JPH0288782A - Manufacturing method for diamond coating parts - Google Patents
Manufacturing method for diamond coating partsInfo
- Publication number
- JPH0288782A JPH0288782A JP23977188A JP23977188A JPH0288782A JP H0288782 A JPH0288782 A JP H0288782A JP 23977188 A JP23977188 A JP 23977188A JP 23977188 A JP23977188 A JP 23977188A JP H0288782 A JPH0288782 A JP H0288782A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- diamond
- gas
- etching
- diamond film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 54
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000011248 coating agent Substances 0.000 title claims description 9
- 238000000576 coating method Methods 0.000 title claims description 9
- 239000000758 substrate Substances 0.000 claims abstract description 59
- 239000007789 gas Substances 0.000 claims abstract description 30
- 238000005530 etching Methods 0.000 claims abstract description 29
- 239000011195 cermet Substances 0.000 claims abstract description 18
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 8
- 239000001257 hydrogen Substances 0.000 claims abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910001868 water Inorganic materials 0.000 claims abstract description 6
- 239000011230 binding agent Substances 0.000 claims abstract description 5
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000012808 vapor phase Substances 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910000039 hydrogen halide Inorganic materials 0.000 claims description 3
- 239000012433 hydrogen halide Substances 0.000 claims description 3
- 239000012071 phase Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 25
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- -1 hydrogen halides Chemical class 0.000 abstract 1
- 239000000463 material Substances 0.000 description 8
- 238000005554 pickling Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000012495 reaction gas Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 101100342994 Arabidopsis thaliana IIL1 gene Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000002065 inelastic X-ray scattering Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F4/00—Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
- C23C16/0245—Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- ing And Chemical Polishing (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ダイヤモンドをコーティングし友材料の製造
法及びその材料を用いた工具に関し、特に容易に密層性
に優れたダイヤモンド膜を形成するのに好適な前処理法
に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a diamond-coated companion material and a tool using the material, and particularly to a method for easily forming a diamond film with excellent layer density. This invention relates to a pretreatment method suitable for.
〔従来の技術]
超硬工具材には、We−Co等を用いた.サーメツトや
、この超硬合金の表面をさらにTiC,Tin 。[Prior art] We-Co or the like was used as the carbide tool material. The surface of cermet or this cemented carbide is further coated with TiC or Tin.
ALROs等で被覆する硬質物質が利用されている。Hard materials coated with ALROs and the like are used.
しかし、切削加工能率の向上に伴い、工具の耐摩耗性や
寿命延長等の観点から、よシ硬度の大きいコーティング
部材に対する要求が高まっている。However, as cutting efficiency improves, there is an increasing demand for coated members with higher hardness from the viewpoint of tool wear resistance and tool life extension.
高硬度、耐摩耗性に優れたダイヤモンドは最適な部材で
あシ、.サーメツトs体上にコーティングできれば著し
く切削加工能率が向上できる。しかし、ダイヤモンドを
.サーメツト基体上に気相合成する際、.サーメツト基
体を構成するCoやNiが触媒的に作用してメタン等の
炭素源となるガスの分解を速めるためグラファイトが析
出し易くなる。Diamond is an optimal material due to its high hardness and excellent wear resistance. If it can be coated on a cermet body, cutting efficiency can be significantly improved. But diamonds. When performing vapor phase synthesis on a cermet substrate. Co and Ni constituting the cermet substrate act catalytically to speed up the decomposition of carbon source gases such as methane, making it easier for graphite to precipitate.
このため1体上に直接ダイヤモンド膜を形成し難i0ま
たコーティングできたとしても、切削時の摩擦熱等によ
る高温状態で使用した場合、c。For this reason, it is difficult to form a diamond film directly on one piece, and even if coating is possible, if it is used in high temperature conditions due to frictional heat during cutting, c.
やMl がダイヤモンドのグラファイトへの転移反応を
触媒的に促進するため、Co−lliの接触面がグラフ
ァイト化してしまい密着性を低下させ、膜の剥離が起き
る原因になる。従ってCoや11を含む.サーメツト1
体上に直接コーティングすることは好ましくない。Since Cl and Ml catalytically promote the transition reaction of diamond to graphite, the Co-lli contact surface becomes graphite, reducing adhesion and causing film peeling. Therefore, it contains Co and 11. Cermet 1
Direct coating on the body is not preferred.
Coや11の影響を防いで密着力を向上させる従来方法
として時開1@5B−126972号公報に記載のよう
に基体とダイヤモンド膜の間にT10゜TiN 、 A
40BやAtN等の中間層を介したダイヤモンド膜のコ
ーティング方法、あるいは、特開昭61−52363号
公報に記載のように酸洗処理などの前処理により Co
やlliを除去してダイヤモンド膜をコーティングする
方法がある。A conventional method for improving adhesion by preventing the influence of Co and 11 is to use T10° TiN, A between the substrate and the diamond film as described in Jikai No. 1@5B-126972.
Co by coating a diamond film through an intermediate layer such as 40B or AtN, or by pretreatment such as pickling treatment as described in JP-A No. 61-52363.
There is a method of removing lli and coating with a diamond film.
[発明が解決しようとする課題]
上記した従来技術での中間膜形成法では、.サーメツト
基体上にTie 、 Tin 、 A/、O,等の中間
膜を形成するため高価な装置が必要となる。またこれら
中間膜はスパッタ等により形成され表面の平滑性が良い
ため密着性は十分でない。[Problems to be Solved by the Invention] In the above-mentioned conventional interlayer film forming method,... Expensive equipment is required to form an intermediate film such as Tie, Tin, A/, O, etc. on a cermet substrate. Furthermore, since these intermediate films are formed by sputtering or the like and have good surface smoothness, adhesion is not sufficient.
酸洗処理法では、水洗、乾燥等の複雑な工程や廃液処理
等に問題があシ、さらにCoやNi以外に.サーメツト
基体の主成分であるWe までもエツチングしてしまう
ので、基体表面状態が粗れてダイヤモンド膜コーテイン
グ後の膜平滑性も悪くなる。The pickling treatment method has problems with complicated processes such as water washing and drying, waste liquid treatment, etc., and it also uses other materials other than Co and Ni. Since even We, which is the main component of the cermet substrate, is etched, the surface of the substrate becomes rough and the smoothness of the diamond film after coating becomes poor.
上記したように従来技術はダイヤモンドの平滑性やプロ
セスの経済性に充分な配慮がなされておらず工具の寿命
、仕上げ面精度、価格等に問題があった。As mentioned above, the conventional technology does not give sufficient consideration to the smoothness of diamond and the economic efficiency of the process, and there are problems with tool life, finished surface accuracy, cost, etc.
本発明の目的は、密着性に潰れたダイヤモンド膜を.サ
ーメツト遍体上に経済的に簡単なプロセスで形成する方
法及びそれを用いた工具を提供することにある。The object of the present invention is to remove diamond films that have been crushed due to their adhesion. It is an object of the present invention to provide a method for forming a cermet body by an economically simple process, and a tool using the same.
上記目的は、.サーメツト基体表面に存在するCo 及
び/又はNi よシなる結合剤を選択的に気相エツチ
ングした後、該基体表面にダイヤモンド膜を形成させる
ことによって、達成される。The above purpose is. This is achieved by selectively vapor phase etching a binder such as Co and/or Ni present on the surface of a cermet substrate, and then forming a diamond film on the surface of the substrate.
すなわち、本発明は、.サーメツト基体表面に存在する
Co 及び/又はNi よシなる結合剤を選択的に気
相エツチングした後、該基体表面にダイヤモンド膜を形
成させることを特徴とするダイヤモンドコーティング部
材の製造法に関する。That is, the present invention... The present invention relates to a method for producing a diamond-coated member, which comprises selectively etching a binder such as Co and/or Ni present on the surface of a cermet substrate in a vapor phase, and then forming a diamond film on the surface of the substrate.
上記製造法において、気相エツチングするガスとしては
、一酸化炭素、水又はハロゲン化水素ガスの少なくとも
一稲類を含むガスが用いられる。In the above manufacturing method, a gas containing at least one of carbon monoxide, water, or hydrogen halide gas is used as the gas for vapor phase etching.
また、気相エツチングガスと該1体表面へのダイヤモン
ド膜形成ガスが同種のガス、例えば、酸化炭素と水素の
混合ガス等を用いることができる。そして、.サーメツ
ト基体表面へのco 及び/又はNi の選択的気相エ
ツチング工程と該基体表面へのダイヤモンド膜形成工程
とは、同一の装置を用いて行うことができる。その装置
としては、気相エツチング用あるいはダイヤモンド膜形
成用として既存の装置が使用できる。Further, the gas phase etching gas and the gas for forming a diamond film on the surface of the single body may be the same type of gas, such as a mixed gas of carbon oxide and hydrogen. and,. The process of selective vapor phase etching of Co and/or Ni on the surface of a cermet substrate and the process of forming a diamond film on the surface of the substrate can be performed using the same apparatus. Existing equipment for vapor phase etching or diamond film formation can be used as the equipment.
さらに、本発明の製造法によって得られたダイヤモンド
コーティング部材は、密着性に非常に優れており、ダイ
ヤモンドコーティング工具の作成に好適である。Furthermore, the diamond-coated member obtained by the production method of the present invention has excellent adhesion and is suitable for making a diamond-coated tool.
以下、本発明の一例を第1図を用いて説明する。An example of the present invention will be described below with reference to FIG.
ガス導入管1からエツチングガスが、真空ポンプ5で減
圧された反応容器2に供給される。反応容器2には基体
3が設置さnている。基体3tI′i、ヒータ7により
所定温度に加熱後マイクロ波電源4から導波管6を通し
プラズマを発生させ、基体3表面をエツチング処理する
。所定時間エツチング処理した後、ガス導入管1からダ
イヤモンド膜形成ガスを反応容器2に供給する。プラズ
マを形成させて基体30表面にダイヤモンド膜あるいは
ダイヤモンド状炭素膜を形成する。ダイヤモンド膜は、
水素と一酸化炭素や水素とメタン等の炭化水素ガス又は
水素とアルコール、アセトン等の含酸素有機化合物をプ
ラズマ又は熱フィラメントによシ分解することによシ形
成される。Etching gas is supplied from a gas introduction pipe 1 to a reaction vessel 2 whose pressure is reduced by a vacuum pump 5. A substrate 3 is installed in the reaction vessel 2. After the substrate 3tI'i is heated to a predetermined temperature by the heater 7, plasma is generated from the microwave power source 4 through the waveguide 6, and the surface of the substrate 3 is etched. After etching for a predetermined period of time, a diamond film forming gas is supplied from the gas introduction pipe 1 to the reaction vessel 2. A diamond film or a diamond-like carbon film is formed on the surface of the substrate 30 by generating plasma. The diamond film is
It is formed by decomposing hydrogen and a hydrocarbon gas such as carbon monoxide, hydrogen and methane, or hydrogen and an oxygen-containing organic compound such as alcohol or acetone using plasma or a hot filament.
プラズマ形成には、マイクロ波、高周波、直流電源を利
用することができる。Microwaves, high frequencies, and DC power sources can be used to form plasma.
一酸化炭素、水又はハロゲン化水素はプラズマ等によシ
励起活性化され、.サーメツト基体表面の反応し易いC
oやMlと反応し、塩化水素の場合揮発性のCo04.
1ai04、水の場合はCo(OH)1*Ni(OI
I)、、一酸化炭素の場合はCo(Co)、、 1l
i(aO)、等をそれぞれ形成してエツチングされると
推定される。特に一酸化炭素、水の場合はCoやNi
との反応性が高いので、ダイヤモンドの核が発生し難
いCoやlaiを選択的に基体表面から除去することが
でき、同時に表面に微細な傷をつけることができるので
基体との密着力の大きいダイヤモンド膜が形成できる。Carbon monoxide, water or hydrogen halide is excited and activated by plasma etc. Easily reactive C on the surface of the cermet substrate
Co04. reacts with Co04.
1ai04, Co(OH)1*Ni(OI
I),, in the case of carbon monoxide, Co (Co),, 1l
i(aO), etc., and are presumably etched. Especially carbon monoxide, Co and Ni in the case of water
Because of its high reactivity with the substrate, it is possible to selectively remove Co and Lai from the substrate surface, where diamond nuclei are difficult to form, and at the same time, it is possible to create minute scratches on the surface, resulting in strong adhesion to the substrate. A diamond film can be formed.
以下、実施例を用いて本発明をさらに詳細に、具体的に
説明するが、本発明はこれらの実施ガに限定されなめ。Hereinafter, the present invention will be explained in more detail and specifically using examples, but the present invention is not limited to these examples.
[実施例1]
第1図に示すプラズマ反応装置を用い、T10(20%
)、Co(6%)、Ni (8%)、we(66%)か
らなる組成を有する.サーメツト基体表面のCo及びl
aiを下記に示す条件でプラズマエツチング処理した。[Example 1] Using the plasma reactor shown in Fig. 1, T10 (20%
), Co (6%), Ni (8%), and We (66%). Co and l on the surface of the cermet substrate
ai was subjected to plasma etching treatment under the conditions shown below.
エツチングガス: Co (2701%) +H,(9
8701%)圧 力 : 4 0
Torrマイクロ波出力=50OW
基体温度 =6Co℃
処理時間 =10分
プラズマエツチング処理しない基体とエツチング処理し
た基体表面をS工MB(二次イオン質量分析)によ#)
Co及びlliを分析した。エツチング処理しない基体
からはco及びに1が検出されたが、エツチング処理し
た基体からはCo及びNiがほとんど検出されておらず
Co及びNiが除去されていることが確認できた。この
エツチング処理した基体上にダイヤモンド膜の形成を以
下の条件で行った。Etching gas: Co (2701%) +H, (9
8701%) Pressure: 4 0
Torr microwave output = 50 OW Substrate temperature = 6Co°C Processing time = 10 minutes The substrate surface that was not subjected to plasma etching treatment and the surface of the etched substrate were subjected to S-MB (secondary ion mass spectrometry).
Co and lli were analyzed. Co and Ni1 were detected from the substrate that was not etched, but almost no Co and Ni were detected from the etched substrate, confirming that Co and Ni were removed. A diamond film was formed on this etched substrate under the following conditions.
反応ガス : OH4(1vo1%)十H,(99
vo1%)圧 力 : 4 0
Torrマイクロ波出カニ I KW
基体温度 二8Co℃
反応時間 :5h
基体に形成された膜は膜厚2μmでX線回折及びラマン
スペクトルによ)ダイヤモンド膜と同定された。該ダイ
ヤモンド膜と基体との密着力を引っ掻き法によ)測定し
、2−1〜2.7 kl!/■3の値を得た。この値は
コーティング工具膜として実用に充分耐える密着力であ
る。Reaction gas: OH4 (1vo1%) 10H, (99
vo1%) Pressure: 4 0
Torr microwave emission crab I KW Substrate temperature: 28 Co° C. Reaction time: 5 h The film formed on the substrate had a thickness of 2 μm and was identified as a diamond film (by X-ray diffraction and Raman spectroscopy). The adhesion between the diamond film and the substrate was measured (by scratching method) and was found to be 2-1 to 2.7 kl! A value of /■3 was obtained. This value is an adhesion force sufficient to withstand practical use as a coated tool film.
比較例としてエツチング処理しない基体を用い上記した
条件下で膜を形成した。X線回折法で膜を同定したとこ
ろダイヤモンド及びグラファイトに基づくピークが検出
された。基体との密着力を測定した結果IIL1〜(1
2に97m寞と実用に耐えない値であった。As a comparative example, a film was formed under the above conditions using a substrate that was not etched. When the film was identified by X-ray diffraction, peaks based on diamond and graphite were detected. The results of measuring the adhesion to the substrate were IIL1~(1
2, it was 97 mt., a value that could not be put to practical use.
〔実施例2〕
実施ガ1と同じ基体と装置を用いムr (95vow%
) + H,O(5vow%)のエツチングガスを用い
て、下記に示す条件下でエツチング処理を行った。[Example 2] Using the same substrate and equipment as in Example 1,
)+H,O (5 vol%) etching gas was used to perform etching treatment under the conditions shown below.
圧 力 : 4 0 Torrマ
イクロ波出カニ50口W
基体温度 =6Co℃
処理時間 =10分
エツチング処理後、基体表面を8工M8によプ分析し、
Co及びNiが基体表面から除去されていることを確認
した。該基体を用いて実施例1と同じ条件で約2μm膜
厚のダイヤモンド膜を形成した。引っ掻き法による1体
との密着力の測定結果は2−3〜2.8 kp/■2の
優れた密着強度を示した。Pressure: 40 Torr Microwave output crab 50 mouths W Substrate temperature = 6Co°C Processing time = 10 minutes After the etching process, the substrate surface was analyzed by 8 mm M8.
It was confirmed that Co and Ni were removed from the substrate surface. A diamond film having a thickness of approximately 2 μm was formed using the substrate under the same conditions as in Example 1. The results of measuring the adhesion strength with one body by the scratch method showed an excellent adhesion strength of 2-3 to 2.8 kp/■2.
〔実施例3]
実施例1と同じ基体と装置を用いAr(90vo1%
) + HOl (10vo1%)のエツチングガスを
用いて実施例2と同条件下でエツチング処理した。[Example 3] Using the same substrate and equipment as in Example 1, Ar (90vo1%)
Etching treatment was carried out under the same conditions as in Example 2 using an etching gas of ) + HOl (10vol%).
基体表面を8工M8によシ分析しCo及びNiが基体表
面から除去されていることを確認した。該基体を用いて
実施例1と同じ条件で約2μm膜厚のダイヤモンド膜を
形成した。膜の基体との密着力の測定結果は1.5〜2
.2 ky/■2の値を示した。The surface of the substrate was analyzed using an 8-mm M8, and it was confirmed that Co and Ni had been removed from the surface of the substrate. A diamond film having a thickness of approximately 2 μm was formed using the substrate under the same conditions as in Example 1. The measurement result of the adhesion of the film to the substrate is 1.5 to 2.
.. It showed a value of 2 ky/■2.
〔実施例4〕
基体としてWO(94% ) −Co(6%)の超硬合
金で、工80規格8PGM 422 の切削工具用ス
ローアクエイテップを用いて、実施列1と同じ反応装置
によ、6、coと■、の混合ガスでエツチング処理を行
った。エツチング処理後継続してC0(5vo1% )
−H,(95vo1% ) の混合ガスを用iて下
記に示す条件下で、膜厚5μmのダイヤモンド膜をコー
ティングした。[Example 4] The same reaction apparatus as in Example 1 was used, using a cemented carbide of WO (94%) -Co (6%) as the substrate and using a slow aqua tip for cutting tools of 80 standard 8PGM 422. Etching treatment was performed using a mixed gas of , 6, co and . Continued C0 (5vo1%) after etching treatment
A diamond film having a thickness of 5 μm was coated using a mixed gas of -H, (95 vol %) under the conditions shown below.
マイクロ液出カニ I KW
圧 力 : 4 0 Torr基
体温度 二8Co℃
反応時間 =1h
該コーティング基体を用−て下記の条件で切削テストを
行った。Micro liquid extraction crab I KW Pressure: 40 Torr Substrate temperature: 28 Co°C Reaction time: 1 h Using the coated substrate, a cutting test was conducted under the following conditions.
波切削材:ムt−11%s1合金
周速度 : 5Co m / min
切込み :1.Om
送 J) : CL 5 ml ray切削テ
ストの結果、切削時間1Co分でも膜の剥離は認められ
ず密着性に浸−n九ダイヤモンドコーティング工具が得
られた。Wave cutting material: Mut-11% S1 alloy Peripheral speed: 5Com/min Depth of cut: 1. As a result of the CL 5 ml ray cutting test, no peeling of the film was observed even after a cutting time of 1 Co minute, and a diamond coated tool with excellent adhesion was obtained.
〔実施例5及び比較例〕
通常の酸洗法との比較の目的で実m1M4に示したwe
−6重量%Coの切削チップを用いて、本発明による
Coプラズマ処理との比較を行った。表1に両者のエツ
チング処理条件を示す。[Example 5 and Comparative Example] For the purpose of comparison with the normal pickling method, we shown in actual m1M4
A comparison with the Co plasma treatment according to the present invention was made using -6 wt % Co cutting tips. Table 1 shows the etching conditions for both.
表 1
エツチング処理した両者の基体表面近傍のCo濃度を8
工M8(二次イオン質量分析法)によ如分析した結果を
第2図に示す。すなわち、第2図は、それらの結果をス
パッタ時間(win1横軸)と□o +2 強度(任
意単位、縦軸)との関係で示すグラフである。このm2
図によれば、酸洗法に比べ、本発明によるエツチング処
理法で行えば、基体表面近傍のCo を選択的に低減で
きることが確認された。Table 1 The Co concentration near the surface of both etched substrates was 8.
FIG. 2 shows the results of analysis using M8 (secondary ion mass spectrometry). That is, FIG. 2 is a graph showing these results in terms of the relationship between sputtering time (win1 horizontal axis) and □o +2 intensity (arbitrary units, vertical axis). This m2
According to the figure, it was confirmed that Co 2 near the substrate surface can be selectively reduced by the etching method according to the present invention, compared to the pickling method.
この両者のチップ上に、m1図の装置でダイヤモンド膜
を形成し、切削テストを行った。A diamond film was formed on both chips using the apparatus shown in Fig. m1, and a cutting test was conducted.
膜形成条件は 反応ガス : H,−2I C)I。Film formation conditions are Reaction gas: H, -2I C) I.
圧 力 : 4 0 Torrマ
イクロ波出カニaoow
反応時間 :5h
の条件で、膜厚6μmのダイヤモンド膜形成を行い、次
の条件でアルミ切削テストによる性能評価を行った。A diamond film with a film thickness of 6 μm was formed under the conditions of pressure: 40 Torr, microwave output, and reaction time: 5 hours, and performance evaluation was performed by an aluminum cutting test under the following conditions.
被削材 : ムA−13%81合金
周速度 : 5Co m / min切込み : t
〇−
送 シ : α5 M/ revこの結果通常の
酸洗法でエツチング処理した切削チップの寿命は50分
であったのに対し、本発明によるエツチング処理を施し
た切削テップは切削時間90分でも膜の剥離は起らず全
く正常であった。これよ)、本発明によれば密着性の優
れたダイヤモンドコーティング工具が得られることが明
らかとなった。Work material: Mu A-13%81 alloy Peripheral speed: 5Com/min Depth of cut: t
〇- Feed: α5 M/rev As a result, the life of the cutting tip etched using the normal pickling method was 50 minutes, whereas the cutting tip treated with the etching process of the present invention lasted for 90 minutes. No peeling of the membrane occurred and the condition was completely normal. It has become clear that according to the present invention, a diamond coated tool with excellent adhesion can be obtained.
また本発明によるエツチング処理法を用いれば酸洗法に
比ベエッチング処理時間を1/10以下に短縮でき、さ
らに製造プロセスも全てドライプロセスで行える等の特
長がある。Further, the etching method according to the present invention has the advantage that the etching time can be reduced to 1/10 or less compared to the pickling method, and the entire manufacturing process can be performed as a dry process.
〔発明の効果]
本発明によれば、.サーメツト基体表面に存在するCo
やMlよシなる結合剤をプラズマ等で気相エツチングす
ることができるので、容易に単時間で密着性にmAたダ
イヤモンドコーティング部材が製造できる。しかも、エ
ツチング処理及びダイヤモンド膜形成を同一の反応ガス
で又は反応ガス組成を変えて、同一装置で行わせること
が可乳なためプロセスの簡略化が図れる。[Effects of the Invention] According to the present invention. Co present on the surface of the cermet substrate
Since a bonding agent such as or Ml can be etched in a gas phase using plasma or the like, a diamond-coated member with adhesion of mA can be easily manufactured in a single time. Furthermore, it is possible to perform the etching process and the diamond film formation in the same apparatus using the same reaction gas or by changing the reaction gas composition, thereby simplifying the process.
第1図は本発明の一実施例を示す構成図、第2図は本発
明及び酸洗法によるエツチング状態を示すグラフである
。
1・・・反応ガス、
2・・・反応容器、
3・・・1体、
4・・・マイクロ波電源、
5・・・真空ポンプ、
6・・・導波管、
7・ ・ヒータ
特許出願人 株式会社 日立製作所
間 バブコック日立株式会社代 理 人
中 本 未開 井
上 昭(吸市岑チk)η碌ωヤ2o○FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a graph showing the etching state according to the present invention and the pickling method. DESCRIPTION OF SYMBOLS 1...Reaction gas, 2...Reaction container, 3...1 unit, 4...Microwave power source, 5...Vacuum pump, 6...Waveguide, 7. Heater patent application Between Hitachi, Ltd. Representative of Babcock-Hitachi Co., Ltd. Person Mikaii Nakamoto
Akira Ue (Suichi Makichik) η 碌ωya 2o○
Claims (6)
よりなる結合剤を選択的に気相エツチングした後、該基
体表面にダイヤモンド膜を形成させることを特徴とする
ダイヤモンドコーテイング部材の製造法。1. Co and/or Ni present on the surface of the cermet substrate
1. A method for producing a diamond-coated member, which comprises selectively etching a binder consisting of the following in a vapor phase, and then forming a diamond film on the surface of the substrate.
はハロゲン化水素ガスの少なくとも一種類を含むガスを
用いる請求項1記載のダイヤモンドコーテイング部材の
製造法。2. 2. The method for producing a diamond coated member according to claim 1, wherein a gas containing at least one of carbon monoxide, water, and hydrogen halide gas is used as the gas for the vapor phase etching.
膜形成ガスが同種のガスからなる請求項1又は2記載の
ダイヤモンドコーテイング部材の製造法。3. 3. The method of manufacturing a diamond coated member according to claim 1, wherein the gas phase etching gas and the gas for forming a diamond film on the surface of the substrate are the same type of gas.
合ガスを用いるダイヤモンドコーテイング部材の製造法
。4. A method for producing a diamond coated member using a mixed gas of carbon monoxide and hydrogen as the gas according to claim 3.
的気相エツチング工程と該基体表面へのダイヤモンド膜
形成工程とを同一の装置内で行う請求項1〜4のいずれ
か1項に記載のダイヤモンドコーテイング部材の製造法
。5. The diamond coating according to any one of claims 1 to 4, wherein the step of selective vapor phase etching of Co and/or Ni on the surface of a cermet substrate and the step of forming a diamond film on the surface of the substrate are performed in the same apparatus. Manufacturing method of parts.
得られたダイヤモンドコーテイング部材を用いたダイヤ
モンドコーテイング工具。6. A diamond coating tool using a diamond coating member obtained by the manufacturing method according to any one of claims 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23977188A JPH0288782A (en) | 1988-09-27 | 1988-09-27 | Manufacturing method for diamond coating parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23977188A JPH0288782A (en) | 1988-09-27 | 1988-09-27 | Manufacturing method for diamond coating parts |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0288782A true JPH0288782A (en) | 1990-03-28 |
Family
ID=17049665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23977188A Pending JPH0288782A (en) | 1988-09-27 | 1988-09-27 | Manufacturing method for diamond coating parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0288782A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003065419A3 (en) * | 2002-01-29 | 2003-11-13 | Tokyo Electron Ltd | Plasma etching of ni-containing materials |
JP2009511744A (en) * | 2005-10-14 | 2009-03-19 | エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド | Method for producing improved molded article for polishing |
JP4824232B2 (en) * | 1999-06-16 | 2011-11-30 | ティーディーワイ・インダストリーズ・インコーポレーテッド | Substrate processing method |
-
1988
- 1988-09-27 JP JP23977188A patent/JPH0288782A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4824232B2 (en) * | 1999-06-16 | 2011-11-30 | ティーディーワイ・インダストリーズ・インコーポレーテッド | Substrate processing method |
WO2003065419A3 (en) * | 2002-01-29 | 2003-11-13 | Tokyo Electron Ltd | Plasma etching of ni-containing materials |
US7229563B2 (en) | 2002-01-29 | 2007-06-12 | Tokyo Electron Limited | Plasma etching of Ni-containing materials |
JP2009511744A (en) * | 2005-10-14 | 2009-03-19 | エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド | Method for producing improved molded article for polishing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5713133A (en) | Methods of preparing cemented metal carbide substrates for deposition of adherent diamond coatings and products made therefrom | |
Archer | The plasma-assisted chemical vapour deposition of TiC, TiN and TiCxN1− x | |
US5660881A (en) | Method of manufacturing CVD diamond coated cutting tools | |
JP4685364B2 (en) | Method for depositing a crystalline α-Al 2 O 3 layer | |
EP0519587B1 (en) | Methods for coating adherent diamond films on cemented tungsten carbide substrates | |
EP0327110A1 (en) | Method for producing sintered hard metal with diamond film | |
AU692719B2 (en) | Treatment of cemented carbide substrate to receive CVD diamond film | |
WO1991004353A1 (en) | Vapor deposited diamond synthesizing method on electrochemically treated substrate | |
EP0589641A2 (en) | Method of producing wear resistant articles | |
JPH01104773A (en) | Coated cutting tool | |
JP2628601B2 (en) | Diamond coated cemented carbide and method of diamond coating of cemented carbide | |
JPH0288782A (en) | Manufacturing method for diamond coating parts | |
JP2720384B2 (en) | Coating method with diamond thin film | |
JPH09295224A (en) | Method for coating super hard tool with diamond film | |
Jansson et al. | Initial stages of growth during boron carbide chemical vapor deposition | |
JP2794601B2 (en) | Surface treatment of cemented carbide substrate for diamond deposition | |
JPH0238330A (en) | Regeneration of glass-forming tool | |
JPH01201476A (en) | Production of sintered hard alloy with adhered diamond film | |
CN110578129A (en) | preparation method of hard alloy matrix diamond coating based on artificial intelligence | |
JPH01266A (en) | Method for producing diamond-like carbon | |
JPS6257802A (en) | Parts coated with hard carbon | |
JPS62226889A (en) | Vapor phase synthesis method for filmy diamond | |
JPH089784B2 (en) | Coated iron-based alloy with excellent surface accuracy and method for producing the same | |
JPH0912397A (en) | Sintered hard film coated member and its production | |
JP3015890B1 (en) | Manufacturing method of coated steel with high hardness and high corrosion resistance |