[go: up one dir, main page]

JPH0290683A - Thin film transistor and its manufacturing method - Google Patents

Thin film transistor and its manufacturing method

Info

Publication number
JPH0290683A
JPH0290683A JP63242810A JP24281088A JPH0290683A JP H0290683 A JPH0290683 A JP H0290683A JP 63242810 A JP63242810 A JP 63242810A JP 24281088 A JP24281088 A JP 24281088A JP H0290683 A JPH0290683 A JP H0290683A
Authority
JP
Japan
Prior art keywords
thin film
region
type
source
tpt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63242810A
Other languages
Japanese (ja)
Inventor
Kazumasa Hasegawa
和正 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63242810A priority Critical patent/JPH0290683A/en
Publication of JPH0290683A publication Critical patent/JPH0290683A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6704Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
    • H10D30/6713Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes
    • H10D30/6715Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes characterised by the doping profiles, e.g. having lightly-doped source or drain extensions

Landscapes

  • Thin Film Transistor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高耐圧のgIBトランジスタ(以下TPTと示
す)及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-voltage gIB transistor (hereinafter referred to as TPT) and a method for manufacturing the same.

[従来の技術] 高耐圧TFTは、S、5EKI  et  al。[Conventional technology] High voltage TFTs are S, 5EKI etc.

IEEE  ELECTRON  DEVICELET
TERS、VOL、EDL−8,NO19゜pp、42
5〜427. 1987.  等に示されるように、通
常のTPTと異なり、オフセット領域を持っている。
IEEE ELECTRON DEVICELET
TERS, VOL, EDL-8, NO19゜pp, 42
5-427. 1987. As shown in et al., unlike normal TPT, it has an offset area.

従来の高耐圧TPTは、前記文献に示されるごとく、オ
フセット領域とチャネル領域との不純物濃度が異なって
いた。
In the conventional high voltage TPT, as shown in the above-mentioned literature, the impurity concentrations of the offset region and the channel region are different.

[発明が解決しようとする課題] しかし、従来の高耐圧TPTは、その製造工程において
、不純物混入工程を最低2回要していた。
[Problems to be Solved by the Invention] However, the conventional high voltage TPT requires at least two impurity mixing steps in its manufacturing process.

オフセット領域を形成する工程及びソース、ドレイン領
域を形成する工程である。この高耐圧TPTで相補型(
以下、0MO3型と示す)の回路を組んだ半導体装置を
形成する場合は、前記不純物混入工程が最低4回と多く
、高耐圧TPTを用いた半導体装置が高コストなものと
なるという課題があった。また、従来のオフセット領域
とチャネル領域と不純物濃度が異なる高耐圧TPTにお
いては、オフセット領域を大きくとる必要があり、1個
の高耐圧TPTの占める面積が大きくなり、これを用い
た半導体装置のコスト高に拍車をかけていた。
These are a step of forming an offset region and a step of forming a source and drain region. Complementary type (
When forming a semiconductor device with a 0MO3 type circuit (hereinafter referred to as 0MO3 type), the impurity mixing step is performed at least four times, which poses the problem that the semiconductor device using high voltage TPT becomes expensive. Ta. In addition, in conventional high-voltage TPTs in which the impurity concentration is different from that of the offset region and the channel region, it is necessary to make the offset region large, which increases the area occupied by one high-voltage TPT, which increases the cost of semiconductor devices using this. It was spurring high.

そこで本発明は、高耐圧TPTの不純物混入工程数を低
減し、また、高耐圧TPTのオフセット領域を縮小する
ことによって、高耐圧TPTを用いた半導体装置を低コ
スト化することを目的とするものである。
Therefore, an object of the present invention is to reduce the cost of a semiconductor device using a high-voltage TPT by reducing the number of steps for adding impurities to the high-voltage TPT and reducing the offset region of the high-voltage TPT. It is.

[課題を解決するための手段] 以上の課題を解決するため、本発明の薄膜トランジスタ
は、チャネル領域及びオフセット領域を同じ導電型を有
する同一の不純物で、同一不純物濃度で形成したことを
特徴とする。また、前記チャネル領域及びオフセット領
域におけるp型もしくはn型の導電型を有する不純物濃
度を1015cm”以下としたことを特徴とする。また
、本発明の薄膜トランジスタの製造方法は、ソース、ド
レイン領域の形成時にのみ半導体薄膜中にp型もしくは
n型の導電型を有する不純物を混入する工程を有するこ
とを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the thin film transistor of the present invention is characterized in that the channel region and the offset region are formed with the same impurity having the same conductivity type and at the same impurity concentration. . Further, the method of manufacturing a thin film transistor of the present invention is characterized in that the concentration of impurities having p-type or n-type conductivity in the channel region and the offset region is set to 1015 cm" or less. It is characterized in that it includes a step of occasionally mixing an impurity having p-type or n-type conductivity into the semiconductor thin film.

[実施例] 第1図に、本発明の実施例における高耐圧TFTの製造
工程順の断面図を示す。同図(a)は、ゲート電極形成
工程終了時の断面図である。101は少なくとも表面が
絶縁された基板、102は半導体FNM、103はゲー
ト絶縁膜、104はゲート電極である。基板101上に
半導体fiJg[102を形成し、ゲート絶縁H103
、ゲート電極104を形成する。同図(b)は、ソース
、ドレイン領域形成工程時の断面図であり、105は不
純物の混入を阻止するマスク材料である。イオン注入法
(I/I法)等でp゛領域p型の導電型を有する不純物
濃度が濃い領域)もしくはn9領域(n型の導電型を有
する不純物濃度が濃い領域)を形成し、ソース、ドレイ
ン領域とする。I/I法を用いる場合、マスク材料10
5にはフォトレジスト等が用いられる。ゲート電極端と
ソース、ドレイン領域端の間がオフセット領域となる。
[Example] FIG. 1 shows a cross-sectional view of the manufacturing process order of a high voltage TFT in an example of the present invention. FIG. 5A is a cross-sectional view at the end of the gate electrode forming process. 101 is a substrate whose surface is insulated at least, 102 is a semiconductor FNM, 103 is a gate insulating film, and 104 is a gate electrode. A semiconductor fiJg[102 is formed on the substrate 101, and a gate insulator H103 is formed.
, forming the gate electrode 104. FIG. 5B is a cross-sectional view during the step of forming the source and drain regions, and 105 is a mask material for preventing the incorporation of impurities. A p region (a region with a p-type conductivity type and a high impurity concentration) or an n9 region (a region with an n-type conductivity type and a high impurity concentration) is formed by an ion implantation method (I/I method), etc., and a source, Use as drain region. When using the I/I method, mask material 10
5, a photoresist or the like is used. The offset region is between the end of the gate electrode and the end of the source and drain regions.

半導体薄膜102がSiの場合、混入する不純物はB(
p型)、P(n型)等を用い、不純物濃度は1029c
m−3程度である。同図(c)はソース、ドレイン領域
形成工程終了時の断面図であり、106及び107は同
図(b)に示す工程により形成されたソース、ドレイン
領域、108はチャネル領域及びオフセット領域である
。チャネル領域及びオフセット領域108にはゲート電
極104を形成する工程以降はp型もしくはn型の導電
型を有する不純物は混入されない。このため、本実施例
における不純物混入工程は最低1回でよく、通常のTP
Tを形成する工程と同様の工程で高耐圧TPTが形成で
きる。同図(C)以降に、絶縁膜の形成、配線等がなさ
れ、半導体装置が完成する。
When the semiconductor thin film 102 is made of Si, the impurity mixed in is B(
p type), P (n type), etc., and the impurity concentration is 1029c.
It is about m-3. Figure (c) is a cross-sectional view at the end of the source and drain region forming process, 106 and 107 are the source and drain regions formed by the process shown in Figure (b), and 108 is the channel region and offset region. . Impurities having p-type or n-type conductivity are not mixed into the channel region and offset region 108 after the step of forming the gate electrode 104. Therefore, the impurity mixing step in this example only needs to be carried out at least once, and
A high breakdown voltage TPT can be formed in a process similar to that for forming a T. After FIG. 2C, an insulating film is formed, wiring, etc. are performed, and the semiconductor device is completed.

同実施例において、チャネル領域及びオフセット領域1
08におけるp型もしくはn型の導電型を有する不純物
濃度を1015crrr3以下とすると、半導体薄膜1
02に多結晶Siを用いた場合においてドレイン耐圧が
著しく向上し、オフセット領域が大きく縮小される。多
結晶Si中にpn接合を形成した場合、結晶粒界の欠陥
に起因するリーク電流が多く、逆方向耐、圧も小さい。
In the same embodiment, the channel region and offset region 1
If the impurity concentration having p-type or n-type conductivity in 08 is 1015 crrr3 or less, the semiconductor thin film 1
When polycrystalline Si is used for 02, the drain breakdown voltage is significantly improved and the offset region is greatly reduced. When a pn junction is formed in polycrystalline Si, there is a large amount of leakage current due to defects in grain boundaries, and the reverse resistance and pressure are also small.

高耐圧TPTを形成した場合においても同様で、これを
向上させるには、結晶成長させ結晶粒を大きくするか、
H2プラズマ処理等により欠陥に水素等の原子を添加し
てやる必要があった。ところが、上記のごとくオフセッ
ト領域の不純物濃度を1015cm−”以下とすると、
特に結晶成長とか、H2プラズマとかの工程を要するこ
と無くドレイン耐圧が向上し、オフセット領域が縮小で
きる。例えば、従来は100Vのドレイン耐圧を得るの
にオフセット長(第1図(C)におけるゲート電極端と
ソース、ドレイン領域端との距Wl)が20μm必要で
あったが、これを半分の10μmとすることができた。
The same is true when forming a high breakdown voltage TPT; to improve this, either grow the crystals to make them larger, or
It was necessary to add atoms such as hydrogen to the defects by H2 plasma treatment or the like. However, if the impurity concentration in the offset region is set to 1015 cm-" or less as described above,
In particular, the drain breakdown voltage can be improved and the offset region can be reduced without requiring processes such as crystal growth or H2 plasma. For example, conventionally, to obtain a drain breakdown voltage of 100V, an offset length (distance Wl between the end of the gate electrode and the end of the source and drain regions in FIG. 1(C)) was required to be 20 μm, but this was reduced to half, 10 μm. We were able to.

第2図に、本発明の実施例におけるCMO8型高耐圧T
PTを用いた半導体装置の製造工程順の断面図を示す。
Figure 2 shows a CMO8 type high voltage T in an embodiment of the present invention.
1A and 1B are cross-sectional views showing the order of manufacturing steps of a semiconductor device using PT.

同図(a)は、Pch  TFTのソース、ドレイン領
域を形成するため、選択的にp型の導電型を有する不純
物を混入する工程時の断面図であり、第1図と同一の記
号は第1図と同一のものを表す。同図(b)は、Nch
  TFTのソース、ドレイン領域を形成するため、選
択的にn型の導電型を有する不純物を混入する工程時の
断面図である。201及び202は同図(a)の工程で
形成されたPch  TFTのソース、ドレイン領域で
あり、203はPch  TFTのチャネル領域及びオ
フセット領域である。同図(C)は、CMO8型高耐圧
TPTのソース、ドレイン領域形成工程終了時の断面図
である。204及び205は同図(b)の工程で形成さ
れたNchTFTのソース、ドレイン領域であり、20
6はNch  TFTのチャネル領域及びオフセット領
域である。以上の実施例でわかるように、CMO8型高
耐圧TPTを形成する場合において、不純物混入工程は
最低2回でよく、従来の最低4回に比べ大幅に製造工程
が短縮される。
FIG. 1(a) is a cross-sectional view during the process of selectively mixing impurities with p-type conductivity to form the source and drain regions of a Pch TFT, and the same symbols as in FIG. Represents the same thing as Figure 1. In the same figure (b), Nch
FIG. 3 is a cross-sectional view during a step of selectively incorporating impurities having an n-type conductivity type in order to form source and drain regions of a TFT. Reference numerals 201 and 202 are the source and drain regions of the Pch TFT formed in the process shown in FIG. 3A, and 203 is the channel region and offset region of the Pch TFT. FIG. 5(C) is a cross-sectional view at the end of the process of forming the source and drain regions of the CMO8 type high breakdown voltage TPT. 204 and 205 are the source and drain regions of the Nch TFT formed in the process shown in FIG.
6 is a channel region and an offset region of the Nch TFT. As can be seen from the above embodiments, when forming a CMO8 type high breakdown voltage TPT, the impurity mixing process may be performed at least twice, which significantly shortens the manufacturing process compared to the conventional process of at least four times.

以上述べた実施例は、ゲート電極の両側にオフセット領
域を持つTPTを用いた例であるが、ゲート電極の片側
のみオフセット領域を持つTPTを用いる場合において
も、本発明を適用すればよい。また、もちろんチャネル
領域及びオフセット領域は真性(i型)半導体で構成し
てもよい。半導体N膜に多結晶Siを用いる場合は、チ
ャネル領域及びオフセット領域をi型とした方が現在好
結果が得られている。また、本発明の半導体装置の製造
方法を用いて、同時に、通常のオフセット領域の無いT
PTも形成できるため、CMO8型で、通常TPT、高
耐圧TPTの混在した半導体装置が少ない工程数で形成
できる。高耐圧TPTを用いて、エレクトロルミネッセ
ンスや圧電素子の駆動回路等が形成でき、本発明の応用
分野は広い。
Although the embodiments described above are examples in which a TPT having offset regions on both sides of the gate electrode is used, the present invention may also be applied to a case in which a TPT having an offset region on only one side of the gate electrode is used. Of course, the channel region and the offset region may be made of an intrinsic (i-type) semiconductor. When polycrystalline Si is used for the semiconductor N film, better results are currently obtained by making the channel region and offset region i-type. Furthermore, by using the method of manufacturing a semiconductor device of the present invention, at the same time, T
Since PT can also be formed, a CMO8 type semiconductor device in which normal TPT and high voltage TPT are mixed can be formed in a small number of steps. The high voltage TPT can be used to form driving circuits for electroluminescence and piezoelectric elements, and the present invention has a wide range of applications.

[発明の効果] 以上述べたように本発明によれば、高耐圧TPTにおい
て、チャネル領域及びオフセット領域を同じ導電型を有
する同一の不純物で、同一不純物濃度で形成することに
より、またその製造方法において、ソース、ドレイン領
域の形成時にのみ半導体薄膜中にp型もしくはn型の導
電型を有する不純物を混入することにより、製造工程数
が低減される。また、前記チャネル領域及びオフセット
領域におけるp型もしくはn型の導電型を有する不純物
濃度を1o”cm−’以下とすることにより、オフセッ
ト領域が縮小される。以上の効果により、低コストで製
造できる高性能の高耐圧TPTが実現され、それを用い
た高耐圧半導体装置が低コストで実現される。また本発
明は、一般の高電圧を使用する回路等を含む半導体装置
にも適用できる。
[Effects of the Invention] As described above, according to the present invention, in a high voltage TPT, the channel region and the offset region are formed with the same impurity having the same conductivity type and the same impurity concentration, and the manufacturing method thereof can be improved. In this method, the number of manufacturing steps can be reduced by mixing impurities having p-type or n-type conductivity into the semiconductor thin film only when forming the source and drain regions. In addition, by setting the impurity concentration of p-type or n-type conductivity in the channel region and offset region to 1 o"cm-' or less, the offset region can be reduced. Due to the above effects, manufacturing can be performed at low cost. A high-performance, high-voltage TPT can be realized, and a high-voltage semiconductor device using it can be realized at low cost.The present invention can also be applied to a semiconductor device including a general circuit using a high voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は、本発明の実施例における高耐
圧TPTの製造工程順の断面図。同図(a)はゲート電
極形成工程終了時、同図(b)はソース、ドレイン領域
形成工程時、同図(C)はソース、ドレイン領域形成工
程終了時の断面図。 第2図(a)〜(C)は、本発明の実施例におけるCM
O8型高耐圧TPTを用いた半導体装置の製造工程順の
断面図。同図(a)は、Pch  TFTのソース、ド
レイン領域を形成するため、選択的にp型の導電型を有
する不純物を混入する工程時、同図価)は、Nch  
TFTのソース、ドレイン領域を形成するため、選択的
にn型の導電型を有する不鈍物を混入する工程時、同図
(C)は、CMO3型高耐圧TPTのソース、ドレイン
領域形成工程終了時の断面図。 101・・・少なくとも表面が絶縁された基板102・
・・半導体薄膜 103・・・ゲート絶縁膜 104・・・ゲート電極 105・・・マスク材料 106、 107・・・ソース、ドレイン領域108・
・・チャネル領域及びオフセット領域以上 出願人 セイコーエプソン株式会社 代理人 弁理士上柳雅誉(他1名) ↓I/T
FIGS. 1(a) to 1(C) are cross-sectional views showing the steps of manufacturing a high voltage TPT according to an embodiment of the present invention. 5A is a cross-sectional view at the end of the gate electrode formation process, FIG. 2B is a cross-sectional view at the source and drain region formation step, and FIG. 2C is a cross-sectional view at the end of the source and drain region formation step. FIGS. 2(a) to (C) are CMs in the embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the order of manufacturing steps of a semiconductor device using an O8 type high breakdown voltage TPT. Figure (a) shows that during the step of selectively mixing impurities with p-type conductivity to form the source and drain regions of a Pch TFT, the
In order to form the source and drain regions of the TFT, during the process of selectively mixing an inert substance with n-type conductivity type, the same figure (C) shows the completion of the process of forming the source and drain regions of the CMO3 type high voltage TPT. A cross-sectional view of time. 101...Substrate 102 whose surface is insulated at least
...Semiconductor thin film 103...Gate insulating film 104...Gate electrode 105...Mask material 106, 107...Source, drain region 108...
...Applicant for channel area and offset area and above Seiko Epson Co., Ltd. agent Patent attorney Masayoshi Kamiyanagi (1 other person) ↓I/T

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも表面が絶縁された基板上に、半導体薄
膜、ゲート絶縁膜、ゲート電極を設け、前記半導体薄膜
中に、チャネル領域、オフセット領域、ソース、ドレイ
ン領域を設けて成る薄膜トランジスタにおいて、チャネ
ル領域及びオフセット領域を同じ導電型を有する同一の
不純物で、同一不純物濃度で形成したことを特徴とする
薄膜トランジスタ。
(1) A thin film transistor in which a semiconductor thin film, a gate insulating film, and a gate electrode are provided on a substrate whose surface is insulated at least, and a channel region, an offset region, a source region, and a drain region are provided in the semiconductor thin film. A thin film transistor characterized in that the offset region and the offset region are formed using the same impurity having the same conductivity type and the same impurity concentration.
(2)前記チャネル領域及びオフセット領域におけるp
型もしくはn型の導電型を有する不純物濃度を10^1
^5cm^−^3以下としたことを特徴とする、請求項
1記載の薄膜トランジスタ。
(2) p in the channel region and offset region
The concentration of impurities with conductivity type or n-type is 10^1
The thin film transistor according to claim 1, characterized in that the thickness is ^5 cm^-^3 or less.
(3)少なくとも表面が絶縁された基板上に、半導体薄
膜、ゲート絶縁膜、ゲート電極を設け、前記半導体薄膜
中に、チャネル領域、オフセット領域、ソース、ドレイ
ン領域を設けて成る薄膜トランジスタの製造方法におい
て、ソース、ドレイン領域の形成時にのみ前記半導体薄
膜中にp型もしくはn型の導電型を有する不純物を混入
する工程を有することを特徴とする、薄膜トランジスタ
の製造方法。
(3) A method for manufacturing a thin film transistor, comprising providing a semiconductor thin film, a gate insulating film, and a gate electrode on a substrate whose surface is insulated at least, and providing a channel region, an offset region, a source, and a drain region in the semiconductor thin film. A method for manufacturing a thin film transistor, comprising the step of mixing an impurity having p-type or n-type conductivity into the semiconductor thin film only when forming source and drain regions.
JP63242810A 1988-09-28 1988-09-28 Thin film transistor and its manufacturing method Pending JPH0290683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63242810A JPH0290683A (en) 1988-09-28 1988-09-28 Thin film transistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63242810A JPH0290683A (en) 1988-09-28 1988-09-28 Thin film transistor and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH0290683A true JPH0290683A (en) 1990-03-30

Family

ID=17094624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63242810A Pending JPH0290683A (en) 1988-09-28 1988-09-28 Thin film transistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0290683A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112764A (en) * 1990-09-04 1992-05-12 North American Philips Corporation Method for the fabrication of low leakage polysilicon thin film transistors
EP0513590A2 (en) * 1991-05-08 1992-11-19 Seiko Epson Corporation Thin-film transistor and method for manufacturing it
JPH06216156A (en) * 1993-01-18 1994-08-05 Semiconductor Energy Lab Co Ltd Mis-type semiconductor device and manufacture thereof
US6013928A (en) * 1991-08-23 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interlayer insulating film and method for forming the same
KR100238193B1 (en) * 1992-03-14 2000-01-15 윤종용 Thin film transistor and method of manufacturing thereof
US6236064B1 (en) * 1991-03-15 2001-05-22 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6713783B1 (en) 1991-03-15 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Compensating electro-optical device including thin film transistors
US6984551B2 (en) 1993-01-18 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. MIS semiconductor device and method of fabricating the same
US7420628B1 (en) 1991-02-16 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Method of making an active-type LCD with digitally graded display
US7423290B2 (en) 1990-11-26 2008-09-09 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US7569408B1 (en) 1991-03-06 2009-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112764A (en) * 1990-09-04 1992-05-12 North American Philips Corporation Method for the fabrication of low leakage polysilicon thin film transistors
US7423290B2 (en) 1990-11-26 2008-09-09 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US7420628B1 (en) 1991-02-16 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Method of making an active-type LCD with digitally graded display
US7569408B1 (en) 1991-03-06 2009-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6713783B1 (en) 1991-03-15 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Compensating electro-optical device including thin film transistors
US6236064B1 (en) * 1991-03-15 2001-05-22 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6136625A (en) * 1991-05-08 2000-10-24 Seiko Epson Corporation Method of manufacturing an active matrix panel
US5814539A (en) * 1991-05-08 1998-09-29 Seiko Epson Corporation Method of manufacturing an active matrix panel
US5583366A (en) * 1991-05-08 1996-12-10 Seiko Epson Corporation Active matrix panel
US5561075A (en) * 1991-05-08 1996-10-01 Seiko Epson Corporation Method of manufacturing an active matrix panel
EP0513590A2 (en) * 1991-05-08 1992-11-19 Seiko Epson Corporation Thin-film transistor and method for manufacturing it
US6013928A (en) * 1991-08-23 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interlayer insulating film and method for forming the same
US6977392B2 (en) 1991-08-23 2005-12-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
KR100238193B1 (en) * 1992-03-14 2000-01-15 윤종용 Thin film transistor and method of manufacturing thereof
US6984551B2 (en) 1993-01-18 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. MIS semiconductor device and method of fabricating the same
US7351624B2 (en) 1993-01-18 2008-04-01 Semiconductor Energy Laboratory Co., Ltd. MIS semiconductor device and method of fabricating the same
JPH06216156A (en) * 1993-01-18 1994-08-05 Semiconductor Energy Lab Co Ltd Mis-type semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US5877513A (en) Semiconductor integrated circuit
US3883372A (en) Method of making a planar graded channel MOS transistor
JPS5910275A (en) Vertical insulated gate field effect transistor device and its manufacturing method
JPH0290683A (en) Thin film transistor and its manufacturing method
US6020231A (en) Method for forming LDD CMOS
JP3741741B2 (en) Method for manufacturing complementary integrated circuit
JPH0284770A (en) Manufacturing method of semiconductor device
JPS61150280A (en) Vertical mos transistor
JPH05183164A (en) Semiconductor element
JPH01268061A (en) semiconductor equipment
JPH01192173A (en) Manufacturing method of semiconductor device
JPH0350771A (en) Semiconductor device
JPH0379035A (en) Mos transistor and manufacture thereof
JPS6032354A (en) Semiconductor integrated circuit
JPH0461377A (en) Semiconductor memory
JP3946690B2 (en) Inverter circuit fabrication method
JPH03284878A (en) Thin film transistor
JP2904984B2 (en) Display device manufacturing method
JPS63226070A (en) MIS transistor
JP3183256B2 (en) Method for manufacturing thin film transistor
JPS63260174A (en) Manufacturing method of semiconductor device
JPS5929459A (en) Semiconductor integrated circuit device
JPS59205762A (en) Manufacturing method of semiconductor device
KR100291193B1 (en) Transistor Manufacturing Method
JPH05183131A (en) Thin film transistor