JPH0290006A - Detecting method for positional displacement by diffraction grating and detecting apparatus therefor - Google Patents
Detecting method for positional displacement by diffraction grating and detecting apparatus thereforInfo
- Publication number
- JPH0290006A JPH0290006A JP63242828A JP24282888A JPH0290006A JP H0290006 A JPH0290006 A JP H0290006A JP 63242828 A JP63242828 A JP 63242828A JP 24282888 A JP24282888 A JP 24282888A JP H0290006 A JPH0290006 A JP H0290006A
- Authority
- JP
- Japan
- Prior art keywords
- diffraction grating
- diffraction
- diffraction gratings
- heterodyne interference
- positional deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 20
- 238000006073 displacement reaction Methods 0.000 title abstract 3
- 230000003287 optical effect Effects 0.000 claims abstract description 44
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims description 10
- 230000029553 photosynthesis Effects 0.000 claims description 4
- 238000010672 photosynthesis Methods 0.000 claims description 4
- 230000010287 polarization Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 230000001427 coherent effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70633—Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7049—Technique, e.g. interferometric
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
C産業上の利用分野〕
本発明は、副長基準尺を回、折格子とし、回折光を光ヘ
テロダイン干渉させて得られたヒート信号の位相により
、回折格子間の相対的な位置ずれ量を検出する、例えば
、半導体ICやLSIを製造するための露光装置等にお
いて形成されたバタン間の市ね合わせ精度を測定する場
合に用いる位置ずれ検出方法、および位置ずれ検出装置
に関するものである。DETAILED DESCRIPTION OF THE INVENTION C. Industrial Application Field] The present invention uses a diffraction grating as a sub-length standard, and uses the phase of a heat signal obtained by optical heterodyne interference of diffracted light to determine the relative relationship between the diffraction gratings. A positional deviation detection method and a positional deviation detection device used to detect the amount of positional deviation, for example, to measure the alignment accuracy between buttons formed in an exposure apparatus for manufacturing semiconductor ICs and LSIs, and a positional deviation detection device. It is related to.
〔従来の技術・発明が解決しようとする課題〕従来、こ
の種の位置ずれを測定する方法としては、第一に測定の
バタンを焼付けてバタン線幅測定装置でバタンの相互間
のずれを測定するものがあり、第二にピッチの異なる格
子を集積回路上に焼付けて丁度型なる格子の部分を読み
取るバーニア方式のもの、また第三に集積回路上に細長
い抵抗体と?I!極と重ね合わせ°C形成し、その抵抗
体の谷値を比較する方法、さらに第四に回折格子を集積
回路上に焼付けて回折光の位相差によりバタンのずれ世
を測定する方法などがある。[Prior art/problems to be solved by the invention] Conventionally, the method of measuring this type of positional deviation is to first burn the measurement button and measure the deviation between the buttons using a button line width measuring device. The second is the vernier method, which prints grids with different pitches on the integrated circuit and reads the exact part of the grid, and the third is the long and narrow resistor on the integrated circuit? I! There is a method of overlapping the pole with °C and comparing the valley value of the resistor, and a fourth method is to print a diffraction grating on an integrated circuit and measure the shift of the batten by the phase difference of the diffracted light. .
ところが、第一のバタン線幅測定装置を用いた方法によ
ると、通常その種の装置の精度としては、高々0.01
1jm程度の精度しか得られず、また、第二のバーニア
方式によっても、0.04um稈度の精度しか得られな
い問題がある。さらに、第三の抵抗測定法は、精度が得
られる反面、測定をするためにかなり複雑な処理工程を
必要とする問題がある。However, according to the method using the first batan line width measuring device, the accuracy of that type of device is usually at most 0.01.
There is a problem in that an accuracy of only about 1 jm can be obtained, and even with the second vernier method, an accuracy of only 0.04 um can be obtained. Furthermore, while the third resistance measurement method provides accuracy, it also requires a fairly complex process to perform the measurement.
これに対し、第四の方法は、」二記第−−〜第三の問題
を考慮し、簡易且つ安価な方法として提案された方法で
ある。第4図に、このような位相差信号を用いて位置ず
れ量を測定する装置の一例を示す(公開特許 昭和62
−56818)。On the other hand, the fourth method is a method that has been proposed as a simple and inexpensive method, taking into consideration the problems 2-3. Fig. 4 shows an example of a device that measures the amount of positional deviation using such a phase difference signal (published patent in 1982).
-56818).
図において、ステージ1上に検出対象となるウェハ2が
載置されている。ウエノ\2は、露光装置によって2回
焼付け、現像処理がなされており、か(して露光装置の
マスク又はレクチル−Lに形成された露光バタンがウエ
ノ\2の表面に重ね焼きされている。ウェハ2には2枚
の露光バタンか焼付けられる際に、当該露光バタンの焼
イ1け位置を表す第5図に示すような2組の回折格子で
なる回折格子M I)が形成される。第1の回折格子M
AI及びMへ2は第1回目の露光処理時に露光バタンと
一緒に焼付けられ、y軸方向に互いに距離dだけ離れた
位置に形成され且つX軸方向に延長する格子エレメント
でなり、X方向に所定間隔を保って形成されている。In the figure, a wafer 2 to be detected is placed on a stage 1. The Ueno\2 has been printed and developed twice by the exposure device, and the exposure button formed on the mask or reticle L of the exposure device is overprinted on the surface of the Ueno\2. When two exposure stamps are printed on the wafer 2, a diffraction grating MI) consisting of two sets of diffraction gratings as shown in FIG. 5 representing the first burnt position of the exposure stamp is formed. first diffraction grating M
AI and M2 are lattice elements that are printed together with the exposure button during the first exposure process, are formed at a distance d from each other in the y-axis direction, and extend in the X-axis direction. They are formed at predetermined intervals.
これにχ・1して、第2の回折格子MI31及びMB2
は、第2回目の市ね合わせ露光処理によって同様にして
y軸方向に互いに距離dだ5プ離れた位置に形成されf
iつX軸方向に延長する格子エレメントでなり、y軸方
向に第1の回折格子MAI及びMΔ2の間に互い違いに
挿入されるように焼付けられる。By multiplying this by χ・1, the second diffraction grating MI31 and MB2
are formed in the same way in the y-axis direction at positions separated by a distance of d.
It consists of i grating elements extending in the X-axis direction and is printed so as to be inserted alternately between the first diffraction gratings MAI and MΔ2 in the y-axis direction.
ここで、y軸方向に第1の回折格子MA1、MΔ2、及
び第2の回折格子MBI、MB2間に位置ずれがなけれ
ば、第1の回折格子MAI、MA2の各格子エレメント
と、第2の回折格子MBI、MB2の?q格子エレメン
トとがX軸方向の同一直線上に並ぶように形成され、こ
のとき第1及び第2の露光バタンに位青ずれがないと判
定し得る。Here, if there is no positional deviation between the first diffraction gratings MA1, MΔ2 and the second diffraction gratings MBI, MB2 in the y-axis direction, each grating element of the first diffraction gratings MAI, MA2 and the second diffraction grating Diffraction grating MBI, MB2? q grating elements are formed so as to be aligned on the same straight line in the X-axis direction, and in this case, it can be determined that there is no positional shift between the first and second exposure buttons.
これに対し、第1及び第2の露光バタンの位置がy軸方
向にΔyだけ互いにずれれば、この位置ずれが回折格子
MΔ1.MA2及びMBI、MI32の対応する格子エ
レメント間の位置ずれΔyとして現れるようになされ°
Cいる。On the other hand, if the positions of the first and second exposure buttons are shifted from each other by Δy in the y-axis direction, this positional shift is caused by the diffraction grating MΔ1. The positional deviation between the corresponding grid elements of MA2, MBI, and MI32 is made to appear as Δy.
There is C.
そこで第5図に示すような構成の回折格子MPにに4し
て互いに周波数の異なる2つのコヒーレント光束、LL
I及びLL2を照射し、回折格子MPによって発生され
た第1のコヒーレント光LLlの1次回指光LFIの反
射方向と第2のコヒーレント光LL2の1次回指光LF
2の反射方向とが一致するように選定され、その方向は
ウェハ2の表面1と対してほぼ垂直方向になるように選
定されている。Therefore, in the diffraction grating MP having the configuration shown in FIG.
The reflection direction of the first order light LFI of the first coherent light LL1 generated by the diffraction grating MP and the first order light LF of the second coherent light LL2
The reflection direction of the wafer 2 is selected to coincide with the direction of reflection of the wafer 2, and the direction is selected to be approximately perpendicular to the surface 1 of the wafer 2.
ここで互いに周波数の異なる2つのコヒーレント光束、
L L を及びLL2は、2つの超音波変調器14.1
8によって生成される。即ち、レーザー11において発
生されたレーザー先は、コリメータレンズ系12A、1
2Bを通って分路器(ビームスプリッタ)13に入射さ
れる。分路器i3は、レーザを2つに分けて第1のレー
ザ光を超音波変調器14によって変調信号31(第6図
診照。Here, two coherent beams of light with different frequencies,
L L and LL2 are two ultrasound modulators 14.1
Generated by 8. That is, the laser tip generated by the laser 11 is collimated with the collimator lens system 12A, 1
The beam passes through 2B and enters a beam splitter 13. The shunt i3 divides the laser beam into two and modulates the first laser beam with the ultrasonic modulator 14 as a signal 31 (see FIG. 6).
変調信号Slは発信器34.378Lび周波数変換回路
38によって電気的に生成される。)によってその周波
数f1だけ周波数をシフト変調させた後、ミラー+5.
16によって折り曲げなからウェハ2の回折格子MPJ
二に第1のコヒーレント光束L1,1として照射させる
。The modulation signal Sl is electrically generated by the oscillator 34,378L and the frequency conversion circuit 38. ), the frequency is shift-modulated by the frequency f1, and then the mirror +5.
Diffraction grating MPJ of wafer 2 is bent by 16
Second, it is irradiated as a first coherent light beam L1,1.
また、分路器13は、第2のレーザー光をミラー17を
介して超音波変調器18に入射し、変調信号S2(第6
図参照。変調信号S2は発信器37によって得られる信
号。)によってその周波数r2だけ周波数をシフト変調
させた後、ミラー19.20によって折り曲げながらウ
エノ12の回折格子MP上に第2のコヒーレント光束L
L 2として照q4させる。Further, the shunt device 13 inputs the second laser beam into the ultrasonic modulator 18 via the mirror 17, and inputs the modulated signal S2 (sixth
See diagram. Modulated signal S2 is a signal obtained by transmitter 37. ), the second coherent light beam L is transmitted onto the diffraction grating MP of the Ueno 12 while being bent by the mirror 19.20.
Light q4 as L2.
か(して回折格子MPによって発生された回折光LFI
及びLF2は互いに干渉し、対物レンズ3、絞り4を通
り、さらに)−−フミラー5を通って充電変換素子列6
に入射する。ノ・−フミラー5は、絞り4を通った回折
光を接眼鏡7に折り返して干渉縞を観察し得るようにな
されている。光電変換素子列6は、回折格子MPの各ニ
レメン)MAl、MA2、MBI、MB2に対応して回
折光の干渉光をそれぞれ光電変換素子DAI、DΔ2、
DBI、DB2で検出し、周波数Δf(=llf2)の
4つのヒート信号S A、 l、SA2.5I31、S
B2を生成し、これら4つのヒート信号は、位置ずれ検
出制御回路25に送られる。(The diffracted light LFI generated by the diffraction grating MP
and LF2 interfere with each other and pass through the objective lens 3, the aperture 4, and further) -- the charge conversion element array 6 through the humeror 5.
incident on . The nof mirror 5 is configured to return the diffracted light that has passed through the aperture 4 to the eyepiece 7 so that interference fringes can be observed. The photoelectric conversion element row 6 converts the interference light of the diffracted light into photoelectric conversion elements DAI, DΔ2, and DΔ2 corresponding to the respective elements MAl, MA2, MBI, and MB2 of the diffraction grating MP.
Four heat signals S A, l, SA2.5I31, S with frequency Δf (=llf2) detected by DBI and DB2
B2 is generated, and these four heat signals are sent to the positional deviation detection control circuit 25.
第6図に位置ずれ検出制御回路25の詳細構成図を示す
。位置ずれ検出制御回路25では、ヒート信号SAl、
SA2、SBI、SB2の位相をPLL向路32A、3
2B、32G、32Dでそれぞれ位相ロックし、ノイズ
を除去した周波数Δf(−10)の位相出力SFA%S
FB、SFC,。FIG. 6 shows a detailed configuration diagram of the positional deviation detection control circuit 25. In the positional deviation detection control circuit 25, the heat signal SAl,
The phases of SA2, SBI, and SB2 are changed to PLL direction paths 32A and 3.
Phase output SFA%S of frequency Δf (-10) with phase locking and noise removed at 2B, 32G, and 32D, respectively
FB, SFC,.
SFDを得る。この位相出力SFA、5FBSSFC,
SFDの位相と、発信器34から得られる基準周波数出
力SOの位相とを位相差検出回路33A、33B、33
C133Dで比較し、それぞれ位相差α、β、γ、δに
基づいて、位置ずれ算定回路35により位置ずれ量Δy
を次式3式%)
によって演算し、位置ずれ噴を表示装置36により表示
する。ここで、dは回折格子MPのピッチを表す。Get SFD. This phase output SFA, 5FBSSFC,
The phase of the SFD and the phase of the reference frequency output SO obtained from the oscillator 34 are detected by phase difference detection circuits 33A, 33B, 33.
C133D, and the positional deviation calculation circuit 35 calculates the positional deviation amount Δy based on the phase differences α, β, γ, and δ, respectively.
is calculated by the following equation 3 (%), and the misaligned jet is displayed on the display device 36. Here, d represents the pitch of the diffraction grating MP.
ところが、前記第4の方法では、電子回路により生成さ
せた基準信号を用いて位相差を求めているため、検出光
学系の微小揺らぎ、光路系の空気雰囲の温度、気圧等の
変動の影響を受けやすく、位相差信号が変動し位置ずれ
量の誤差要因となる。However, in the fourth method, since the phase difference is determined using a reference signal generated by an electronic circuit, the effects of minute fluctuations in the detection optical system and fluctuations in the temperature and atmospheric pressure of the air atmosphere in the optical path system may be affected. The phase difference signal fluctuates, which causes an error in the amount of positional deviation.
また、光学系と回折格子との傾きの影響を前記(1)式
により消去する方法では、位相差を検出する4つの電子
回路系の不安定性の他に相互の回路特性の違いによる演
算誤差を含みやすく、高精度の位置ずれ検出が難しいと
いう問題がある。In addition, in the method of eliminating the influence of the inclination between the optical system and the diffraction grating using equation (1) above, in addition to the instability of the four electronic circuit systems that detect the phase difference, calculation errors due to differences in the circuit characteristics between the four electronic circuit systems are eliminated. This poses a problem in that it is difficult to detect positional deviations with high accuracy.
本発明の目的は、上述の欠点を除去するため、第一、お
よび第二の回折格子を測定基準尺として用い、該回折格
子に対して位置ずれ量測定用の第二の回折格子を形成し
、前記第一、第二、および第三の回折格子に、周波数が
互いにわずかに異なる2波長の単色光を人身・1させ、
該回折格子から生じる回折光を光ヘテロダイン干渉させ
、前記第一第二、および第三の回折格子からそれぞれ第
一第二、および第三の光ヘテロダイン干渉ヒート信号を
生成し、これら第一、第二、および第三の先ヘテロダイ
ン干渉ヒート信号間の位相差変化を検出することによっ
て、前記第一、第二、および第三の回折格子間の位置ず
れ頃を測定することにより、従来のらのよりも、高安定
、高精度である回折格子による位置ずれ検出方法および
位置ずれ検出装置を提供することにある。SUMMARY OF THE INVENTION In order to eliminate the above-mentioned drawbacks, an object of the present invention is to use a first and second diffraction grating as a measurement standard, and form a second diffraction grating for measuring the amount of positional deviation with respect to the diffraction grating. , applying monochromatic light of two wavelengths whose frequencies are slightly different from each other to the first, second, and third diffraction gratings;
The diffracted light generated from the diffraction grating is subjected to optical heterodyne interference to generate first, second and third optical heterodyne interference heat signals from the first, second and third diffraction gratings, respectively. By measuring the positional deviation between the first, second, and third diffraction gratings by detecting the phase difference change between the second and third heterodyne interference heat signals, Rather, it is an object of the present invention to provide a positional deviation detection method and a positional deviation detection device using a diffraction grating that are highly stable and highly accurate.
本発明の位置ずれ検出方法は、第一、および第二の回折
格子を測定基準尺として用い、該回折格子に対して位置
ずれ量測定用の第三の回折格子を彩成し、該回折格子か
らそれぞれ生しる第一、第二、および第三の光ヘテロダ
イン干渉ヒート信号間の位相差変化を検出することによ
って、前記第、第二、および第三の回折格子間の位置ず
れ虫を測定することを特徴とし、第一と第二の光ヘテロ
グイン干ルヒート信号間の位相差を基準値とし、第二と
第三の光ヘテロダイン干渉ヒート信号間の位11差との
差により、回折格子間の相対的位置ずれ噴を検出できる
特徴がある。The positional deviation detection method of the present invention uses the first and second diffraction gratings as measurement standards, forms a third diffraction grating for measuring the amount of positional deviation with respect to the diffraction gratings, and uses the first and second diffraction gratings as measurement standards. Measure the misalignment between the first, second, and third gratings by detecting the phase difference change between the first, second, and third optical heterodyne interference heat signals respectively resulting from the The diffraction grating is characterized by using the phase difference between the first and second optical heterodyne interference heat signals as a reference value, and the phase difference between the second and third optical heterodyne interference heat signals. It has the feature of being able to detect relative positional misalignment jets between the two.
また、本発明の位置ずれ検出装置は、物体上に固定、或
は形成した第一、および第二の回折格子と、該回折格子
に対して位置合わせをして固定、或は形成した第三の回
折格子を設けることを特徴とし、周波数が互いにわずか
に異なる2波長の単色光を発生する光源と、2波長の単
色光を前記第、第二、および第三の回折格子に入射させ
る入射手段と、A7I記第−1第二、および第三の回折
格子から生じる2彼長の回折光を合成し、該回折格子か
らそれぞれ第一、第二、および第三の光へテロタイン干
渉ヒート信号を生成する光合成検出手段と、光合成検出
手段によって生成された前記第、第二、および第三の先
ヘテロダイン干渉ヒート信号間の位相差信号を算出処理
する信号処理装置との装置構成から、前記第一、第二、
および第三の回折格子間の位置ずれ量を測定できる特徴
がある。Further, the positional deviation detection device of the present invention includes first and second diffraction gratings fixed or formed on an object, and a third diffraction grating fixed or formed in alignment with the diffraction grating. a light source that generates monochromatic light of two wavelengths whose frequencies are slightly different from each other; and an input means that makes the monochromatic light of two wavelengths enter the first, second, and third diffraction gratings. A7I No. 1-1 The two lengths of diffracted light generated from the second and third diffraction gratings are synthesized, and the first, second, and third light heterotine interference heat signals are generated from the diffraction gratings, respectively. From the device configuration of a photosynthesis detection means to generate and a signal processing device that calculates and processes a phase difference signal between the first, second, and third pre-heterodyne interference heat signals generated by the photosynthesis detection means, the first ,second,
It also has the feature of being able to measure the amount of positional deviation between the third diffraction grating.
本発明は基準回折格子間の位相差と測定用回折格子間の
位相差との差により、基準回折格子と測定用回折格子間
の相対的位置ずれm、即ち、半導体1cやLSIを製造
するための露光装置等において形成されたバタン間の重
ね合わせ精度を測定するものである。従って、本発明で
は測定基準となるヒート信号が相対的位置ずれ量を測定
するヒート信号と同一の光学系により生成されるため、
検出光学系の微小揺らぎ、光路系の空気の温度、気圧等
の変動の影響を除去することができ、高安定、高精度で
相対的位置ずれ量を検出できる。In the present invention, the relative positional deviation m between the reference diffraction grating and the measurement diffraction grating is determined by the difference between the phase difference between the reference diffraction grating and the phase difference between the measurement diffraction grating. The purpose of this test is to measure the overlay accuracy between battens formed in an exposure device or the like. Therefore, in the present invention, since the heat signal serving as the measurement standard is generated by the same optical system as the heat signal used to measure the amount of relative positional deviation,
The effects of minute fluctuations in the detection optical system and fluctuations in air temperature, atmospheric pressure, etc. in the optical path system can be removed, and the amount of relative positional deviation can be detected with high stability and accuracy.
以下、第1図ないし第3図を参照して、本発明の詳細な
説明する。なお、第4図ないし第6図と同一の符号は同
一の部材を示すものとする。Hereinafter, the present invention will be described in detail with reference to FIGS. 1 to 3. Note that the same reference numerals as in FIGS. 4 to 6 indicate the same members.
第1図は本発明に係わる位置ずれ検出装置の実施例を示
すものである。第1図において、2波長直交偏光レーザ
ー光源40から発したレーザー光は、ミラー41を介し
て、偏光ビームスプリッタ−42により、それぞれ水平
成分(p偏光成分)、または垂直成分(S偏光成分)の
みを合する直線偏光でしかも周波数がわずかに異なる2
波長の光に分離される。このうちp偏光成分は、ミラー
43を介し、円筒レンズ44と対物レンズ45とからな
る光学系により楕円状ビーム46となり、Xyステージ
51Fに設置したウェハ47上に形成された回折格子4
8に回折格子面に垂直な法線方向(7,方向)に対し一
次回折角の方向から入射する。一方、S (a光成分は
、同様に、円筒レンズ49とλI物レンズ・15とから
なる光学系により楕円状ビーム50となり、回折格子面
に垂直な法線方向(Z方向)に対し楕円状ビーム46と
対称の一次回折角の方向から回折格子48に入射する。FIG. 1 shows an embodiment of a positional deviation detection device according to the present invention. In FIG. 1, a laser beam emitted from a two-wavelength orthogonally polarized laser light source 40 is transmitted through a mirror 41 and a polarizing beam splitter 42 into a horizontal component (p-polarized component) or a vertical component (s-polarized component), respectively. Linearly polarized light with slightly different frequencies 2
The light is separated into different wavelengths. Of these, the p-polarized light component passes through a mirror 43 and becomes an elliptical beam 46 by an optical system consisting of a cylindrical lens 44 and an objective lens 45, and is transmitted to a diffraction grating 46 formed on a wafer 47 placed on an Xy stage 51F.
8 is incident from the direction of the first-order diffraction angle with respect to the normal direction (7, direction) perpendicular to the diffraction grating surface. On the other hand, the S (a light component) is similarly turned into an elliptical beam 50 by an optical system consisting of a cylindrical lens 49 and a λI object lens 15, and is elliptical in the normal direction (Z direction) perpendicular to the diffraction grating surface. The light enters the diffraction grating 48 from the direction of the first-order diffraction angle that is symmetrical to the beam 46 .
回折格子48は、第2図に示すように露光装置による2
回の焼付け、現像処理により形成されたバタンである。As shown in FIG. 2, the diffraction grating 48 is
This is a baton formed by multiple printing and development processes.
即ち、ウェハ47には、2枚の露光装置のマスク又はレ
チクル上に形成された2種類の露光バタンが重ね焼きさ
れている。2種類の露光バタンか焼付けられる際に、当
該露光バタンの焼付は位置を表す第2図に示すような3
組の回折格子でなる回折格子が形成される。第1の回折
格子HDI及びHD2は第1回目の露光処理時に露光バ
タンと一緒に焼付けられ、y軸方向に互いに距離dだけ
離れた位置に形成され且つX軸方向に延長する格子エレ
メントでなり、X方向に所定間隔を保って形成されてい
る。That is, on the wafer 47, two types of exposure buttons formed on masks or reticles of two exposure apparatuses are printed in an overlapping manner. When two types of exposure button are printed, the printing of the exposure button is 3 as shown in Fig. 2 which shows the position.
A diffraction grating consisting of a set of diffraction gratings is formed. The first diffraction gratings HDI and HD2 are grating elements that are printed together with the exposure button during the first exposure process, are formed at a distance d apart from each other in the y-axis direction, and extend in the X-axis direction, They are formed at predetermined intervals in the X direction.
これに対して、第3の回折格子HD 3は、第2回目の
重ね合わせ露光処理によって同様にしてy軸方向に互い
に距111dだけ離れた位置に形成され、y軸方向に第
1の回折格子HDI及び第2の回折格子HD2に対し、
X方向に所定間隔を保って形成されでいる。On the other hand, the third diffraction grating HD 3 is similarly formed at a distance of 111d from each other in the y-axis direction by the second overlapping exposure process, and the third diffraction grating HD 3 is formed at a distance of 111d from each other in the y-axis direction. For HDI and second diffraction grating HD2,
They are formed at predetermined intervals in the X direction.
ここで、y軸方向について、第1の回折格子HDl、及
び第2の回折格子HD2と、第3の回折格子HD 3と
の間に位置ずれがなければ、第11および第2の回折格
子i(D I 、 HD 2の各格子エレメントと、第
3の回折格子I(D 3の格子エレメントとがX軸方向
の同一直線上に4トぶように形成され、このとき第1回
目及び第2回目の露光バタンに位置ずれがないと判定し
得る。これに対し、第1回目及び第2回目の露光バタン
の位置がy軸方向にΔyだけ互いにずれれば、この位置
ずれが回折格子HD l、HD2とHD3の対応する格
子エレメント間の位置ずれΔyとして現れるようになさ
れている。Here, if there is no positional deviation between the first diffraction grating HDl, the second diffraction grating HD2, and the third diffraction grating HD3 in the y-axis direction, the eleventh and second diffraction gratings i (D I, HD 2 grating elements and the third diffraction grating I (D 3 grating element) are formed four times on the same straight line in the X-axis direction. It can be determined that there is no positional deviation in the first and second exposure slams.On the other hand, if the positions of the first and second exposure taps deviate from each other by Δy in the y-axis direction, this positional deviation is caused by the diffraction grating HD l. , it appears as a positional deviation Δy between corresponding grid elements of HD2 and HD3.
3つの回折格子MDI、HD2、HD 3は、2波長の
各入射光46.50の同一楕円ビームスボット52内に
配置されている。また、回折格子ピッチdは互いに等し
く設定されている。The three diffraction gratings MDI, HD2, HD3 are arranged in the same elliptical beam spot 52 for each of the two wavelengths of incident light 46.50. Furthermore, the diffraction grating pitches d are set equal to each other.
人Q、I光46.50により、3つの回折格子HDl、
[(D2、HD3からそれぞれZ方向に3つの2波長の
一次回折光の合成回折光、つまり第1の回折格子HD
1による入射光46の一1次回折光と、入射光50の一
1次回折光との光ヘテロダイン干渉合成回折光53と、
第2り回折格子fl D 2から同様にZ方向に得られ
る光ヘテロダイン干渉合成回折光54と、第3の回折格
子HD3から同様にZ方向に得られる光ヘテロダイン干
渉合成回折光55とが得られる。3つの合成光53.5
4.55は、ハーフミラ−56により2方向に分割さら
れた後、一方は、プリズム状ミラー57.58.59に
より分離され、それぞれ集光レンズ60.6I、62、
偏光板63.64.65介して光検出器66.68で検
出され、光ヘテロダイン干渉ヒート信号HYI、HY2
、HY 3として信号処理制御部69に入力される。ハ
ーフミラ−56により分割された他の一方は、接眼鏡7
0により回折光を観察し得るようになされている。Person Q, I light 46.50, three diffraction gratings HDl,
[(Synthesized diffracted light of three two-wavelength first-order diffracted lights in the Z direction from D2 and HD3, that is, the first diffraction grating HD
An optical heterodyne interference synthesis diffraction light 53 of the 1st-order diffracted light of the incident light 46 due to 1 and the 1st-order diffracted light of the incident light 50;
Optical heterodyne interference composite diffracted light 54 similarly obtained in the Z direction from the second diffraction grating fl D 2 and optical heterodyne interference composite diffracted light 55 similarly obtained in the Z direction from the third diffraction grating HD 3 are obtained. . Three combined lights 53.5
4.55 is divided into two directions by a half mirror 56, and one side is separated by a prismatic mirror 57, 58, 59, and condensing lenses 60.6I, 62, 62,
Optical heterodyne interference heat signals HYI, HY2 are detected by photodetectors 66.68 through polarizing plates 63, 64, 65.
, HY3 are input to the signal processing control unit 69. The other half divided by the half mirror 56 is the eyepiece 7.
0 so that diffracted light can be observed.
信号処理制御部69では、第1、第2の回折格子HDI
、HD2から得られる光ヘテロダイン干渉ヒート信号H
YI、HY2についてHYIに対するHY2の位相差Δ
φ0と、第3の回折格子!−ID3から得られる光ヘテ
ロダイン干渉ヒート信号HY 3とHY2について、)
l Y 2にり・1するit Y 3の位相差ΔφYと
から回折格子HI) l 、 HD 2とHD 3との
位置ずれ爪Δyに対応した位相差Δφを次式より求める
。In the signal processing control section 69, the first and second diffraction gratings HDI
, optical heterodyne interference heat signal H obtained from HD2
Regarding YI and HY2, phase difference Δ of HY2 with respect to HYI
φ0 and the third diffraction grating! - Regarding the optical heterodyne interference heat signals HY3 and HY2 obtained from ID3)
The phase difference Δφ corresponding to the positional deviation claw Δy between the diffraction grating HI) l and HD 2 and HD 3 is obtained from the following equation.
Δφ=ΔφY−Δφ〇
一2π・2・ Δy/d (2)ここで
、ΔφOは位置ずれ検出光学系と回折格子HDI、HD
2、及びHD 3とのxy平面の回転ずれにより生ずる
位相差である。即ち、本来位置ずれ検出光学系は、第3
図(a)に示すような品格子エレメントが同一直線上に
並ぶように形成された基準回折格子7I、72.73を
xyステージ上に格子エレメントの方向をX軸に平行に
なるように設定して調整し、光学系の重なり合った2つ
の入射楕円ビームの長径方向を光学系の基邸腺とした時
に、光学系の基準線と回折格子の格子エレメントの中心
線とが一致するに設定されているものとする。従って、
回折格子の格子エレメントの方向がX軸に平行に設定さ
れているならば、上記(2)式でΔφO−0となる。ま
た、第3図(b)に示すように、回折格子の格子エレメ
ントの方向がX軸の方向に対してずれている場合は、回
折格子の格子エレメントの方向が完全に一致し、−直線
上に並んでいる第1の回折格子HDIと第2の回折格子
HD 2との間にも、HYlとHY 2とに位相差Δφ
0を生じる。従って、光ヘテロダイン干渉ヒート信号H
Y3と11Y2について、(IY2に対するi(Y 3
の位相差ΔφYから回転ずれから生じた誤差分Δφ0を
減じる必要がある。信号処理制御部69では、上記(2
)式よりΔyを求め、その値を表示簿することは容易に
可能である。Δφ=ΔφY−Δφ〇−2π・2・Δy/d (2) Here, ΔφO is the positional deviation detection optical system and the diffraction grating HDI, HD
This is the phase difference caused by the rotational shift in the xy plane between HD 2 and HD 3. In other words, the positional deviation detection optical system is originally
The reference diffraction gratings 7I, 72, 73, which are formed so that the grating elements are aligned on the same straight line as shown in Figure (a), are set on the xy stage so that the direction of the grating elements is parallel to the X axis. The reference line of the optical system is set to match the center line of the grating element of the diffraction grating when the long axis direction of the two overlapping incident elliptical beams of the optical system is used as the reference line of the optical system. It is assumed that there is Therefore,
If the direction of the grating elements of the diffraction grating is set parallel to the X-axis, ΔφO−0 is obtained in the above equation (2). In addition, as shown in Figure 3(b), if the direction of the grating elements of the diffraction grating is shifted from the direction of the There is also a phase difference Δφ between HYl and HY2 between the first diffraction grating HDI and the second diffraction grating HD2 that are lined up.
yields 0. Therefore, the optical heterodyne interference heat signal H
For Y3 and 11Y2, (i(Y 3
It is necessary to subtract the error amount Δφ0 caused by the rotational deviation from the phase difference ΔφY. The signal processing control unit 69 performs the above (2)
) It is easy to obtain Δy from the equation and display the value in a display book.
なお、上記の実施例においては、2波長の単色光光源と
して2波長直交偏光レーザー光源を用いたが、2波長の
単色光としてブラッグセルなどの音響光学素子を用いて
生成した光を用いてし同様の効果を得ることができる。In the above example, a two-wavelength orthogonally polarized laser light source was used as the two-wavelength monochromatic light source, but the same could be done using light generated using an acousto-optic device such as a Bragg cell as the two-wavelength monochromatic light. effect can be obtained.
この場合、音響光学素子と半導体レーザーとを組合せる
ことにより、2波長中色先光源のコンパクト化が可能で
ある。In this case, by combining an acousto-optic element and a semiconductor laser, it is possible to make the two-wavelength medium chromatic light source compact.
さらに、2波長レーザー光の入射光学系に偏波面保ζを
光ファイバー等の光ファイバーを用いて、移動爪検出光
学系本体と2波長i4i色尤光源とを分離させ、両者を
光ファイバーで結合させる等の技術を適用させることに
より、位置検出光学系をさらにコンパクト化させること
が可能である。Furthermore, it is possible to separate the main body of the movable claw detection optical system and the 2-wavelength i4i chromatic light source by using an optical fiber such as a polarization-maintaining optical fiber in the input optical system for the 2-wavelength laser beam, and to couple the two with the optical fiber. By applying this technology, it is possible to further downsize the position detection optical system.
また、回折格子への入射光の方向、及び回折格子からの
回折光の方向が回折格子面に垂直なyz平而面含まれる
例について説明したが、回折格子への入射光の方向、及
び回折格子からの回折光の方向として、回折格子面に垂
直なyz平面に含まれない斜め入44、及び斜め出射の
2波長の回折光を光学的に合成して光ヘテロダイン干渉
ヒート信号を検出するようにしても同様の効果を得るこ
とができる。In addition, we have explained an example in which the direction of the incident light to the diffraction grating and the direction of the diffracted light from the diffraction grating include the yz plane perpendicular to the diffraction grating plane. As the direction of the diffracted light from the grating, the diffracted light of two wavelengths, which are obliquely incident 44 and obliquely out, which are not included in the yz plane perpendicular to the diffraction grating plane, are optically combined to detect an optical heterodyne interference heat signal. The same effect can be obtained even if
さらになお、本発明における回折格子としては、吸収型
回折格子、位相’X2@折格子のいずれを用いてもよく
、またバイナリ−回折格子に限らず正弦波状回折格子、
フレーズ回折格子等、種々の回折m+を用いることが可
能であるし、回折格子として透過型の他に反qJ型回折
格子を用いることも可能である。Furthermore, as the diffraction grating in the present invention, either an absorption type diffraction grating or a phase 'X2@ diffraction grating may be used.
It is possible to use various types of diffraction m+ such as a phrase diffraction grating, and it is also possible to use an anti-qJ type diffraction grating in addition to a transmission type diffraction grating.
さらにまた、上記の実施例においては、回折格子として
格子エレメントがy軸の方向に平行に並んだものを用い
ているが、y軸に垂直なy軸の方向にも同様の回折格子
を形成し、x、yの2方向の位置ずれ雷ΔX、Δyを検
出できるように光学系をx、yの2方向に設定すること
も可能である。Furthermore, in the above embodiment, a diffraction grating in which the grating elements are arranged parallel to the y-axis direction is used, but a similar diffraction grating can also be formed in the y-axis direction perpendicular to the y-axis. It is also possible to set the optical system in two directions of x and y so that positional deviation lightning ΔX and Δy in two directions of , x and y can be detected.
この場合、回折格子として前記実施例のようなものの他
に市松模様の回折格子によりx、yの2方向兼用にして
も可能である。In this case, in addition to the diffraction grating used in the above embodiment, a checkered diffraction grating may be used for both x and y directions.
以」二で詳細に説明したように、本発明によれば、基準
となる第一、第二の回折格子対を設け、さらに位置ずれ
@測定の第三の回折格子設定し、これら回折格子に周波
数がわずかに異なる2波長のrBt色光を入射し、これ
ら回折格子から生じる3つの光ヘテロダイン干渉光から
基準となる第一、第一の回折格子対から得られた光ヘテ
ログインモ渉ヒート信゛号間の位相差を基準値とし、第
二と第三の光ヘテロダイン干渉ヒート信号間の位相差と
の差により、回折格子間の相対的位置ずれ爪検出するこ
とにより、検出光学系の微小揺らぎ、光路系の空気の温
度、気圧等の変動の影響を除去することができ、高安定
、高精度で相対的位置ずれ量を検出できる。As explained in detail in Section 2, according to the present invention, a pair of first and second diffraction gratings are provided as a reference, and a third diffraction grating for positional deviation @ measurement is set, and these diffraction gratings are Two wavelengths of rBt color light with slightly different frequencies are incident, and from the three optical heterodyne interference lights generated from these diffraction gratings, the optical heterodyne interference heat signals obtained from the first and first diffraction grating pairs, which serve as a reference. The phase difference between the second and third optical heterodyne interference heat signals is used as a reference value, and the relative positional deviation between the diffraction gratings is detected based on the difference between the phase difference between the second and third optical heterodyne interference heat signals. It is possible to eliminate the influence of fluctuations in the temperature, atmospheric pressure, etc. of the air in the system, and it is possible to detect the amount of relative positional deviation with high stability and accuracy.
第1図は本発明の一実施例・とじて示した位置ずれ検出
装置の構成図、第2図は第1図の回折格子・18の詳細
構成を示す図、第3図(a)、 (b)は第1図の回折
格子48の詳細構成を示す別の図、第4図は従来の位置
ずれ検出装置の構成図、第5図は第4図の回折格子MP
の詳細構成を示す図、第6図は第4図の位置ずれ検出制
御回路25の詳細構成を示すブロック図である。
第2図
40・・2波長直交(1!尤レーザー光源1.11.4
3・・・ミラー、42・・偏光ビームスプリッタ−54
4゜49・・・円筒レンズ、45・・χ・1物レンズ、
46,50・・・楕円状入射ビーム、47・・・ウェハ
、48・・・回折格子、51・・・XYステージ、52
・・・楕円ビームスポット、53.54.55・・・光
ヘテロダイン干渉合成回折光、56・・・ハーフミラ−
157,58゜59・・・プリズム状ミラー、60.6
1.62・・・集光レンズ、63.64.65・・・偏
光板、66.67.68・・・光検出器、69・・・信
号処理制御部、70・・・接眼鏡、71.72.73・
・基準回折格子。
第3図
′0)
η
采
図FIG. 1 is a configuration diagram of a positional deviation detection device shown in one embodiment of the present invention, FIG. 2 is a diagram showing the detailed configuration of the diffraction grating 18 in FIG. 1, and FIG. b) is another diagram showing the detailed configuration of the diffraction grating 48 in FIG. 1, FIG. 4 is a configuration diagram of a conventional positional deviation detection device, and FIG. 5 is a diagram showing the diffraction grating MP in FIG. 4.
FIG. 6 is a block diagram showing the detailed configuration of the positional deviation detection control circuit 25 of FIG. 4. Figure 2 40...2 wavelengths orthogonal (1!Unit laser light source 1.11.4
3...Mirror, 42...Polarizing beam splitter-54
4゜49...Cylindrical lens, 45...χ・1 object lens,
46, 50... Elliptical incident beam, 47... Wafer, 48... Diffraction grating, 51... XY stage, 52
... Elliptical beam spot, 53.54.55 ... Optical heterodyne interference combined diffraction light, 56 ... Half mirror
157,58°59...Prismatic mirror, 60.6
1.62... Condensing lens, 63.64.65... Polarizing plate, 66.67.68... Photodetector, 69... Signal processing control unit, 70... Eyepiece, 71 .72.73・
・Reference diffraction grating. Figure 3'0) η Button diagram
Claims (2)
回折格子を測定基準尺として用い、該回折格子に対して
位置合わせをして第三の回折格子を形成し、前記第一、
第二、および第三の回折格子に、周波数が互いにわずか
に異なる2波長の単色光を入射させ、該回折格子から生
じる回折光を光ヘテロダイン干渉させ、前記第一、第二
、および第三の回折格子からそれぞれ第一、第二、およ
び第三のヘテロダイン干渉ヒート信号を生成し、これら
第一、第二、および第三の光ヘテロダイン干渉ヒート信
号間の位相差変化を検出することによって、前記第一、
第二、および第三の回折格子間の位置ずれ量を測定する
ことを特徴とする回折格子による位置ずれ検出方法。(1) Using the first and second diffraction gratings fixed or formed on the object as measurement standards, align with the diffraction gratings to form a third diffraction grating, and one,
Monochromatic light of two wavelengths whose frequencies are slightly different from each other is made incident on the second and third diffraction gratings, and the diffracted light generated from the diffraction gratings is caused to undergo optical heterodyne interference. by generating first, second, and third optical heterodyne interference heat signals from the diffraction grating, respectively, and detecting a phase difference change between these first, second, and third optical heterodyne interference heat signals; first,
A method for detecting positional deviation using a diffraction grating, the method comprising measuring the amount of positional deviation between second and third diffraction gratings.
回折格子と、該回折格子に対して位置合わせをして固定
、或は形成した第三の回折格子と、周波数が互いにわず
かに異なる2波長の単色光を発生する光源と、その光源
から発せられた2波長の単色光を前記第一、第二、およ
び第三の回折格子に入射させる入射手段と、前記第一、
第二、および第三の回折格子から生じる2波長の回折光
を合成し、該回折格子からそれぞれ第一、第二、および
第三の光ヘテロダイン干渉ヒート信号を生成する光合成
検出手段と、光合成検出手段によって生成された前記第
一、第二、および第三の光ヘテロダイン干渉ヒート信号
間の位相差信号を算出処理して前記第一、第二、および
第三の回折格子間の位置ずれ量を測定する信号処理装置
とを具備してなることを特徴とする回折格子による位置
ずれ検出装置。(2) The first and second diffraction gratings fixed or formed on the object, and the third diffraction grating fixed or formed aligned with the diffraction grating, have frequencies that are different from each other. a light source that generates monochromatic light with two slightly different wavelengths; an input means that causes the monochromatic light of the two wavelengths emitted from the light source to enter the first, second, and third diffraction gratings;
photosynthesis detection means for combining two wavelengths of diffracted light generated from second and third diffraction gratings and generating first, second, and third optical heterodyne interference heat signals from the diffraction gratings; and photosynthesis detection means; calculating and processing a phase difference signal between the first, second, and third optical heterodyne interference heat signals generated by the means to determine the amount of positional shift between the first, second, and third diffraction gratings; 1. A positional deviation detection device using a diffraction grating, comprising a signal processing device for measurement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24282888A JP2514699B2 (en) | 1988-09-28 | 1988-09-28 | Position shift detection method and position shift detection device using diffraction grating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24282888A JP2514699B2 (en) | 1988-09-28 | 1988-09-28 | Position shift detection method and position shift detection device using diffraction grating |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0290006A true JPH0290006A (en) | 1990-03-29 |
JP2514699B2 JP2514699B2 (en) | 1996-07-10 |
Family
ID=17094898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24282888A Expired - Fee Related JP2514699B2 (en) | 1988-09-28 | 1988-09-28 | Position shift detection method and position shift detection device using diffraction grating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2514699B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5347356A (en) * | 1990-03-20 | 1994-09-13 | Nikon Corporation | Substrate aligning device using interference light generated by two beams irradiating diffraction grating |
JPH07123108B2 (en) * | 1990-10-31 | 1995-12-25 | インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン | Proximity alignment system using polarized light and double conjugate projection lens |
EP0689030A2 (en) | 1994-06-20 | 1995-12-27 | Canon Kabushiki Kaisha | Displacement measuring method and apparatus |
US5625453A (en) * | 1993-10-26 | 1997-04-29 | Canon Kabushiki Kaisha | System and method for detecting the relative positional deviation between diffraction gratings and for measuring the width of a line constituting a diffraction grating |
JP2010067969A (en) * | 2008-09-11 | 2010-03-25 | Asml Netherlands Bv | Imprint lithography |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6256818A (en) * | 1985-09-05 | 1987-03-12 | Nippon Kogaku Kk <Nikon> | Position shift detecting device |
-
1988
- 1988-09-28 JP JP24282888A patent/JP2514699B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6256818A (en) * | 1985-09-05 | 1987-03-12 | Nippon Kogaku Kk <Nikon> | Position shift detecting device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5347356A (en) * | 1990-03-20 | 1994-09-13 | Nikon Corporation | Substrate aligning device using interference light generated by two beams irradiating diffraction grating |
JPH07123108B2 (en) * | 1990-10-31 | 1995-12-25 | インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン | Proximity alignment system using polarized light and double conjugate projection lens |
US5625453A (en) * | 1993-10-26 | 1997-04-29 | Canon Kabushiki Kaisha | System and method for detecting the relative positional deviation between diffraction gratings and for measuring the width of a line constituting a diffraction grating |
EP0689030A2 (en) | 1994-06-20 | 1995-12-27 | Canon Kabushiki Kaisha | Displacement measuring method and apparatus |
JP2010067969A (en) * | 2008-09-11 | 2010-03-25 | Asml Netherlands Bv | Imprint lithography |
US8319968B2 (en) | 2008-09-11 | 2012-11-27 | Asml Netherlands B.V. | Imprint lithography |
Also Published As
Publication number | Publication date |
---|---|
JP2514699B2 (en) | 1996-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0634702B1 (en) | Measuring method and apparatus | |
JP4583759B2 (en) | Multi-degree-of-freedom interferometer | |
JP5255170B2 (en) | Interferometer system with dynamic beam steering assembly for measuring angle and distance | |
US5369486A (en) | Position detector for detecting the position of an object using a diffraction grating positioned at an angle | |
KR0158681B1 (en) | Apparatus for projecting a mask pattern on a substrate | |
JP3352249B2 (en) | Position shift detector | |
JP2005509147A (en) | Interference period error compensation | |
JPH039403B2 (en) | ||
JP3244769B2 (en) | Measuring method and measuring device | |
JP3029133B2 (en) | Measurement method and device | |
JPH0290006A (en) | Detecting method for positional displacement by diffraction grating and detecting apparatus therefor | |
JPH0642918A (en) | Aligning method and apparatus | |
JPS6256818A (en) | Position shift detecting device | |
JP2931082B2 (en) | Method and apparatus for measuring small displacement | |
JP3095036B2 (en) | Method and apparatus for measuring displacement using diffraction grating | |
JPH06288710A (en) | Dislocation distance measuring method by means of diffraction grating and its device | |
JPH06137814A (en) | Minute displacement measuring method and its device | |
JP2514699C (en) | ||
JPH09293663A (en) | Position detecting device and aligner provided with this device | |
JPH0587530A (en) | Interference measurement device | |
JPH06160020A (en) | Measuring device | |
JPH07190722A (en) | Positional dislocation detecting method and positional dislocation detecting device employing the method | |
JPH0587528A (en) | Method and device for measuring optical heterodyne interference | |
JP2928834B2 (en) | Position detecting method and position detecting device using diffraction grating | |
JPH08321452A (en) | Method for evaluating alignment result and alignment equipment using the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |