JPH0291979A - Planar optical semiconductor device - Google Patents
Planar optical semiconductor deviceInfo
- Publication number
- JPH0291979A JPH0291979A JP63245254A JP24525488A JPH0291979A JP H0291979 A JPH0291979 A JP H0291979A JP 63245254 A JP63245254 A JP 63245254A JP 24525488 A JP24525488 A JP 24525488A JP H0291979 A JPH0291979 A JP H0291979A
- Authority
- JP
- Japan
- Prior art keywords
- light
- region
- substrate
- type
- gaas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
Landscapes
- Photovoltaic Devices (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は光論理回路などに用いられる光半導体装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical semiconductor device used in optical logic circuits and the like.
従来のGaAs基板28を用いた面形光半導体装置とし
て第2図に断面図で示すような光半導体装置がある。基
板表面から入射した光はG a A s層29により吸
収され、これKよ)電流電圧特性が大きく変化し、光に
よるスイッチング動作を行なう事ができる(ジャーナル
・オブ・アプライド・フィジイックス(Appl 、P
hys、Lett、) 1986年、59巻、596ペ
ージ)。この光半導体装置を多数集積化する事により、
光論理回路を構成する事ができる。As a conventional planar optical semiconductor device using a GaAs substrate 28, there is an optical semiconductor device as shown in a cross-sectional view in FIG. The light incident from the substrate surface is absorbed by the GaAs layer 29, and the current-voltage characteristics change significantly, making it possible to perform a switching operation by light (Journal of Applied Physics (Appl. P
hys, Lett, ) 1986, vol. 59, p. 596). By integrating a large number of these optical semiconductor devices,
Optical logic circuits can be constructed.
しかしながら、GaAs基板に格子整合するAIG a
A s系半導体材料の禁制帯幅はG a A s基板
の禁制帯幅に比べて広くその波長の光はG a A s
基板により吸収されてしまうから、GaAs基板28の
裏面方向からの光入出力が不可能である。したがって、
第2図の構造を基本として面形光デバイスを作るために
は、全て基板表面から光入出力を行なうか、GaAs基
板を除去しなければならず、多層の集積化した光論理回
路を構成する事がむずかしい。従来構造の面形光半導体
装置にはこのような欠点があった。However, AIG a that is lattice matched to the GaAs substrate
The forbidden band width of the As-based semiconductor material is wider than that of the Ga As substrate, and light of that wavelength is Ga As.
Since the light is absorbed by the substrate, it is impossible to input and output light from the back side of the GaAs substrate 28. therefore,
In order to create a planar optical device based on the structure shown in Figure 2, it is necessary to perform all optical input/output from the substrate surface or to remove the GaAs substrate, thereby constructing a multilayer integrated optical logic circuit. Things are difficult. The conventional planar optical semiconductor device has such drawbacks.
前述のa題を解決するために本発明が提供する手段は、
GaAs基板を有し、前記G a A s基板上に結晶
成長した少なくとも1つ以上のAlxGa 1−XAS
(0≦X≦1)量子障壁層とIn、Ga 1−yAs
(0<y≦1)歪量子井戸層とからなる受光領域と、少
なくとも1つ以上のAJuGap−uAs (0≦U≦
1)量子障壁層とInvGa 1−vAs (0< v
≦1)歪量子井戸層とからなる発光領域とを有し、前記
G a A s基板裏面に光入力部を有し、前記受光領
域及び発光領域の禁制帯幅が前記G a A s基板の
禁制帯幅より狭く、前記光入力部から入射した光を前記
受光領域で吸収し、前記発光領域の発光を前記U a
A s基板に垂直な方向から取り出すことを特徴とする
。The means provided by the present invention to solve the above-mentioned problem a are as follows:
At least one or more AlxGa 1-XAS having a GaAs substrate and crystal grown on the GaAs substrate
(0≦X≦1) quantum barrier layer and In, Ga 1-yAs
(0<y≦1) a light-receiving region consisting of a strained quantum well layer, and at least one or more AJuGap-uAs (0≦U≦
1) Quantum barrier layer and InvGa 1-vAs (0< v
≦1) a light-emitting region consisting of a strained quantum well layer, a light input section on the back surface of the GaAs substrate, and a forbidden band width of the light-receiving region and the light-emitting region being the same as that of the GaAs substrate. Narrower than the forbidden band width, the light incident from the light input section is absorbed by the light receiving region, and the light emitted from the light emitting region is absorbed by the U a
It is characterized by being taken out in a direction perpendicular to the As substrate.
上述の本発明の光半導体装置ではG a A s基板と
し、InyGal−yAs (0≦y≦1)を量子井戸
層に用いた歪量子井戸構造となっているから、格子不整
合による結晶の劣化をまねく事なく、歪量子井戸層の発
光受光波長を長くする事ができる。G a A sの禁
制帯幅に比べ発光波長が長いからこの光は、G a A
s基板の吸収を受けず基板を透過する事ができる。し
たがって、本発明の構造では、基板を除去する事なく、
基板裏面方向から光の入出力を行なう事ができる。The above-described optical semiconductor device of the present invention uses a GaAs substrate and has a strained quantum well structure using InyGal-yAs (0≦y≦1) as a quantum well layer, so crystal deterioration due to lattice mismatch is avoided. The wavelength of light emitted and received by the strained quantum well layer can be increased without causing any problems. Since the emission wavelength is longer than the forbidden band width of G a A s, this light is
It can pass through the substrate without being absorbed by the s-substrate. Therefore, in the structure of the present invention, without removing the substrate,
Light can be input and output from the back side of the board.
次に図面を参照して本発明の実施例について説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing one embodiment of the present invention.
本実施例は、n形であるG a A s基板10上にn
形)J 6,4Ga 6,6Asからなるn形りラッド
層11(厚さ1μm)、G a A sよりなる量子障
壁層(厚さ20A)12.14.16とIn 6.35
GaO,65Asからまる歪量子井戸層(厚さ40人)
13.15とからなる受光領域(長さ100μff1)
17及び発光領域(長さ250μff1)18、p形A
10.4Ga(1,6Asからなるp形りラッド層19
.p形G a A sからなるキャップ層20とを分子
線エピタキシー法により結晶成長したのち、蒸着により
p電極21.n電極22を形成し、さらにエツチングに
より、光入力部23.電極分離領域24.45°反射ミ
ラー25、共振器ミラー26゜27を形成した。In this embodiment, n
n-type rad layer 11 (thickness 1 μm) made of J 6,4 Ga 6,6 As, quantum barrier layer (thickness 20 A) 12, 14, 16 made of Ga As, and In 6,35.
Strained quantum well layer consisting of GaO and 65As (40 layers thick)
13. Light receiving area consisting of 15 (length 100μff1)
17 and light emitting region (length 250 μff1) 18, p type A
A p-type rad layer 19 made of 10.4Ga (1,6As)
.. After crystal growth of a cap layer 20 made of p-type GaAs by molecular beam epitaxy, a p-electrode 21. is formed by vapor deposition. The n-electrode 22 is formed and further etched to form the light input section 23. Electrode separation regions 24, 45° reflection mirrors 25, and resonator mirrors 26° and 27 were formed.
発光領域18からの発光波長は1μmであシ、外部から
の光入力がない場合の電流注入発光特性は、受光領域1
7に電流が注入されないから、双安定し、−サとなる。The wavelength of light emitted from the light emitting region 18 is 1 μm, and the current injection light emission characteristics when there is no external light input are as follows:
Since no current is injected into 7, it is bistable and becomes -sa.
発光領域18からの出射光は、45°反射ミラー25に
よりQ B A s基板10の表面から垂直な方向に出
射する。G a A s基板10の裏側から波長1μm
の元を元入力部23に照射すると、元はG a A s
基板10を透過して受光領域17で吸収され、双安定動
作を変化させる。これによ、り、GaAs基板10の裏
面から元を入射させる事によF)、GaAs基板10表
面からの出射″yt、をスイッチする事ができた。また
、この光半導体装置を2つ重ね、下側の出力光を上側の
光入力部に入射させる事により、基板に垂直な方向の信
号伝達を行なう事ができた。The light emitted from the light emitting region 18 is emitted by the 45° reflection mirror 25 in a direction perpendicular to the surface of the Q BAs substrate 10 . Wavelength 1 μm from the back side of the GaAs substrate 10
When the source of is irradiated to the source input section 23, the source is G a A s
The light passes through the substrate 10 and is absorbed in the light receiving region 17, changing the bistable operation. As a result, it was possible to switch F) and output ``yt'' from the front surface of the GaAs substrate 10 by inputting the source from the back surface of the GaAs substrate 10. In addition, two of these optical semiconductor devices were stacked one on top of the other. By inputting the output light from the lower side into the optical input section at the upper side, it was possible to transmit signals in the direction perpendicular to the substrate.
この光半導体装置を集積化する事により、多層の光論理
回路を構成する事ができる。By integrating this optical semiconductor device, a multilayer optical logic circuit can be constructed.
上述のように本発明によ、9GaAs基板を用いて、基
板の裏側から光入力を行なう華ができる。また、本発明
の構造では基板に垂直な方向に入出力を行なえるから集
積化が容易であシ、多層の光論理l路を構成する事が可
能となった。また、(jaAs電子デバイスと集積化す
る事により、高密度な光電気集積回路が容易に作製でき
るようになった。As described above, according to the present invention, a 9GaAs substrate is used to create a structure in which light is input from the back side of the substrate. Furthermore, since the structure of the present invention allows input/output to be performed in a direction perpendicular to the substrate, integration is easy, and a multilayer optical logic path can be constructed. Furthermore, by integrating with jaAs electronic devices, high-density optoelectronic integrated circuits can now be easily produced.
第1図は本発明の一実施例を不す断面図、第2図は従来
の面形光半導体装置の断面図である。
l Q−−・GaAs基板、11・ n形りクッド、1
2゜14.16・・・量子障壁層、13.15・・・歪
量子井戸J−117・・・受光領域、18・・・発光領
域、19・・・p形りラッド層、20・・・キャップ層
、21・・・p電極、22・・・n電極、23・・・光
入力部、24・・・電極分離領域、25°°°45°反
射ミラー 26.27・・・共振器ミラー28−・・G
aAs基板、29 ・”GaAs層。
代理人 弁理士 本 庄 伸 介FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional planar optical semiconductor device. l Q--GaAs substrate, 11, n-shaped quad, 1
2゜14.16... Quantum barrier layer, 13.15... Strained quantum well J-117... Light receiving region, 18... Light emitting region, 19... P-shaped rad layer, 20... - Cap layer, 21...p electrode, 22...n electrode, 23...light input section, 24...electrode separation region, 25°°°45° reflection mirror 26.27...resonator Mirror 28-...G
aAs substrate, 29 ・GaAs layer. Agent: Shinsuke Honjo, patent attorney
Claims (1)
た少なくとも1つ以上のAl_xGa_1_−_xAs
(0≦x≦1)量子障壁層とIn_yGa_1_−_y
As(0<y≦1)歪量子井戸層とからなる受光領域と
、少なくとも1つ以上のAl_uGa_1_−_uAs
(0≦u≦1)量子障壁層とIn_vGa_1_−_v
As(0<v≦1)歪量子井戸層とからなる発光領域と
を有し、前記GaAs基板裏面に光入力部を有し、前記
受光領域及び発光領域の禁制帯幅が前記GaAs基板の
禁制帯幅より狭く、前記光入力部から入射した光を前記
受光領域で吸収し、前記発光領域の発光を前記GaAs
基板に垂直な方向から取り出すことを特徴とする面形光
半導体装置。having a GaAs substrate, at least one Al_xGa_1_-_xAs crystal grown on the GaAs substrate;
(0≦x≦1) quantum barrier layer and In_yGa_1_-_y
a light-receiving region consisting of an As (0<y≦1) strained quantum well layer and at least one Al_uGa_1_−_uAs
(0≦u≦1) quantum barrier layer and In_vGa_1_-_v
an As (0<v≦1) strained quantum well layer, and a light input portion on the back surface of the GaAs substrate, and the forbidden band width of the light receiving region and the light emitting region is within the forbidden range of the GaAs substrate. narrower than the band width, the light incident from the light input section is absorbed by the light receiving region, and the light emitted from the light emitting region is absorbed by the GaAs.
A planar optical semiconductor device characterized by being extracted from a direction perpendicular to a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63245254A JPH088393B2 (en) | 1988-09-29 | 1988-09-29 | Flat optical semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63245254A JPH088393B2 (en) | 1988-09-29 | 1988-09-29 | Flat optical semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0291979A true JPH0291979A (en) | 1990-03-30 |
JPH088393B2 JPH088393B2 (en) | 1996-01-29 |
Family
ID=17130945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63245254A Expired - Lifetime JPH088393B2 (en) | 1988-09-29 | 1988-09-29 | Flat optical semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH088393B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05175598A (en) * | 1991-12-25 | 1993-07-13 | Sanyo Electric Co Ltd | Semiconductor laser device |
-
1988
- 1988-09-29 JP JP63245254A patent/JPH088393B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05175598A (en) * | 1991-12-25 | 1993-07-13 | Sanyo Electric Co Ltd | Semiconductor laser device |
Also Published As
Publication number | Publication date |
---|---|
JPH088393B2 (en) | 1996-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4378255A (en) | Method for producing integrated semiconductor light emitter | |
US5500868A (en) | Vertical-to-surface transmission electro-photonic device with ion implanted current control regions | |
US5159603A (en) | Quantum well, beam deflecting surface emitting lasers | |
CA2007383C (en) | Semiconductor optical device | |
US5469458A (en) | Surface-emitting semiconductor device | |
US5225692A (en) | Non-linear quantum semiconductor optical device having a signal-to-noise ratio | |
CA2051453C (en) | Long wavelength transmitter opto-electronic integrated circuit | |
EP0249645B1 (en) | Optoelectronic voltage-controlled modulator | |
JPS5943836B2 (en) | semiconductor light emitting device | |
JPH03236276A (en) | Optical functional element | |
JPH0291979A (en) | Planar optical semiconductor device | |
JP2758472B2 (en) | Light modulator | |
US5805628A (en) | Semiconductor laser | |
JP2789644B2 (en) | Light modulator | |
US5937313A (en) | Method of forming quantum wire for compound semiconductor | |
JP2689694B2 (en) | Manufacturing method of surface emitting semiconductor laser | |
JPH0685456B2 (en) | Method of manufacturing semiconductor laser device | |
JPH0878773A (en) | Surface emitting semiconductor laser | |
JPH05308173A (en) | Semiconductor laser | |
JPS63211785A (en) | Multiple quantum well type optical bistable semiconductor laser | |
JP2780307B2 (en) | Semiconductor laser | |
JPH03283479A (en) | semiconductor laser equipment | |
JPH0685386A (en) | Semiconductor laser element | |
JPH03290614A (en) | Optical modulator | |
JPH0710017B2 (en) | Method of manufacturing semiconductor laser device |