
RU2684919C2 (en) | Optical product containing an illuminating coating in the visible area, for conditions of low illumination | |
US9995950B2 (en) | Spectacle lens for car drivers | |
US20060033851A1 (en) | Polarized optical elements enhancing color contrast and methods for their manufacture | |
US11327342B2 (en) | Optical lens for correcting color vision | |
CA2244230A1 (en) | Transparent photochromic article including an anti-reflection surface coating | |
AU2016387726B2 (en) | Polarizing lens for spectacles | |
US4802755A (en) | Dual purpose sunglass lens having gold appearance and method of manufacture | |
JP2523492B2 (en) | Method for manufacturing protective eyeglass lens | |
JPH0293422A (en) | Light shielding spectacles lens | |
US20210325697A1 (en) | An ophthalmic lens for improving night driving vision and a method for obtaining the same | |
WO1997020246A1 (en) | Light transmitting articles with colour enhancing properties | |
JPS638703A (en) | Light shielding lens | |
JPH02103504A (en) | Daylight filter | |
US12130505B2 (en) | Ophthalmic lens for improving vision | |
JP2930964B2 (en) | Eyeglass lens | |
CN104932041A (en) | Vacuum plated blue reflection reducing coating nearsighted lens and vacuum plated blue reflection reducing coating presbyopic lens | |
JP2503068B2 (en) | Eyeglass lenses for lens extractors | |
US20090232979A1 (en) | Pigment-Colored Latex and Method for Treating a Clear Substrate with Said Colored Latex | |
US20240295756A1 (en) | Spectacle lens and method for manufacturing a spectacle lens | |
US20240255779A1 (en) | Optical article with improved visual comfort | |
CN211786445U (en) | Low-refractive-index color-changing lens |