[go: up one dir, main page]

JPH0291779A - Information recognizing system - Google Patents

Information recognizing system

Info

Publication number
JPH0291779A
JPH0291779A JP63242212A JP24221288A JPH0291779A JP H0291779 A JPH0291779 A JP H0291779A JP 63242212 A JP63242212 A JP 63242212A JP 24221288 A JP24221288 A JP 24221288A JP H0291779 A JPH0291779 A JP H0291779A
Authority
JP
Japan
Prior art keywords
distance
information
threshold
candidates
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63242212A
Other languages
Japanese (ja)
Other versions
JP2812391B2 (en
Inventor
Toru Futaki
徹 二木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63242212A priority Critical patent/JP2812391B2/en
Publication of JPH0291779A publication Critical patent/JPH0291779A/en
Application granted granted Critical
Publication of JP2812391B2 publication Critical patent/JP2812391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Character Discrimination (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To include a correct recognized result and to more efficiently contract the number of candidates by generating the threshold to contract the candidates by the maximum value and the minimum value of the distance of a pattern inputted to a contraction function and a standard pattern. CONSTITUTION:The distance of respective standard vector information groups of the pattern information of input information extracted by an extracting means 2 is calculated by a calculating means and based on the minimum distance, the threshold is determined by a threshold determining part 8. Thereafter, the distance group calculated by the determined threshold is contracted and the candidate group based on the standard vector corresponding with selection outputting means 7 and 9 is outputted. Thus, when the information to be a recognizing object is recognized and a candidate is outputted, the correct recognized result can be included in a small number of output candidates with high probability. By generating the threshold contracting the candidates by the maximum value and the minimum value of the distance of the pattern inputted to the contraction function and the standard pattern, the correct recognized result is included and the contraction of the number of candidates is made more effective.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はパターン認識方式、詳しくは認識対象情報を入
力し、対応する候補群を出力する情報認識方式に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pattern recognition method, and more particularly to an information recognition method that inputs recognition target information and outputs a corresponding group of candidates.

[従来の技術] 従来、パターン認識装置は第5図に示す様な構成をして
いた。
[Prior Art] Conventionally, a pattern recognition device has a configuration as shown in FIG.

図中、51は音声信号・文字画像・図形画像等の入力パ
ターンを電気信号に変換する入力部、52は入力信号か
ら入力パターンに固有の特徴を抽出し特徴ベクトルを生
成する特徴抽出部である。
In the figure, 51 is an input unit that converts input patterns such as audio signals, character images, graphic images, etc. into electrical signals, and 52 is a feature extraction unit that extracts features specific to the input pattern from the input signal and generates a feature vector. .

尚、入力部51及び特徴抽出部52の構成は公知の技術
なので、その詳細は省略する。53は認識対象となるパ
ターンのテンプレートとなる標準的な値(標準ベクトル
)を登録しておく辞書部である。標準ベクトルは予め複
数の学習データから特徴抽出部52と同じアルゴリズム
に従って特徴抽出を行い、統計的処理によって得られた
平均値・標準偏差等の値から構成されている。54は入
力パターンの特徴ベクトルと辞書の標準ベクトルを比較
し、各標準パターンとの距離を計算する照合部、55は
入力パターンに類似した標準ベクトルを選び出すために
、照合部54で得られた距離の値を小さい順に並べ換え
、距離の小さい方から複数個の標準ベクトルを選び出す
ソーティング部、56はソーティング55部からの出力
をデイスプレィに表示したり、さらに他のデバイスへの
転送を行う出力部である。
Note that the configurations of the input section 51 and the feature extraction section 52 are well-known techniques, so the details thereof will be omitted. Reference numeral 53 denotes a dictionary section in which standard values (standard vectors) serving as templates of patterns to be recognized are registered. The standard vector is made up of values such as the average value and standard deviation obtained by performing feature extraction in advance from a plurality of learning data according to the same algorithm as the feature extraction unit 52 and by statistical processing. 54 is a matching unit that compares the feature vector of the input pattern with the standard vector in the dictionary and calculates the distance to each standard pattern. 55 is the distance obtained by the matching unit 54 in order to select a standard vector similar to the input pattern. 56 is an output section that displays the output from the sorting section 55 on a display or transfers it to other devices. .

[発明が解決しようとしている課題] さて、上述した構成における従来例では、入力パターン
に最も類似したパターンを選び出すためにソーティング
を行っているが、完全な順序付けを行うソーティングの
場合、認識対象となるパターンの数をNとしたとき、ど
んなアルゴリズムを用いてもO(N  logN)の計
算量が必要になる。また、距離が最も小さいパターン1
個だけ選び出すだけならば0(N)の計算量で済むが、
実際には候補として複数個のパターンが必要なので、O
(N−Nlog N)の計算■を必要とし、Nが大きく
なると非常に処理時間がかかり、全体のスループットを
大きく低下させるという欠点があった。
[Problem to be solved by the invention] Now, in the conventional example with the above-mentioned configuration, sorting is performed to select the pattern that is most similar to the input pattern, but in the case of sorting that performs complete ordering, the recognition target When the number of patterns is N, no matter what algorithm is used, a calculation amount of O(N logN) is required. Also, pattern 1 with the smallest distance
If you only select the pieces, the amount of calculation is 0(N), but
In reality, multiple patterns are required as candidates, so
(N-Nlog N) calculation (2) is required, and as N becomes large, processing time becomes extremely long, resulting in a disadvantage that the overall throughput is greatly reduced.

本発明は係る従来技術に鑑みなされたものであり、少な
い出力候補中に正しい認識結果を高い確率で含ませるこ
とを可能にした情報認識方式を提供しようとするもので
ある。
The present invention has been made in view of the related art, and aims to provide an information recognition method that makes it possible to include correct recognition results with a high probability among a small number of output candidates.

[課題を解決するための手段] この課題を解決するために本発明は以下に示す構成を備
える。
[Means for Solving the Problem] In order to solve this problem, the present invention includes the configuration shown below.

すなわち、 認識対象情報を入力し、対応する候補群を出力する情報
認識方式において、入力した情報固有特徴を入力パター
ン情報として抽出する抽出手段と、認識対象情報に対す
る標準ベクトル情報群を記憶する記憶手段と、前記入力
パターン情報の前記標準ベクトル情報群夫々に対する距
離を算出する算出手段と、算出された最小距離を検出す
る検出手段と、算出された最小距離に基づいて閾値な決
定する閾値決定手段と、該決定手段で決定された閾値に
基づき、前記算出手段で算出された距離群を絞り込む絞
り込み手段と、該絞り込み手段で絞り込まれた距離群に
対応する標準ベクトル情報に基づく候補群を選択し、出
力する選択出力手段とを備える。
That is, in an information recognition method that inputs recognition target information and outputs a corresponding candidate group, there is an extraction means for extracting input information-specific features as input pattern information, and a storage means for storing a standard vector information group for the recognition target information. a calculating means for calculating a distance of the input pattern information to each of the standard vector information groups; a detecting means for detecting the calculated minimum distance; and a threshold determining means for determining a threshold based on the calculated minimum distance. , a narrowing means for narrowing down the distance group calculated by the calculating means based on the threshold determined by the determining means, and selecting a candidate group based on standard vector information corresponding to the distance group narrowed down by the narrowing means; and a selection output means for outputting the output.

[作用] かかる本発明の構成において、抽出手段で抽出された入
力情報のパターン情報の標準ベクトル情報群夫々との距
離を算出手段で算出し、その最小距離に基づいて閾値を
決定する。この後、決定された閾値でもって算出された
距離群を絞り込み、選択出力手段によって対応する標準
ベクトルに基づく候補群を出力するものである。
[Operation] In the configuration of the present invention, the calculation means calculates the distance between the pattern information of the input information extracted by the extraction means and each standard vector information group, and the threshold value is determined based on the minimum distance. Thereafter, the calculated distance group is narrowed down using the determined threshold value, and the selection output means outputs a candidate group based on the corresponding standard vector.

[実施例] 以下、添付図面に従って本発明に係る実施例を詳細に説
明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

〈第1の実施例の説明(第1図〜第4図)〉第1図に本
実施例のパターン認識装置のブロック構成図を示す。
<Description of the first embodiment (FIGS. 1 to 4)> FIG. 1 shows a block diagram of the pattern recognition apparatus of this embodiment.

図中の入力部1、特徴抽出部2、標準パターンを登録し
ておく辞書部3、出力部9は第5図の従来例のそれぞれ
51,52,53.56に同じである。
The input section 1, feature extraction section 2, dictionary section 3 in which standard patterns are registered, and output section 9 in the figure are the same as 51, 52, 53, and 56, respectively, in the conventional example shown in FIG.

以下、照合部4よりその具体的な処理内容を説明する。The specific processing contents of the collation unit 4 will be explained below.

照合部4は、特徴抽出部2によって入力パターンから得
られた特徴ベクトルf、(j=1.2.・・、NUNは
次元数)と、標準パターンとして予め辞書に登録しであ
る候補文字にの標準ベクトルmk、 (j=t。
The matching unit 4 combines the feature vector f, (j = 1.2..., NUN is the number of dimensions) obtained from the input pattern by the feature extraction unit 2 with a candidate character registered in advance in the dictionary as a standard pattern. standard vector mk, (j=t.

2、・・・、N、に=1.2.・・・、M:Mは認識対
象カテゴリー数)との距離d (k)を次式で定義され
るシティブロック距離で算出する。
2,...,N=1.2. ..., M: M is the number of categories to be recognized) and the distance d (k) is calculated by the city block distance defined by the following formula.

d  (k)  =ΣlfJ   mk、l    ・
・’■wl この距離計算は、すべての認識パターンの平均ベクトル
に対して行われ、最小値検出部5では得られたd(k)
(k・1.2.・・・、M)の中で最小の値d1□を選
び出す。具体的には、最小値検出部5は第1回目の0式
の計算結果(・d(1))を最小値記憶部6に、無条件
に最小値CI+inとして記憶しておき、全てのkに対
する0式によるd (k)と比較していって、小さい値
を最小値記憶部6に記憶更新する。すなわち、全ての標
準ベクトルとの照合が終えた時点での最小値記憶部6に
記憶された値が目的最小値dイ1nとなるわけである。
d (k) = ΣlfJ mk, l ・
・'■wl This distance calculation is performed on the average vector of all recognition patterns, and the minimum value detection unit 5 calculates the obtained d(k)
The minimum value d1□ is selected from (k・1.2. . . , M). Specifically, the minimum value detection unit 5 unconditionally stores the first calculation result of equation 0 (・d(1)) in the minimum value storage unit 6 as the minimum value CI+in, and all k The smaller value is compared with d (k) according to the formula 0 and the smaller value is stored and updated in the minimum value storage unit 6. That is, the value stored in the minimum value storage unit 6 at the time when all the standard vectors have been compared becomes the target minimum value d1n.

こうして、標準ベクトルのとの最小値d1゜が決定する
と、閾値決定部8は、その最小値dw+Inに基づいて
候補選択のための閾値dtを決定する。
In this way, when the minimum value d1° of the standard vector is determined, the threshold value determination unit 8 determines the threshold value dt for candidate selection based on the minimum value dw+In.

この、閾値dtを求めるための関数γ(dln)の決定
方法について以下で説明する。
A method for determining the function γ(dln) for determining the threshold value dt will be described below.

第2図は縦軸にd (k)を、そして横軸にdminを
プロットして示したグラフである。ただし、正解(入力
パターンが表している本当のパターン)に対する距離を
“○”印で、それ以外を“Δ”印で表わしている。尚、
以下の説明において、“○”印の正解に対する距離なd
cと言うことにする。
FIG. 2 is a graph in which d(k) is plotted on the vertical axis and dmin is plotted on the horizontal axis. However, the distance to the correct answer (the real pattern represented by the input pattern) is indicated by a "○" mark, and the other distances are indicated by a "Δ" mark. still,
In the following explanation, the distance d from the correct answer marked with “○”
Let's call it c.

さて、ひとつの入力パターンに対してM個の標準パター
ンとの距離を求めるので、202或いは203の破線で
囲まれた部分のようにひとつのdmlnに対してM個の
点がプロットされる。ただし同図においては枠外に出る
点はプロットしていない。
Now, since the distances between one input pattern and M standard patterns are determined, M points are plotted for one dmln, as in the area surrounded by the broken line 202 or 203. However, in the figure, points that fall outside the frame are not plotted.

dmlnはd (k) (k=1.2.−・・、M)の
中での最小値なので、すべての点(“○°°印や“△”
印)は直線201より下にくることはない。特徴抽出及
び距離計算が理想的に行われていれば、領域202のよ
うに正解に対する距離dcとdmlnは一致するが、実
際の認識処理においては、両者が必ず一致するとは限ら
ず、領域203のように正解でない誤ったパターンに対
するd (i)がdmlnとなることもある(距離de
とdlnが一致しない)。しかしながら、この様な場合
でも、正解に対する距離d、はdmlnに対してあまり
大きくはならないのが普通である。
Since dmln is the minimum value in d(k) (k=1.2.-...,M), all points (“○°°mark” or “△”
mark) is never below the straight line 201. If feature extraction and distance calculation were performed ideally, the distances dc and dmln for the correct answer would match, as in the region 202, but in actual recognition processing, they do not always match, and the distances in the region 203 d (i) for an incorrect pattern that is not correct may be dmln (distance de
and dln do not match). However, even in such a case, the distance d to the correct answer is usually not very large with respect to dmln.

ここで、多くの入力パターンに対する実験的解析の結果
得られたdcとd、、1゜の関係を第3図に示す。尚、
同図においても、正解(入力パターンが表している本当
のパターン)に対するd (i)を”○”印で、それ以
外を“△”印で示した。
Here, FIG. 3 shows the relationship between dc and d, 1°, which was obtained as a result of experimental analysis for many input patterns. still,
In the figure as well, d(i) for the correct answer (the real pattern represented by the input pattern) is shown with a "○" mark, and the others are shown with a "△" mark.

そこで、入力情報(パターン)に対する認識結果を出力
部9を介して出力するときには、いかにして出力する候
補数を少なくするかを決定するときには、これら多くの
ケースに対する“○”印を含ませる曲線を閾値とすれば
良いことがわかる。
Therefore, when outputting the recognition results for input information (patterns) via the output unit 9, when determining how to reduce the number of candidates to be output, it is necessary to use a curve that includes "○" marks for many of these cases. It can be seen that it is sufficient to use this as the threshold value.

本実施例では距離dcを表す点(“O”印)をほぼすべ
て含み、それ以外の距離を表す点がなるべく含まれない
ようにするため、次の形の関数を選んだ。
In this example, a function of the following form was selected in order to include almost all the points (marked with "O") representing the distance dc and to avoid including as many points representing other distances as possible.

y  (dmln )  =a、rゴτ−+b    
・・・■(a、b:定数) この■式で示したのが図示の曲線208であり、閾値決
定部8は、まさにこの関数に基づく閾値dt(−γ(d
、to))を発生する。
y (dmln) = a, rgo τ−+b
... ■(a, b: constants) The curve 208 shown in the figure is shown by this formula ■, and the threshold value determination unit 8 calculates the threshold value dt(-γ(d
, to)).

そして、候補選択部7は閾値決定部8よりの出力された
閾値dtに従って、d (k)<dtを満足するd (
k)を選び出し、候補として出力部9より出力する。
Then, the candidate selection unit 7 follows the threshold value dt output from the threshold value determination unit 8 and satisfies d (k)<dt.
k) is selected and output from the output unit 9 as a candidate.

尚、■式における定数a、bの値を変え、第4図の曲線
207のようにグラフ全体を持ち上げると、候補に含ま
れない、すなわち誤った候補の選択を行う確率は小さく
なるが、平均候補数は増加し候補絞り込みの効率が落ち
ることは第3図の分布より明らかである。一方、曲線2
08のようにグラフを下げると、逆の傾向になることが
わかる。このようにして装置の適用対象に応じてパラメ
ータa、bを調節し、最適な候補選択率及び平均候補数
を与えることが可能である。
Note that if you change the values of constants a and b in equation (2) and raise the entire graph as shown in curve 207 in Figure 4, the probability of not being included in the candidates, that is, selecting the wrong candidate, decreases, but the average It is clear from the distribution in FIG. 3 that the number of candidates increases and the efficiency of narrowing down candidates decreases. On the other hand, curve 2
If you move the graph down like 08, you will see that the opposite trend occurs. In this way, it is possible to adjust the parameters a and b according to the application target of the apparatus, and to provide the optimum candidate selection rate and average number of candidates.

例えば、パラメータa、bは入力する情報の種類(音声
、文字、図形画像等)或いは入力環境(手書き文字入力
である場合には、記入者の区別等)により、適宜変更す
れば良い。
For example, the parameters a and b may be changed as appropriate depending on the type of information to be input (voice, text, graphic image, etc.) or the input environment (in the case of handwritten character input, the distinction of the person writing the information, etc.).

尚、出力部9を介して出力された候補群はデイスプレィ
をはじめ、他のデバイスに出力される。
Note that the candidate group outputted via the output unit 9 is outputted to other devices including a display.

く第2の実施例の説明〉 上述した実施例では候補を絞り込む関数としてdmin
のみを用いたが、殆どのd(k)(k・1・・・N)が
その閾値dt内に納まる可能性がなくもない。そこで、
本節2の実施例では、この様な事態が発生した場合でも
、より効率的に絞り込む例を説明する。
Description of the second embodiment> In the embodiment described above, dmin is used as a function to narrow down the candidates.
Although only dt was used, there is a possibility that most of d(k) (k·1...N) falls within the threshold dt. Therefore,
In the embodiment of this section 2, an example will be described in which even if such a situation occurs, narrowing down the search results more efficiently.

第6図は第2の実施例の構成を表すブロック図で、人力
部61、特徴抽出部62、辞書部63、照合部64、候
補選択部67及び出力部69は第1の実施例の該当部分
と同じ構成である。
FIG. 6 is a block diagram showing the configuration of the second embodiment, in which a human power section 61, a feature extraction section 62, a dictionary section 63, a collation section 64, a candidate selection section 67, and an output section 69 correspond to those of the first embodiment. It has the same structure as the part.

最大値・最小値検出部65では、各標準ベクトルとの距
離d (k) (k−1,2,・・・、 M)の中で最
大値dmaXと最小値dllll11を検出(最小値検
出は先の第1の実施例と同様、最大値検出はその原理を
逆にすれば良いので説明は割愛する)し、最大値・最小
値記憶部66に記憶する。閾値値決定部68ではd□。
The maximum value/minimum value detection unit 65 detects the maximum value dmaX and the minimum value dllll11 among the distances d (k) (k-1, 2, ..., M) from each standard vector (minimum value detection is As in the first embodiment, the maximum value is detected by reversing the principle, so the explanation will be omitted), and the maximum value is stored in the maximum value/minimum value storage section 66. In the threshold value determination unit 68, d□.

及びdmaxの値を用いて次の式に従って候補選択のた
めの閾値dtを決定する。
A threshold value dt for candidate selection is determined according to the following equation using the values of and dmax.

dt=d1. +(d、、、 dmln)Xθただし、
θはOくθく1を満たす実数で、本実施例ではθ;0.
1としている。
dt=d1. +(d,,, dmln)Xθ However,
θ is a real number that satisfies O×θ×1, and in this example, θ;0.
It is set as 1.

以上、説明した様に本実施例によれば、認識対象となる
情報の認識し、その候補を出力するとき、正しい認識結
果を高い確立で含み、且っ出力される候補数を絞り込む
ことが可能となる。
As described above, according to this embodiment, when recognizing information to be recognized and outputting candidates, it is possible to include correct recognition results with a high probability and narrow down the number of output candidates. becomes.

しかも二重ループとなるロジックがないので高速の処理
が可能である。
Moreover, since there is no double loop logic, high-speed processing is possible.

また、絞り込み関数に入力したパターンと標準パターン
との距離の最大値d、□及び最小値d+alnによる閾
値な発生することにより、正しい認識結果を含み、しか
も候補数の絞り込みをより効率的にすることが可能とな
る。
In addition, by generating threshold values based on the maximum values d, □ and the minimum value d+aln of the distance between the pattern input to the narrowing down function and the standard pattern, it is possible to include correct recognition results and to narrow down the number of candidates more efficiently. becomes possible.

尚、上述した第1及び第2の実施例における認識対象と
なる入力情報は特に限定しなかったが、これは本発明の
原理を用いれば、音声、文字、図形等の認識創始に適応
可能なためである。
Although the input information to be recognized in the above-mentioned first and second embodiments is not particularly limited, it can be applied to the recognition of speech, characters, graphics, etc. by using the principles of the present invention. It's for a reason.

また、閾値決定に係る算術式であるが、要は正しい認識
結果を含む様な関数であれば良いわけであるから、上述
した第1及び第2の実施例の■及び■式に限定されるも
のではない。
In addition, the arithmetic expressions related to determining the threshold value are limited to the formulas ① and ② of the first and second embodiments described above, since the point is that any function that includes the correct recognition result is sufficient. It's not a thing.

また、本発明は特許請求の範囲に記載された範囲内で適
宜変更可能であって、本実施例によって、その構成が限
定されるものではない。
Further, the present invention can be modified as appropriate within the scope of the claims, and the configuration is not limited to the present embodiment.

[発明の効果] 以上説明したように本発明によれば、認識対象となる情
報の認識し、その候補を出力するとき、少ない出力候補
数中に正しい認識結果を高い確率で含ませることが可能
となる。
[Effects of the Invention] As explained above, according to the present invention, when recognizing information to be recognized and outputting its candidates, it is possible to include correct recognition results with a high probability in a small number of output candidates. becomes.

特に、絞り込み関数に入力したパターンと標準パターン
との距離の最大値及び最小値によって、候補を絞り込む
閾値な発生することにより、正しい認識結果を含み、し
かも候補数の絞り込みをより効率的にすることが可能と
なる。
In particular, by generating thresholds for narrowing down candidates based on the maximum and minimum distances between the pattern input to the narrowing down function and the standard pattern, correct recognition results can be included and the number of candidates can be narrowed down more efficiently. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の実施例におけるブロック構成図、 第2図は入力パターンと標準パターンとの距離の分布例
を示す図、 第3図は距離の分布と閾値決定のための関数曲線を示す
図、 第4図は閾値関数のパラメータ変化によるの変化を示す
図、 第5図は従来例の情報認識装置のブロック構成図、そし
て、 第6図は第2の実施例のブロック構成図である。 抽a部、3及び63・・・辞書部、4及び64・・・照
合部、5・・・最小値検出部、6・・・最小値記憶部、
7及び67・・・候補選択部、8及び68・・・閾値決
定部、9及び69・・・出力部、65・・・最小値・最
大値検出部、66・・・最小値・最大値記憶部である。 図中、l及び61・・・入力部、2及び62・・・特徴
drnln 弔 図 min 第 図
Fig. 1 is a block diagram of the first embodiment, Fig. 2 is a diagram showing an example of the distribution of distance between the input pattern and the standard pattern, and Fig. 3 is a diagram showing the distribution of distance and a function curve for determining the threshold value. Figure 4 is a diagram showing changes in the threshold function due to parameter changes, Figure 5 is a block diagram of a conventional information recognition device, and Figure 6 is a block diagram of a second embodiment. . extraction part, 3 and 63... dictionary part, 4 and 64... collation part, 5... minimum value detection part, 6... minimum value storage part,
7 and 67...Candidate selection unit, 8 and 68...Threshold value determination unit, 9 and 69...Output unit, 65...Minimum value/maximum value detection unit, 66...Minimum value/maximum value This is the storage section. In the figure, l and 61...input section, 2 and 62...characteristic drnln funeral map min figure

Claims (2)

【特許請求の範囲】[Claims] (1)認識対象情報を入力し、対応する候補群を出力す
る情報認識方式において、 入力した情報固有特徴を入力パターン情報として抽出す
る抽出手段と、 認識対象情報に対する標準ベクトル情報群を記憶する記
憶手段と、 前記入力パターン情報の前記標準ベクトル情報群夫々に
対する距離を算出する算出手段と、算出された最小距離
を検出する検出手段と、算出された最小距離に基づいて
閾値を決定する閾値決定手段と、 該決定手段で決定された閾値に基づき、前記算出手段で
算出された距離群を絞り込む絞り込み手段と、 該絞り込み手段で絞り込まれた距離群に対応する標準ベ
クトル情報に基づく候補群を選択し、出力する選択出力
手段とを備えることを特徴とする情報認識方式。
(1) An information recognition method that inputs recognition target information and outputs a corresponding candidate group, which includes an extraction means that extracts the input information-specific features as input pattern information, and a memory that stores a standard vector information group for the recognition target information. means, a calculating means for calculating a distance of the input pattern information to each of the standard vector information groups, a detecting means for detecting the calculated minimum distance, and a threshold determining means for determining a threshold based on the calculated minimum distance. a narrowing means for narrowing down the distance groups calculated by the calculating means based on the threshold determined by the determining means; and selecting a candidate group based on standard vector information corresponding to the distance group narrowed down by the narrowing means. , and a selection output means for outputting.
(2)更には、算出手段で算出された距離群の最大距離
を検出する第2の検出手段を備え、閾値決定手段は検出
手段及び前記第2の検出手段で検出された最小距離及び
最大距離に基づいて、閾値を決定することを特徴とする
請求項第1項に記載の情報認識方式。
(2) Furthermore, a second detection means for detecting the maximum distance of the distance group calculated by the calculation means is provided, and the threshold value determination means is configured to detect the minimum distance and the maximum distance detected by the detection means and the second detection means. 2. The information recognition method according to claim 1, wherein the threshold value is determined based on .
JP63242212A 1988-09-29 1988-09-29 Pattern processing method Expired - Lifetime JP2812391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63242212A JP2812391B2 (en) 1988-09-29 1988-09-29 Pattern processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63242212A JP2812391B2 (en) 1988-09-29 1988-09-29 Pattern processing method

Publications (2)

Publication Number Publication Date
JPH0291779A true JPH0291779A (en) 1990-03-30
JP2812391B2 JP2812391B2 (en) 1998-10-22

Family

ID=17085915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63242212A Expired - Lifetime JP2812391B2 (en) 1988-09-29 1988-09-29 Pattern processing method

Country Status (1)

Country Link
JP (1) JP2812391B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501668A (en) * 1991-08-09 1996-03-26 Boston Scientific Corporation Angioplasty balloon catheter and adaptor
CN102194126A (en) * 2010-03-09 2011-09-21 索尼公司 Information processing apparatus, information processing method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800391A (en) * 1989-09-06 1998-09-01 Boston Scientific Corporation Angioplasty balloon catheter and adaptor
US6033381A (en) * 1989-09-06 2000-03-07 Boston Scientific Corporation Angioplasty balloon catheter and adaptor
US5501668A (en) * 1991-08-09 1996-03-26 Boston Scientific Corporation Angioplasty balloon catheter and adaptor
CN102194126A (en) * 2010-03-09 2011-09-21 索尼公司 Information processing apparatus, information processing method, and program

Also Published As

Publication number Publication date
JP2812391B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
KR20220002066A (en) method, apparatus, computer equipment, computer readable storage medium and computer program for visual qustion answering
CN110929665B (en) Natural scene curve text detection method
CN108171213A (en) A kind of Relation extraction method for being applicable in picture and text knowledge mapping
CN111858878A (en) Method, system and storage medium for automatically extracting answer from natural language text
CN111242060A (en) Method and system for extracting key information of document image
JP2021009571A (en) Face recognition device, learning device and program
JPH0291779A (en) Information recognizing system
CN116758402B (en) Image person relationship identification method, system, equipment and storage medium
CN107609454A (en) A kind of method and device of gesture in identification image
Alamri et al. Intelligent real-life key-pixel image detection system for early Arabic sign language learners
CN110929013A (en) Image question-answer implementation method based on bottom-up entry and positioning information fusion
JPH11272800A (en) Character recognition device
Kirana et al. Ant System for face detection
JP2021177312A (en) Information processing device and information processing method
US20250022301A1 (en) Joint text spotting and layout analysis
JP3209197B2 (en) Character recognition device and recording medium storing character recognition program
Sonawane et al. Indian sign language recognition using key point extractor and LSTM
JP2925303B2 (en) Image processing method and apparatus
US20230095985A1 (en) Information processing apparatus, information processing method, and storage medium
Dongre et al. Smart visual assistance for blind using deep learning approach
Syahyadi et al. Detecting signal transition in dynamic sign language using the R-GB LSTM method
JP2023179247A (en) Image processing apparatus, image processing method, and program
JPS63269267A (en) Character recognizing device
JP2851865B2 (en) Character recognition device
Hu et al. Unbiased Scene Graph Generation Based on Relationship Label Division

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070807

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11