[go: up one dir, main page]

JPH0286920A - Intake air controller for internal combustion engine - Google Patents

Intake air controller for internal combustion engine

Info

Publication number
JPH0286920A
JPH0286920A JP63237437A JP23743788A JPH0286920A JP H0286920 A JPH0286920 A JP H0286920A JP 63237437 A JP63237437 A JP 63237437A JP 23743788 A JP23743788 A JP 23743788A JP H0286920 A JPH0286920 A JP H0286920A
Authority
JP
Japan
Prior art keywords
intake
internal combustion
combustion engine
intake control
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63237437A
Other languages
Japanese (ja)
Inventor
Yurio Nomura
由利夫 野村
Hideki Obayashi
秀樹 大林
Toshikazu Ina
伊奈 敏和
Tokio Kohama
時男 小浜
Shigeo Nomura
重夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Nippon Soken Inc
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, NipponDenso Co Ltd filed Critical Nippon Soken Inc
Priority to JP63237437A priority Critical patent/JPH0286920A/en
Publication of JPH0286920A publication Critical patent/JPH0286920A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • F02B29/083Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PURPOSE:To increase a counterflow checking effect as well as to make improvements in torque and fuel consumption by driving an intake control valve for its closing independently of rotation of an internal combustion engine according to timing for checking a counterflow of intake air being produced in the latter half of a valve opening period in an intake valve. CONSTITUTION:An intake control valve M4 is set up in an intake passage M3 being interconnected to a cylinder M2 of an internal combustion engine M1, and this intake control valve M4 is opened or closed by a driving means M5. On the other hand, timing for checking any counterflow of intake air being produced in the latter half of a valve opening period in an intake valve 8 should be set on the basis of rotational position data of the engine M1 detected by a rotational position detecting means M6 and speed data of the engine M1 detected by a speed detecting means M7. Then, according this timing, it is controlled by a driving control means M9 so as to have the intake control valve M4 closed by the driving means M5.

Description

【発明の詳細な説明】 発明の目的 [産業上の利用分野] 本発明は、内燃機関の気筒の吸気弁とは別体に各気筒に
連通ずる吸気通路毎に配設されている吸気制御弁の開閉
に有効な吸気制御装置に関する。
Detailed Description of the Invention Object of the Invention [Industrial Field of Application] The present invention relates to an intake control valve that is arranged in each intake passage communicating with each cylinder separately from the intake valves of the cylinders of an internal combustion engine. The present invention relates to an air intake control device effective for opening and closing.

[従来の技術] 従来より、吸気通路毎に前記のような吸気制御弁を設け
ることで、内燃機関の吸気通路での吸気の逆流を防止す
るといったことが考えられている。
[Prior Art] Conventionally, it has been considered to prevent backflow of intake air in the intake passage of an internal combustion engine by providing an intake control valve as described above for each intake passage.

つまり、内燃機関の吸気行程開始時には、バルブオーバ
ラップここよって気筒内や排気通路内の既燃ガスが吸気
通路へ逆流して吸気の充填効率が低下したり、吸気弁の
開弁期間後半に生ずる逆流により充填効率が低下したり
することがあった。そこで、吸気制御弁を用いて吸気の
逆流を阻止し、吸気の充填効率を向上して内燃機関のト
ルクアップ、燃費向上を図ることが考えられているので
ある。
In other words, at the start of the intake stroke of an internal combustion engine, valve overlap causes burned gas in the cylinders and exhaust passages to flow back into the intake passage, reducing the intake air filling efficiency. Filling efficiency sometimes decreased due to backflow. Therefore, it has been considered to use an intake control valve to prevent the backflow of intake air and improve the filling efficiency of intake air, thereby increasing the torque of the internal combustion engine and improving fuel efficiency.

こうした吸気制御弁の開閉を切り換えるものとして、内
燃機関の回転運動に連動するカムし乙より吸気制御弁を
開閉する内燃機関(特開昭55−148932号)が提
案されている。この吸気制御弁は、調整機構により内燃
機関の回転速度に応じて開閉タイミングを前後にずらす
ことが可能となっている。この調整機構は次の理由tこ
より備えられたものである。
As a device for switching the opening and closing of the intake control valve, an internal combustion engine has been proposed (Japanese Patent Laid-Open No. 148932/1983) in which the intake control valve is opened and closed by a cam linked to the rotational movement of the internal combustion engine. This intake control valve is capable of shifting its opening/closing timing back and forth depending on the rotational speed of the internal combustion engine using an adjustment mechanism. This adjustment mechanism is provided for the following reasons.

即ち、吸気の逆流阻止タイミングは、音速で進圧力波の
往復時間に依存するため、内燃機関の回転に連動した開
閉では低回転において閉弁のタイミングが遅れてしまう
。この遅れを補正し適切な逆流阻止をするためである。
That is, since the intake air backflow prevention timing depends on the reciprocating time of the advancing pressure wave at the speed of sound, when the valve is opened and closed in conjunction with the rotation of the internal combustion engine, the timing of closing the valve is delayed at low rotation speeds. This is to correct this delay and appropriately prevent backflow.

[発明が解決しようとする課題] しかしながら、閉弁タイミングは機械的に補正可能であ
っても、内燃機関の回転運動に連動する構成では、吸気
制御弁の開口面積の変化も内燃機関の回転挙動tこ依存
しており、この点の不都合は解決されていない。
[Problems to be Solved by the Invention] However, even if the valve closing timing can be corrected mechanically, in a configuration that is linked to the rotational movement of the internal combustion engine, changes in the opening area of the intake control valve also affect the rotational behavior of the internal combustion engine. This problem has not been solved yet.

次にこの不都合について説明する。第15図に4気筒内
燃機関と連動する、各気筒毎の吸気制御弁及び吸気弁の
開閉タイミングチャートを示す。
Next, this inconvenience will be explained. FIG. 15 shows an intake control valve for each cylinder and an opening/closing timing chart of the intake valve in conjunction with a four-cylinder internal combustion engine.

ここで実線が内燃機関高回転時の吸気制御弁Cvの開口
面積変化を、点線が内燃機関低回転時の吸気制御弁Cv
の開口面積変化を、1点鎖線が吸気弁Ivの開口面積変
化を表している。
Here, the solid line represents the change in the opening area of the intake control valve Cv when the internal combustion engine is running at high speeds, and the dotted line represents the change in the opening area of the intake control valve Cv when the internal combustion engine is running at low speeds.
The one-dot chain line represents the change in the opening area of the intake valve Iv.

内燃機関の高回転域では、吸気弁Ivの閉タイミングは
最適にマツチングされているので、吸気制御弁Cvは吸
気絞りとならない様に開・閉すれば良い。従ってCvl
でしめすように、吸気制御弁Cvと吸気弁Ivとは開口
面積変化のパターンがほぼ一致している。即ち、吸気の
逆流は問題ないのである。また、パターンが一致してい
ることから、吸気制御弁Cvの吸気絞りも問題がない。
In the high speed range of the internal combustion engine, the closing timing of the intake valve Iv is optimally matched, so the intake control valve Cv only needs to be opened and closed so as not to restrict the intake air. Therefore, Cvl
As shown in FIG. 2, the intake control valve Cv and the intake valve Iv have almost the same pattern of opening area change. In other words, there is no problem with the backflow of intake air. Furthermore, since the patterns match, there is no problem with the intake throttle of the intake control valve Cv.

しかし、低回転域では、逆流のタイミング自体は変化し
ないのであるが、内燃機関の吸気弁Ivの動きが低速し
乙なり遅れる。このため、Cv2で示すように、吸気制
御弁Cvのパターンを吸気弁Ivのパターンよりも進角
側にずらさなくては逆流が阻止できない。そこで、調整
機構が働いて進角側に吸気制御弁Cvの開口面積パター
ンをずらしている。このことにより、内燃機関が低回転
であっても、逆流により気筒側の吸気が排出する直前の
タイミングで吸気制御弁Cvを全閉とてき、充填効率低
下を防止することができるのである。
However, in the low rotation range, although the timing of the reverse flow itself does not change, the movement of the intake valve Iv of the internal combustion engine slows down and is delayed to some extent. Therefore, as shown by Cv2, the backflow cannot be prevented unless the pattern of the intake control valve Cv is shifted to the advance side compared to the pattern of the intake valve Iv. Therefore, an adjustment mechanism works to shift the opening area pattern of the intake control valve Cv toward the advance side. As a result, even if the internal combustion engine rotates at a low speed, the intake control valve Cv can be fully closed at the timing immediately before the intake air on the cylinder side is discharged due to backflow, thereby preventing a decrease in filling efficiency.

ところが、吸気制御弁Cvの逆流防止のための全閉タイ
ミングはこれでよいのであるが、区間Taでは、吸気弁
Ivより吸気制御弁Cvの開口面積の方が小さく、逆に
気筒側への吸気絞りとなるという不都合が生じてしまっ
た。このことにより逆流阻止によるトルクの向上、燃費
の向上といったメリットが半減されてしまったのである
However, although this is sufficient for the full closing timing of the intake control valve Cv to prevent backflow, in the section Ta, the opening area of the intake control valve Cv is smaller than that of the intake valve Iv, and conversely, the intake air to the cylinder side is This resulted in the inconvenience of aperture. As a result, the benefits of improved torque and fuel efficiency due to reverse flow prevention were halved.

このような不都合は、内燃機関との連動機構を用いてい
る限り、避は得ないものであった。
Such inconveniences were unavoidable as long as an interlocking mechanism with an internal combustion engine was used.

&肌工1惑 本発明は、前記問題点に鑑みてなされたもので、逆流防
止の好適なタイミングで閉弁が可能であると共に、吸気
自体にとっても紋りとならない吸気制御装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an intake control device that is capable of closing a valve at a suitable timing to prevent backflow, and that does not disturb the intake itself. With the goal.

[課題を解決するための手段] かかる目的を達成するために、前記課題を解決するため
の手段として、本発明は以下に示す構成をとった。
[Means for Solving the Problems] In order to achieve the above object, the present invention has adopted the configuration shown below as a means for solving the above problems.

即ち、本発明の要旨とするところは、第1図りこ例示す
るごとく、 内燃機関M1の気筒M2jこ連通する吸気通路M33こ
配設され、吸気通路M3を開閉可能な吸気制御弁M4と
、 この吸気制御弁M4を上記内燃機関M1の回転とは独立
に開閉駆動する駆動手段M5と、内燃機関M1の回転位
置検出手段M6と、内燃機関M1の回転速度検出手段M
7と、上記回転位置検出手段M6にて検出された内燃機
関M1の回転位置データと、上記回転速度検出手段M7
tZて検出された内燃機関M1の回転速度データと3こ
基づいて、吸気弁M8の開弁期間後半に生ずる吸気の逆
流を阻止するタイミングを設定し、このタイミングで、
上記駆動手段M5にて吸気制御弁M4を閉駆動させる駆
動制御手段M9と、を備えたことを特撮とする内燃機関
の吸気制御装置にある。
That is, the gist of the present invention, as illustrated in the first diagram, includes: an intake control valve M4 which is disposed in an intake passage M33 communicating with the cylinders M2j of the internal combustion engine M1 and is capable of opening and closing the intake passage M3; A driving means M5 for opening and closing the intake control valve M4 independently of the rotation of the internal combustion engine M1, a rotational position detection means M6 for the internal combustion engine M1, and a rotational speed detection means M for the internal combustion engine M1.
7, rotational position data of the internal combustion engine M1 detected by the rotational position detection means M6, and rotational speed detection means M7.
Based on the rotational speed data of the internal combustion engine M1 detected at tZ, a timing is set to prevent the backflow of intake air that occurs in the latter half of the opening period of the intake valve M8, and at this timing,
The present invention is directed to an intake control device for an internal combustion engine, which has a drive control means M9 for driving the intake control valve M4 to be closed by the drive means M5.

[作用] 本発明の駆動手段M5は内燃機関M1の回転とは独立で
あって、連動していないため、駆動制御手段M9にて吸
気制御弁M4の閉駆動を、内燃機関の回転速度に拘束さ
れず、自由なタイミングで実行できる。したがって、当
然、内燃機関M1の回転位置と回転速度とから吸気弁M
8の開弁期間後半に生ずる逆流の発生タイミングを決定
し、それに応じて閉弁駆動すれは、逆流防止のタイミン
グで閉弁することが可能である。
[Operation] Since the drive means M5 of the present invention is independent of the rotation of the internal combustion engine M1 and is not interlocked with it, the drive control means M9 restricts the closing drive of the intake control valve M4 to the rotational speed of the internal combustion engine. It can be executed at any time. Therefore, naturally, based on the rotational position and rotational speed of the internal combustion engine M1, the intake valve M
By determining the timing at which backflow occurs in the second half of the valve opening period in step 8 and driving the valve to close accordingly, it is possible to close the valve at a timing that prevents backflow.

更に、吸気制御弁M4の閉弁速度が、吸気弁M8の閉弁
時の間口面積変化に対して任意に設定でき、特に−層高
速しこさせることができ、かつ不連続にも制御できる。
Furthermore, the closing speed of the intake control valve M4 can be arbitrarily set in response to the change in the frontage area when the intake valve M8 is closed, and can be particularly controlled at a high speed, and can also be controlled discontinuously.

即ち、開弁状態や閉弁状態で再度駆動が必要となるまで
停止しておくこともできる。従って、逆流防止のタイミ
ングに至った場合、開弁状態の吸気制御弁M4を急峻に
閉弁させる乙とが出来るので、内燃機関M1の低回転時
にも急峻な変化をさせて、吸気の絞りとならないように
、吸気制御弁M4を駆動させることが出来る。
That is, it is also possible to stop the valve in the valve open state or the valve closed state until it is necessary to drive it again. Therefore, when the timing for backflow prevention is reached, the intake control valve M4, which is in the open state, can be abruptly closed, so that the intake control valve M4 can be abruptly closed even when the internal combustion engine M1 is running at low speeds, and the intake throttle and The intake control valve M4 can be driven to prevent this from happening.

[実施例コ 次に、本発明の好適な実施例を図面に基づいて詳細に説
明する。本発明の第1実施例である吸気制御装置が搭載
されている内燃機関のシステム構成を第2図に示す。
[Embodiment] Next, a preferred embodiment of the present invention will be described in detail based on the drawings. FIG. 2 shows a system configuration of an internal combustion engine equipped with an intake control device according to a first embodiment of the present invention.

同図に示すようここ、本システムは、主に4気筒内燃機
関1、この内燃機関1の吸気系1atZ配設された吸気
制御部3、およびこれらを制御する電子制御装置(以下
、単にECUとも呼ぶ。)4から構成されている。この
吸気制御部3.電子制御装置4.後述するクランク角セ
ンサ及び回転速度センサが吸気制御装置に該当する。
As shown in the figure, this system mainly includes a four-cylinder internal combustion engine 1, an intake control unit 3 installed in an intake system 1atZ of this internal combustion engine 1, and an electronic control unit (hereinafter simply referred to as ECU) that controls these. ) Consists of 4. This intake control section 3. Electronic control device 4. A crank angle sensor and a rotational speed sensor, which will be described later, correspond to the intake control device.

内燃機関1は、4個の気筒5. 6. 7. 8を備え
、各気筒5〜8には、高速適合カムにより内燃機関1の
回転に連動して開閉される吸気弁9,10.11.12
が配設され、さらに、排気弁13゜14.15.16も
設けられている。吸気系la内で分岐して各気筒5〜8
に連通する吸気ボート17.1B、19.20には、各
々吸気制御弁21.22.23.24が配設され、これ
らの吸気制御弁21〜24は、−本の駆動軸25で一体
に連結され、アクチュエータ27により開閉駆動される
。ここで、吸気制御弁21〜24は、吸気弁9〜12の
開閉とは独立して、ECU4のアクチュエータ制御によ
り、後述するごとく開閉駆動される。
The internal combustion engine 1 has four cylinders 5. 6. 7. 8, and each cylinder 5 to 8 has an intake valve 9, 10, 11, 12 which is opened and closed in conjunction with the rotation of the internal combustion engine 1 by a high-speed compatible cam.
are provided, and exhaust valves 13, 14, 15, 16 are also provided. Branched within the intake system la and connected to each cylinder 5 to 8
Intake control valves 21, 22, 23, and 24 are provided in the intake boats 17.1B and 19.20, respectively, which communicate with the intake boats 17.1B and 19.20. They are connected and driven to open and close by an actuator 27. Here, the intake control valves 21 to 24 are driven to open and close by the actuator control of the ECU 4, independently of the opening and closing of the intake valves 9 to 12, as described below.

内燃機関1には、検出器として、各気筒5〜8の図示し
ないピストンが上死点(TDC)に位置するときにパル
ス信号を出力するクランク角センサ29a、所定のクラ
ンク角毎にパルス信号を出力する回転速度センサ(回転
角センサも兼ねる)29bおよび内燃機関1のノッキン
グ発生を検出するノックセンサ29cを備える。
The internal combustion engine 1 includes, as a detector, a crank angle sensor 29a that outputs a pulse signal when the piston (not shown) of each cylinder 5 to 8 is located at top dead center (TDC), and a crank angle sensor 29a that outputs a pulse signal at every predetermined crank angle. It includes a rotation speed sensor (also serving as a rotation angle sensor) 29b that outputs an output, and a knock sensor 29c that detects the occurrence of knocking in the internal combustion engine 1.

前記各センサの信号はECU4に人力され、この人力デ
ータ及びその他必要なデータを用いてECO2は吸気制
御弁21〜24を制御する。
The signals from each of the sensors are manually input to the ECU 4, and the ECO 2 controls the intake control valves 21 to 24 using this manual data and other necessary data.

ECU4はCPU4a、ROM4b、RAM4Cを中心
に論理演算回路として構成され、コモンバス4dを介し
て人出力部4eに接続されて、外部との人出力を行なう
。前記各センサ29a〜29cの検出信号は、人出力部
4eからCPU4aに人力される。一方、CPU4aは
、人出力部4eを介して、アクチュエータ27に制御信
号を出力する。
The ECU 4 is configured as a logic operation circuit mainly including a CPU 4a, a ROM 4b, and a RAM 4C, and is connected to a human output section 4e via a common bus 4d to perform human output with the outside. Detection signals from each of the sensors 29a to 29c are manually input to the CPU 4a from the human output section 4e. On the other hand, the CPU 4a outputs a control signal to the actuator 27 via the human output section 4e.

次に、吸気制御弁21およびアクチュエータ27の一例
を以下に説明する。
Next, an example of the intake control valve 21 and the actuator 27 will be described below.

第3図に示すように、吸気制御弁21〜24は、■吸気
ボート17〜20内に、吸気ボート17〜20の吸気流
れ方向に対して垂直に設けられ一部が断面半円形に切り
欠かれた駆動軸25と、■その駆動軸25を軸支する軸
受33と、■この軸受33の間の駆動軸切り欠き部分に
ボルト37.39で固定されて吸気ボート17〜20内
でその駆動軸25を軸として回転可能な円盤状の可動板
41.42,43.44と、から構成される装置この可
動板41,43,44.42は、第1゜3. 4. 2
気筒の順に、90’ずつ位相をずらして配置しである。
As shown in FIG. 3, the intake control valves 21 to 24 are installed in the intake boats 17 to 20 perpendicularly to the flow direction of the intake air of the intake boats 17 to 20, and are partially cut out with a semicircular cross section. (1) A bearing 33 that pivotally supports the drive shaft 25; and (2) A bolt 37. A device consisting of disc-shaped movable plates 41.42, 43.44 that are rotatable about the shaft 25. The movable plates 41, 43, 44. 4. 2
The cylinders are arranged with a phase shift of 90' in the order of the cylinders.

即ち、可動板41.44同士は板面が平行に配置され、
可動板42.43同士も板面が平行に配置されるととも
に、可動板41゜44と可動板42.43とは直角に配
置されている。
That is, the movable plates 41 and 44 are arranged with their plate surfaces parallel to each other,
The movable plates 42 and 43 are arranged so that their surfaces are parallel to each other, and the movable plates 41 and 44 and the movable plates 42 and 43 are arranged at right angles.

なお、第3図のA−A線拡大断面図である第5図に示す
ように、吸気ボート17〜2o内には、その内径よりも
大きな径の球状凹部47が設けられている。可動板41
〜44は、この球状凹部47部分に回転可能に配置され
ている。従って球状凹部47の直径は可動板41〜44
の直径より、わずかに大きく(例えは数U〜数百μ大き
く)形成されている。
As shown in FIG. 5, which is an enlarged sectional view taken along the line A-A in FIG. 3, a spherical recess 47 having a diameter larger than the inner diameter is provided in each of the intake boats 17 to 2o. Movable plate 41
44 are rotatably arranged in this spherical recess 47 portion. Therefore, the diameter of the spherical recess 47 is the same as that of the movable plates 41 to 44.
The diameter is slightly larger (for example, several U to several hundred microns larger) than the diameter of.

一方、アクチュエータ27は、第3図のB−B線拡大断
面図である第4図に示すように、いわゆるPM型のステ
ッピングモータの変形として形成され、外装としてケー
シング27aが用意され、このケーシング27a内には
、前記駆動軸25に連結されるシャツ)27bと、シャ
フト27bの回りに固設されて2極に磁化された永久磁
石27Cとを有し、さらにケーシング27aの内壁には
、2相4極のコイル51,52,53.54が永久磁石
27cを囲むように配設されている。詳しくは、−相の
コイル51.52は吸気ボート17の吸気の流れ方向に
、また、他の相のコイル53゜54はそのコイル51.
52の配列方向と垂直となる方向に、それぞれ配列され
て、永久磁石27aを囲んでいる。コイル51〜54は
、ケーシング27aの内壁にボルト57等で固定された
ボビン51a、52a、53a、54aに1本のエナメ
ル線を巻いた、モノファイラ巻の構成をなしている。
On the other hand, the actuator 27 is formed as a modification of a so-called PM type stepping motor, as shown in FIG. 4, which is an enlarged sectional view taken along the line B-B in FIG. The inner wall of the casing 27a has a permanent magnet 27b connected to the drive shaft 25, and a permanent magnet 27C fixed around the shaft 27b and magnetized into two poles. Four-pole coils 51, 52, 53, and 54 are arranged to surround the permanent magnet 27c. Specifically, the -phase coils 51 and 52 are aligned in the flow direction of the intake air of the intake boat 17, and the other phase coils 53 and 54 are aligned with the coils 51 and 54 of the other phases.
The magnets 52 are arranged in a direction perpendicular to the arrangement direction of the magnets 52, and surround the permanent magnets 27a. The coils 51 to 54 have a monofilar structure in which a single enameled wire is wound around bobbins 51a, 52a, 53a, and 54a fixed to the inner wall of the casing 27a with bolts 57 or the like.

こうして構成されたアクチュエータ27の制御系を第6
図の回路図tこ示した。同図tこ示すようここ、コイル
51〜54には、抵抗器R1,R2,R3゜R4および
コンデンサCI、C2,C3,C4がそれぞれ付設され
ており、ECU4により、電源Eとの回路を、互いに対
向する一相のコイル51゜52と他の相のコイル53.
54との間で切り換えて、コイル51〜54の励磁位置
を切り換えるように構成されている。こうして可動板4
1〜44は90°揺動可能となっている。また、上記制
御系の回路を変更すれば同じ形状で90°のステップ角
にて回転させることも可能である。
The control system of the actuator 27 configured in this way is
The circuit diagram shown in the figure is shown below. As shown in the figure, resistors R1, R2, R3, R4 and capacitors CI, C2, C3, C4 are attached to the coils 51 to 54, respectively, and the circuit with the power source E is connected by the ECU 4. Coils 51 and 52 of one phase and coils 53 of the other phase are opposed to each other.
54 to switch the excitation positions of the coils 51 to 54. In this way, the movable plate 4
1 to 44 can be swung by 90 degrees. Further, by changing the circuit of the control system, it is possible to rotate the same shape at a step angle of 90°.

以上のように構成された吸気制御弁21〜24およびア
クチュエータ27の動作の関係を、−相励磁ユニポーラ
駆動方式にて、次に説明する。
The relationship between the operations of the intake control valves 21 to 24 and the actuator 27 configured as described above will be explained below using a -phase excitation unipolar drive system.

ECU4により、コイル51.52が励磁する位置に切
り換えられると、コイル51からコイル52(もしくは
コイル52からコイル51)へ磁束が流れ、永久磁石2
7cがその磁極で定まる所定の方向(第6図、矢印Cま
たはD方向)に揺動し、このとき、その永久磁石27c
に駆動軸27b、25を介して連結された可動板41〜
44も同Ml、乙揺動する。その後、永久磁石27cは
、コイル51.52で定まる安定方向で揺動を停止して
、可動板41.44が吸気ボート17.20の吸気流れ
方向に向けられ、吸気ボー)17.20は開放される。
When the coils 51 and 52 are switched to the excited position by the ECU 4, magnetic flux flows from the coil 51 to the coil 52 (or from the coil 52 to the coil 51), and the permanent magnet 2
7c swings in a predetermined direction determined by its magnetic pole (FIG. 6, arrow C or D direction), and at this time, the permanent magnet 27c
Movable plates 41-- connected via drive shafts 27b and 25 to
44 is also the same Ml, Otsu swings. After that, the permanent magnet 27c stops swinging in the stable direction determined by the coil 51.52, and the movable plate 41.44 is oriented in the direction of the intake flow of the intake boat 17.20, and the intake boat 17.20 is opened. be done.

このとき、可動板42.43は、吸気ボー)18.19
の吸気流れ方向とは直角に向けられ、吸気ボート18.
19は閉鎖される。
At this time, the movable plate 42.43 is
The intake boats 18.
19 will be closed.

一方、ECU4により、コイル53.54が励磁する位
置に切り換えられると、コイル53からコイル54(も
しくはコイル54からコイル531)へ磁束が流れ、永
久磁石27cがその磁極で定まる所定の方向(第6図、
矢印CまたはD方向)に揺動し、このとき、その永久磁
石27cに連結された可動板41〜44も同時に揺動す
る。その後、永久磁石27cは、コイル53.54で定
まる安定方向で揺動を停止して、可動板42. 43が
吸気ボー)18.19の混合気流れ方向に向けられ、吸
気ボー)18.19は開放される。このとき、可動板4
1.44は、吸気ボート17,20の吸気流れ方向とは
直角に向けられ、吸気ボー)17.20は閉鎖される。
On the other hand, when the coils 53 and 54 are switched to the excited position by the ECU 4, magnetic flux flows from the coil 53 to the coil 54 (or from the coil 54 to the coil 531), and the permanent magnet 27c moves in a predetermined direction (sixth direction) determined by its magnetic pole. figure,
At this time, the movable plates 41 to 44 connected to the permanent magnet 27c also swing at the same time. Thereafter, the permanent magnet 27c stops swinging in the stable direction determined by the coils 53 and 54, and the movable plate 42. 43 is oriented in the air-fuel mixture flow direction of the intake bow) 18.19, and the intake bow) 18.19 is opened. At this time, the movable plate 4
1.44 are oriented at right angles to the intake flow direction of the intake boats 17, 20, and the intake boats 17.20 are closed.

次に、ECU4が実行する吸気制御処理を、第7図のフ
ローチャートに基づいて説明する。本吸気制御処理は、
ECU4の起動以後に繰り返し実行される。
Next, the intake control process executed by the ECU 4 will be explained based on the flowchart of FIG. 7. This intake control process is
It is repeatedly executed after the ECU 4 is started.

まず、現在の内燃機関1の回転速度Neが検出される(
ステップ100)。この回転速度Neから各吸気制御弁
21〜24の閉鎖のための閉鎖クランク角度CLAが求
められる(ステップ11o)。このクランク角度CLA
は、この角度にクランク角度が至った場合、駆動電流を
流せは、吸気制御弁21〜24の全閉時がちょうど逆流
阻止のタイミングに適合するよう設定されている。
First, the current rotational speed Ne of the internal combustion engine 1 is detected (
Step 100). A closing crank angle CLA for closing each intake control valve 21 to 24 is determined from this rotational speed Ne (step 11o). This crank angle CLA
is set so that when the crank angle reaches this angle, the drive current is allowed to flow, and the timing when the intake control valves 21 to 24 are fully closed corresponds to the timing for backflow prevention.

この閉鎖クランク角度CLAは、予め実験により回転速
度Neに応じて測定し、回転速度Neと閉鎖クランク角
度CLAとをテーブルあるいはマツプ化しておき、その
テーブルに基づいて、回転速度Neから閉鎖クランク角
度CLAを求めても良い。例えは第1表に示すごとくで
ある。
The closing crank angle CLA is measured in advance according to the rotational speed Ne through experiments, and the rotational speed Ne and the closing crank angle CLA are made into a table or map. Based on the table, the closing crank angle CLA is calculated from the rotational speed Ne. You may also ask for An example is shown in Table 1.

第1表 WOT:スロットルバルブ全開状態を表す。Table 1 WOT: Represents the throttle valve fully open state.

数値はクランク角度を表す。The numbers represent crank angles.

また、閉鎖クランク角度CLAは回転速度Neに比例す
るので、ある回転速度Neの閉鎖クランク角度CLAを
一点求めておき、ステップ110実行毎ここ計算で回転
速度Neに応じた閉鎖クランク角度CLAを求めて用い
ても良い。
Also, since the closing crank angle CLA is proportional to the rotational speed Ne, the closing crank angle CLA at a certain rotational speed Ne is determined at one point, and the closing crank angle CLA corresponding to the rotational speed Ne is calculated every time step 110 is executed. May be used.

次に、このようにして求められた閉鎖クランク角度CL
AがRAM4c内の所定の番地に格納され保存される(
ステップ120)。
Next, the closing crank angle CL obtained in this way
A is stored and saved at a predetermined address in RAM 4c (
Step 120).

この所定番地に保存された閉鎖クランク角度CLAを用
いて、第8図のフローチャートに示す閉鎖制御処理が実
行される。本処理は十分に短い時間毎に繰り返し実行さ
れる。
Using the closing crank angle CLA stored in this predetermined location, the closing control process shown in the flowchart of FIG. 8 is executed. This process is repeatedly executed at sufficiently short intervals.

最初に回転速度センサ29bに検出されているクランク
角度CAが、ステップ120で格納された閉鎖クランク
角度CLAに至ったか否かが判定される(ステップ15
0)。
First, it is determined whether the crank angle CA detected by the rotational speed sensor 29b has reached the closing crank angle CLA stored in step 120 (step 15).
0).

閉鎖クランク角度CLAに至れば、アクチュエータ27
に駆動電流が出力される(ステップ160)。即ち、該
当する気筒の吸気制御弁21〜24が閉鎖するようアク
チュエータ27のコイルが励磁される。勿論、全吸気制
御弁21〜24は連動しているので、閉鎖対象以外の弁
も揺動する。
When the closing crank angle CLA is reached, the actuator 27
A drive current is output to (step 160). That is, the coil of the actuator 27 is excited so that the intake control valves 21 to 24 of the corresponding cylinder are closed. Of course, since all the intake control valves 21 to 24 are linked, the valves other than those to be closed also swing.

本実施例の内燃機関1は4気筒であるので、閉鎖クラン
ク角度CLAは1サイクル(0°〜720°)の中に4
つ存在する。
Since the internal combustion engine 1 of this embodiment has four cylinders, the closing crank angle CLA is 4 cylinders in one cycle (0° to 720°).
There are two.

この状態を第9図のタイミングチャートに示す。This state is shown in the timing chart of FIG.

本タイミングチャートは内燃機関1が高回転時、例えば
6000 r、p、m、の場合を衷している。直線(実
線)は吸気制御弁21〜24の開口面積の変化を衷し、
曲線(実線)は吸気弁9〜12の開口面積の変化を表し
、曲線(−点鎖線)は排気弁13〜16の開口面積の変
化を表す。
This timing chart is based on the case where the internal combustion engine 1 is at high rotation speed, for example, 6000 r, p, m. The straight line (solid line) covers the change in the opening area of the intake control valves 21 to 24,
The curve (solid line) represents the change in the opening area of the intake valves 9 to 12, and the curve (-dot chain line) represents the change in the opening area of the exhaust valves 13 to 16.

閉鎖クランク角度CLAは図のa1〜a4に相当するが
、少し速くなる。速くなるのは、駆動電流に対し吸気制
御弁21〜24の始動に遅れがあるためである。従って
このクランク角度でアクチュエータ27への駆動電流が
切り替えつつ出力され、その度毎に吸気制御弁21〜2
4の可動板41〜44がすべて90°揺動する。角度b
1〜b4で完全に吸気制御弁21〜24が閉鎖すること
になる。最高回転では実際は休みなく次々とアクチュエ
ータ27へ駆動電流が出力されるので、連続した揺動と
なっている。
The closing crank angle CLA corresponds to a1 to a4 in the figure, but is slightly faster. The reason for this is that there is a delay in starting the intake control valves 21 to 24 with respect to the drive current. Therefore, at this crank angle, the drive current to the actuator 27 is switched and output, and the intake control valves 21 to 2 are output each time.
All the movable plates 41 to 44 of No. 4 swing 90 degrees. angle b
1 to b4, the intake control valves 21 to 24 are completely closed. At maximum rotation, the drive current is actually output to the actuator 27 one after another without any break, resulting in continuous oscillation.

4つの吸気制御弁21〜24は一体に揺動しているので
、例えば第1気筒5の吸気制御弁21がalから閉じ始
める場合、第2気筒6及び第3気筒7の吸気制御弁22
.23は開き始め、第4気筒8の吸気制御弁24は閉じ
始める。第2,4気筒6,8については吸気行程ではな
いので、吸気制御弁22.24の揺動は吸気に影響しな
いが、第3気筒については吸気が始まるので吸気制御弁
23の開閉動作は吸気に影響する。しかし、吸気制御弁
23の可動板43は吸気制御弁21の可動板41と直角
に取り付けられているので、吸気弁11の閉動作と同時
に開駆動され、吸気の紋りとなることがない。
Since the four intake control valves 21 to 24 swing together, for example, when the intake control valve 21 of the first cylinder 5 starts to close from al, the intake control valve 22 of the second cylinder 6 and the third cylinder 7
.. 23 begins to open, and the intake control valve 24 of the fourth cylinder 8 begins to close. Since the second and fourth cylinders 6 and 8 are not in the intake stroke, the swinging of the intake control valves 22 and 24 does not affect the intake, but since the intake starts for the third cylinder, the opening and closing operation of the intake control valve 23 is affect. However, since the movable plate 43 of the intake control valve 23 is attached at right angles to the movable plate 41 of the intake control valve 21, the movable plate 43 of the intake control valve 23 is driven open at the same time as the closing operation of the intake valve 11, and there is no possibility of an intake mark.

次にトルク向上を図るための考え方を述べる。Next, we will discuss how to improve torque.

吸気弁9〜12の開動作により生じた負圧波は吸気系1
aをさかのぼり、サージタンク等のボリューム系から正
圧波として気筒に戻り再度吸気系1aをさかのぼろうと
する。この正圧波を気筒5〜8から吸気系1aに出る際
にシャットアウトすれは、充填効率が向上する。従って
、吸気制御弁21〜24は、その正圧波が気筒5〜8に
戻り気筒内に閉じ込めるタイミングに設定する。
The negative pressure wave generated by the opening operation of the intake valves 9 to 12 is transmitted to the intake system 1.
a, returns to the cylinder as a positive pressure wave from a volume system such as a surge tank, and attempts to trace back through the intake system 1a again. By shutting out this positive pressure wave when it exits from the cylinders 5 to 8 to the intake system 1a, the charging efficiency is improved. Therefore, the intake control valves 21 to 24 are set at the timing at which the positive pressure wave returns to the cylinders 5 to 8 and is confined within the cylinder.

次に、第10図に内燃機関1が低回転(例えは、300
0 r、p、m、)の場合のタイミングチャートを示す
。横軸はクランク角度CAであるが、時間的なスケール
を第9図と一致させるため、第9図よりクランク角度と
しての横軸は拡大されている。
Next, in FIG. 10, the internal combustion engine 1 rotates at low speed (for example, 300
0 r, p, m,) is shown. The horizontal axis is the crank angle CA, but in order to match the time scale with that in FIG. 9, the horizontal axis as the crank angle is enlarged from FIG.

この場合、吸気の逆流を防止するための吸気制御弁21
〜24の時間的閉鎖タイミングは、音速に影響されるの
で通常はとんど変わらない。しかし内燃機関1の回転速
度は低下するので、各気筒9〜12の閉鎖クランク角度
CLA(jl〜j4)は高回転時し乙比較して進角する
ことになる。
In this case, the intake control valve 21 for preventing backflow of intake air
The temporal closing timing of ~24 is affected by the speed of sound, so it usually does not change much. However, since the rotational speed of the internal combustion engine 1 decreases, the closing crank angle CLA (jl to j4) of each cylinder 9 to 12 becomes advanced compared to that at high rotation.

また吸気制御弁21〜24の揺動速度は高回転時と同一
(即ち、駆動電流同一)ここしであるので、吸気制御弁
21〜24は90°揺動毎に停止期間(kl〜112.
に2〜h3. k3〜h4.・・・)が存在する。この
ためタイミングチャートは台形を呈する。
Further, since the swinging speed of the intake control valves 21 to 24 is the same as at high rotation (that is, the driving current is the same), the intake control valves 21 to 24 have a stop period (kl to 112.
2~h3. k3~h4. ) exists. Therefore, the timing chart has a trapezoidal shape.

ここで第15図に示した従来技術と比較する。Here, a comparison will be made with the prior art shown in FIG.

まず高回転時の全開クランク角度(bl〜b4)も低回
転時の全開クランク角度(jl〜j4)もともに、第1
5図に示した従来技術の高回転時の全閉クランク角度X
1.低回転時の全開クランク角度y1と同じ乞こ設定し
である。
First, both the full open crank angle at high revolutions (bl to b4) and the full open crank angle at low revolutions (jl to j4) are
Fully closed crank angle X at high rotation of the conventional technology shown in Figure 5
1. This is the same setting as the fully open crank angle y1 at low rotation.

ところが本実施例の構成では、吸気制御弁21〜24が
内燃機関1の回転とは独立し、連動していないため、低
回転時に吸気弁9〜120開口面積の時間変化がなだら
かになっても、吸気制御弁21〜24はアクチュエータ
27むこより密に変わらぬ速度で揺動制御されでいるの
で、急峻なままである。
However, in the configuration of this embodiment, the intake control valves 21 to 24 are independent of and not linked to the rotation of the internal combustion engine 1, so even if the opening area of the intake valves 9 to 120 changes gradually over time at low rotations, Since the intake control valves 21 to 24 are controlled to swing at a speed that does not change more closely than the actuator 27, the steepness remains unchanged.

従って第10図に示すごとく、吸気弁9〜12の紋りに
なる程度が非常に少なく、吸気に対しても障害とならな
い。このためトルクが向上し、燃費の節約ともなる。
Therefore, as shown in FIG. 10, the degree of marking on the intake valves 9 to 12 is very small and does not pose an obstacle to intake. This improves torque and saves fuel.

勿論この吸気制御弁21〜24の揺動速度は、アクチュ
エータ27への電流量を調整することにより、調節する
ことが出来るが、本実施例では、最高回転速度にて第9
図に示すごとく吸気制御弁21〜24の停止期間がない
ように、駆動電流が設定しである。このように内燃機関
10回転とは独立しているので、第11図のグラフここ
基づいた電流の選択により、吸気絞りとならず、かつ逆
流阻止のタイミングに容易に全閉とすることが出来る揺
動速度を設定できる。
Of course, the swing speed of the intake control valves 21 to 24 can be adjusted by adjusting the amount of current to the actuator 27, but in this embodiment, the swing speed of the intake control valves 21 to 24 can be adjusted by adjusting the amount of current supplied to the actuator 27.
As shown in the figure, the drive current is set so that there is no period when the intake control valves 21 to 24 are stopped. In this way, it is independent of 10 revolutions of the internal combustion engine, so by selecting the current based on the graph in Figure 11, the intake air does not become throttled and can easily be fully closed at the timing of blocking backflow. The moving speed can be set.

また本実施例では、アクチュエータ27が1基で全部の
吸気制御弁21〜24を駆動しているので、制御及び構
成が簡単となり、コストダウンtこもつながる。
Further, in this embodiment, since one actuator 27 drives all the intake control valves 21 to 24, control and configuration are simplified, leading to cost reduction.

上記実施例では、アクチュエータ27が1つであったが
、各気筒5〜8Nにアクチュエータ27を備えて各吸気
制御弁21〜24を、他の吸気制御弁21〜24の駆動
に制約されずに、駆動してもよい。即ち、吸気制御弁2
1〜24の開時間は任意のタイミングで吸気行程前とす
ることが出来る。上記実施例では開時期は他の吸気制御
弁21〜24の閉時期のタイミングと一致することにな
るので、開時期は自由に選択できない。
In the above embodiment, there is one actuator 27, but each cylinder 5 to 8N is provided with an actuator 27 so that each intake control valve 21 to 24 can be operated without being restricted by the driving of other intake control valves 21 to 24. , may be driven. That is, the intake control valve 2
The opening times 1 to 24 can be set at any timing before the intake stroke. In the above embodiment, the opening timing coincides with the closing timing of the other intake control valves 21 to 24, so the opening timing cannot be freely selected.

またアクチュエータ27は第1気筒5側の端に設けたが
、第2気筒6と第3気筒7との中間等、2つの気筒の間
にζこ設けてもよい。更に必要に応じて、吸気制御弁2
1〜24の揺動トルクを向上させるために、1つの駆動
軸25に複数のアクチュエータを設けてもよい。
Furthermore, although the actuator 27 is provided at the end on the first cylinder 5 side, it may also be provided between two cylinders, such as between the second cylinder 6 and the third cylinder 7. Furthermore, if necessary, the intake control valve 2
A plurality of actuators may be provided on one drive shaft 25 in order to improve the rocking torque of the shafts 1 to 24.

アクチュエータを第2気筒6と第3気筒7との中間に設
けた構成例を第16図(A)〜(C)!こ示す。第16
図(A)は吸気制御弁およびアクチュエータ27−1を
示す平面図、 (B)はその部分破断正面図、(C)は
ハウジング38−1を除いた正面図である。
FIGS. 16(A) to 16(C) show configuration examples in which the actuator is provided between the second cylinder 6 and the third cylinder 7! This is shown. 16th
Figure (A) is a plan view showing the intake control valve and actuator 27-1, (B) is a partially cutaway front view thereof, and (C) is a front view with housing 38-1 removed.

ここで吸気制御弁21−1.22−1.23−L  2
4−1の可動板41−1.42−1,431.44−1
は駆動軸25−1にボルト37−1.39−1により組
み付けられている。駆動軸25−1中央には永久磁石2
7cm1が固定されており、駆動軸25−1はまた軸受
33−1. 33−2により支持されている。軸受33
−1はキャップ34−1にはめ込まれ固定されている。
Here, intake control valve 21-1.22-1.23-L 2
4-1 movable plate 41-1.42-1, 431.44-1
is assembled to the drive shaft 25-1 with bolts 37-1 and 39-1. A permanent magnet 2 is located in the center of the drive shaft 25-1.
7 cm1 is fixed, and the drive shaft 25-1 also has bearings 33-1. 33-2. Bearing 33
-1 is fitted and fixed in the cap 34-1.

アクチュエータ27−1内の他の構成は同様であるので
説明は省略する。アクチュエータ27−1自身はポル)
36−1にて、ハウジング38−1に固定されている。
The other configurations within the actuator 27-1 are the same, so the explanation will be omitted. Actuator 27-1 itself is Pol)
It is fixed to the housing 38-1 at 36-1.

ブシュ35−1はベアリング33−2を固定している。Bush 35-1 fixes bearing 33-2.

このような構成はアクチュエータ27−1の両側の負荷
がバランスするので、アクチュエータ27−1各部の摩
耗等が偏らず、アクチュエータ27−1の寿命が長くな
る。
In such a configuration, the loads on both sides of the actuator 27-1 are balanced, so that the various parts of the actuator 27-1 are not unevenly worn, and the life of the actuator 27-1 is extended.

尚、可動板41−1〜44−1とハウジング3B−1と
は第5図むこ示したごとく、非接触型でも接触型でもど
ちらでもよい。
The movable plates 41-1 to 44-1 and the housing 3B-1 may be of either a non-contact type or a contact type, as shown in FIG.

上記アクチュエータ27.27−1においては、1相励
磁の駆動方式で示したが、2相励磁バイポーラ駆動でも
よい。この場合の駆動制御を第2表に示し、アクチュエ
ータ27の状態を第17図。
In the actuator 27, 27-1, a one-phase excitation driving method is shown, but a two-phase excitation bipolar driving method may be used. The drive control in this case is shown in Table 2, and the state of the actuator 27 is shown in FIG.

第18図に示す。同時に中間停止可能な1−2相励磁バ
イポーラ駆動も示す。ただし第17図(D)は全閉時の
可動板41〜44のバウンド許容幅が40°の範囲であ
ることを示す説明図である。
It is shown in FIG. A 1-2 phase excitation bipolar drive that can be stopped at the same time is also shown. However, FIG. 17(D) is an explanatory diagram showing that the allowable bound width of the movable plates 41 to 44 when fully closed is in the range of 40 degrees.

尚、2相励磁バイポーラ駆動及び1−2相励磁バイポー
ラ駆動の場合、アクチュエータ27の構成の内、永久磁
石27cの位相が、1相励磁ユニポーラ駆動に比較して
、45°の差が設けられている。
In addition, in the case of the two-phase excitation bipolar drive and the one-two phase excitation bipolar drive, the phase of the permanent magnet 27c in the configuration of the actuator 27 is set to have a difference of 45 degrees compared to the one-phase excitation unipolar drive. There is.

第2表に示す1−2相励磁バイポーラ駆動によれば、1
相励磁ユニポーラ駆動または2相励磁バイポーラ駆動に
比較して、中間停止が可能となり吸気制御弁21〜24
を半開状態で停止することが出来る。このような機能に
より後述する第12図または第14図のような階段状の
制御が可能となる。
According to the 1-2 phase excitation bipolar drive shown in Table 2, 1
Compared to phase excitation unipolar drive or two phase excitation bipolar drive, intermediate stop is possible, and the intake control valves 21 to 24
can be stopped in a half-open state. Such a function enables step-like control as shown in FIG. 12 or FIG. 14, which will be described later.

また上記アクチュエータ27は揺動するものであったが
、上記実施例のような構成でなくとも、−船釣なスチッ
ピングモータやサーボモータ等を利用して回転タイプの
ものとしても良いし、ピエゾスタックを利用した直進状
のアクチュエータ27を用いて、ラックとピニオンの機
構により直進運動を揺動または回転運動に替えて吸気制
御弁21〜24を駆動するようにしてもよい。この場合
、ピエゾスタックは一層応答性が高いので、きわめて急
峻な開閉弁動作を実現できる。
Furthermore, although the actuator 27 is of a swinging type, it does not have to have the configuration as in the above embodiment. The linear actuator 27 using a stack may be used to drive the intake control valves 21 to 24 by replacing the linear movement with a swinging or rotational movement using a rack and pinion mechanism. In this case, since the piezo stack has higher responsiveness, extremely steep opening/closing valve operations can be realized.

上記実施例では、吸気制御弁21〜24の揺動速度を常
に一定の速度で駆動していたが、状況により揺動速度を
変更してもよい。例えば、第12図に示すこパとく、閉
動作または開動作の途中で、停止期間(T b)を持つ
ように制御してもよい。
In the above embodiment, the swinging speed of the intake control valves 21 to 24 was always driven at a constant speed, but the swinging speed may be changed depending on the situation. For example, as shown in FIG. 12, control may be performed so that there is a stop period (Tb) in the middle of the closing or opening operation.

この停止期間(T b)は、例えは、内燃機関1の回転
速度が、吸気制御弁21〜24駆動時に急変するような
場合、この停止期間(Tb)を調整して正確な全閉タイ
ミングとなるような制御に利用できる。例えは、アクチ
ュエータ27を4相8極とし、中間弁開度位置でも停止
できるように構成し、第8図の1回の制御で一旦、中間
位置で止めた後、再度ステップ120(第7図)に新た
に格納されたCLA値に基づいて第8図の処理にて所望
の位置にて正確に全閉とすることができる。
This stop period (Tb) is adjusted so that, for example, when the rotational speed of the internal combustion engine 1 suddenly changes when the intake control valves 21 to 24 are driven, this stop period (Tb) is adjusted to ensure accurate fully closing timing. It can be used for control such as For example, the actuator 27 is a 4-phase 8-pole actuator configured to be able to stop even at an intermediate valve opening position, and after once stopping at the intermediate position in one control as shown in FIG. ) can be accurately fully closed at a desired position by the process shown in FIG. 8 based on the newly stored CLA value.

また第13図に示すごとく、その閉弁速度を内燃機関1
の状況に応じて任意ζこ変更してもよい。
In addition, as shown in Fig. 13, the valve closing speed is determined by the internal combustion engine 1.
It may be changed arbitrarily depending on the situation.

例えは、ノックセンサ29cからノックの発生が検出さ
れた場合、そのノックが生じている気筒の吸気制御弁2
1〜24の閉弁速度を早くして、通常(to)よりも早
期(tn)に全閉とし、気筒内の吸気の断熱膨張により
気筒内温度を下げて、ノックを抑制することも可能であ
る。
For example, when the occurrence of knock is detected from the knock sensor 29c, the intake control valve 2 of the cylinder in which the knock occurs
It is also possible to increase the closing speed of valves 1 to 24 to fully close them earlier (tn) than normal (to), lower the temperature inside the cylinder due to adiabatic expansion of the intake air in the cylinder, and suppress knocking. be.

同様に第14図に示すごとく、中間の停止期間(tb)
をノック等の運転条件に応じて削除して対処してもよい
Similarly, as shown in Figure 14, the intermediate stop period (tb)
may be deleted depending on driving conditions such as knocking.

また第1衷に示したごとく、負荷(ここでは吸気圧)に
応じて全開の時期を制御してもよい。例えば、中低負荷
時でアクセルペダルやスロットルバルブの開度が少なく
なった場合、全開の時期を進角させれば、アクセルの踏
み込みが小さくなり部分負荷でも比較的吸気圧が大きく
なってポンプ損失が少なくなるので、トルクと燃費の向
上に一層貢献することになる。
Further, as shown in the first part, the full opening timing may be controlled depending on the load (in this case, the intake pressure). For example, if the opening degree of the accelerator pedal or throttle valve decreases at medium to low loads, by advancing the timing of full opening, the accelerator depression will be reduced and the intake pressure will be relatively large even at partial loads, resulting in pump loss. This will further contribute to improving torque and fuel efficiency.

発明の効果 以上詳述したように、本発明の内燃機関の吸気制御装置
は以下のような効果を奏する。
Effects of the Invention As detailed above, the intake control device for an internal combustion engine according to the present invention has the following effects.

■内燃機関の回転とは独立して作動するので、逆流阻止
が好適なタイミングで出来るはかりでなく、その開閉の
作動過稈においても吸気の紋りとなることがない。従っ
て逆流阻止効果が一層効果的なものとなりトルク・燃費
の向上に一層貢献する。
■Since it operates independently of the rotation of the internal combustion engine, it is not a device that can prevent backflow at a suitable timing, and even if the valve is opened or closed in excess, it will not cause intake air blemishes. Therefore, the backflow prevention effect becomes even more effective, further contributing to improvements in torque and fuel efficiency.

■従来例のように内燃機関の回転を伝達し調節するよう
な機械的な調整機構ではないので、装置の耐久性が高い
とともに、吸気制御弁の作動が迅速になり、その応答性
・追従性も高く、また、制御精度も高い。
■Since it is not a mechanical adjustment mechanism that transmits and adjusts the rotation of the internal combustion engine as in conventional models, the device has high durability and the intake control valve operates quickly, improving its responsiveness and follow-up. The control accuracy is also high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的例示図、第2図は吸気制御装置
が搭載される内燃機関のシステム構成図、第3図は吸気
制御弁およびアクチュエータを示す縦断面図、第4図は
第3図のB−B線断面図、第5図は第3図のA−A線断
面図、第6図はアクチュエータの制御系を示す回路図、
第7図及び第8図は電子制御装置とごて実行される制御
を示すフローチャート、第9図は内燃機関高回転時の制
御の様子を示すタイミングチャート、第10図は内燃機
関低回転時の制御の様子を示すタイミングチャート、第
11図は駆動電流と吸気制御弁の揺動速度との関係を示
すグラフ、第12図〜第14図は他の制御例の様子を示
すタイミングチャート、第15図は従来の制御の様子を
示すタイミングチャ− r−5第16図(A)は吸気制
御弁およびアクチュエータ27−1を示す平面図、(B
)はその部分離断正面図、(C)はハウジング38−1
を除いた正面図、第17図(A)〜(D)は可動板の揺
動状態説明図、第18図(A)〜(E)はアクチュエー
タのコイル励磁状態と永久磁石との状態説明図である。 1・・・内燃機関      3・・・吸気制御部4・
・・電子制御装置 5、 6. 7. 8・・・気筒 9.10,11.12・・・吸気弁 17.1B、19..20・・・吸気ボート2L  2
2,23,24.21−1.22−1゜23−1.24
−1・・・吸気制御弁 25.25−1・・・駆動軸 27.27−1・・・アクチュエータ 29a・・・クランク角センサ 29b・・・回転速度センサ(回転角センサも兼ねる)
代理人  弁理士  定立 勉 (ほか2名)第5図 第 図 ゝN迎
FIG. 1 is a basic illustration of the present invention, FIG. 2 is a system configuration diagram of an internal combustion engine equipped with an intake control device, FIG. 3 is a longitudinal sectional view showing an intake control valve and an actuator, and FIG. 3 is a sectional view taken along the line BB, FIG. 5 is a sectional view taken along the line AA in FIG. 3, and FIG. 6 is a circuit diagram showing the control system of the actuator.
Figures 7 and 8 are flowcharts showing the control executed by the electronic control unit, Figure 9 is a timing chart showing the state of control when the internal combustion engine is running at high speeds, and Figure 10 is a flowchart showing the control when the internal combustion engine is running at low speeds. 11 is a timing chart showing the state of control; FIG. 11 is a graph showing the relationship between drive current and swing speed of the intake control valve; FIGS. 12 to 14 are timing charts showing other control examples; FIG. The figure shows a timing chart showing the conventional control. Figure 16 (A) is a plan view showing the intake control valve and actuator 27-1,
) is a partially cutaway front view, and (C) is the housing 38-1.
17(A) to (D) are explanatory views of the swinging state of the movable plate, and FIGS. 18(A) to (E) are explanatory views of the coil excitation state of the actuator and the state of the permanent magnet. It is. 1... Internal combustion engine 3... Intake control section 4.
...Electronic control device 5, 6. 7. 8...Cylinder 9.10, 11.12...Intake valve 17.1B, 19. .. 20...Intake boat 2L 2
2,23,24.21-1.22-1゜23-1.24
-1...Intake control valve 25.25-1...Drive shaft 27.27-1...Actuator 29a...Crank angle sensor 29b...Rotation speed sensor (also serves as rotation angle sensor)
Agent: Patent attorney Tsutomu Sadatsu (and 2 others) Figure 5

Claims (1)

【特許請求の範囲】 1 内燃機関の気筒に連通する吸気通路に配設され、吸
気通路を開閉可能な吸気制御弁と、この吸気制御弁を上
記内燃機関の回転とは独立に開閉駆動する駆動手段と、 内燃機関の回転位置検出手段と、 内燃機関の回転速度検出手段と、 上記回転位置検出手段にて検出された内燃機関の回転位
置データと、上記回転速度検出手段にて検出された内燃
機関の回転速度データとに基づいて、吸気弁の開弁期間
後半に生ずる吸気の逆流を阻止するタイミングを設定し
、このタイミングで、上記駆動手段にて吸気制御弁を閉
駆動させる駆動制御手段と、 を備えたことを特徴とする内燃機関の吸気制御装置。 2 内燃機関が複数気筒を有し、その各気筒に対応して
配設された吸気制御弁の駆動軸が一体に形成されて常に
全吸気制御弁が同時に駆動されるよう構成され、駆動手
段が電磁アクチュエータからなり、内燃機関が最高回転
速度でも十分な閉弁速度で吸気制御弁を駆動可能とした
ことを特徴とする請求項1記載の内燃機関の吸気制御装
置。
[Scope of Claims] 1. An intake control valve that is disposed in an intake passage communicating with a cylinder of an internal combustion engine and that can open and close the intake passage, and a drive that opens and closes this intake control valve independently of the rotation of the internal combustion engine. means for detecting a rotational position of the internal combustion engine; rotational speed detection means for the internal combustion engine; rotational position data of the internal combustion engine detected by the rotational position detection means; and internal combustion engine rotational position data detected by the rotational speed detection means. a drive control means that sets a timing to prevent backflow of intake air that occurs in the latter half of the opening period of the intake valve based on the rotational speed data of the engine, and causes the drive means to drive the intake control valve to close at this timing; An intake control device for an internal combustion engine, comprising: . 2. The internal combustion engine has a plurality of cylinders, and the drive shaft of the intake control valves arranged corresponding to each cylinder is formed integrally so that all the intake control valves are always driven at the same time, and the drive means 2. The intake control device for an internal combustion engine according to claim 1, comprising an electromagnetic actuator, and capable of driving the intake control valve at a sufficient valve closing speed even when the internal combustion engine is at a maximum rotational speed.
JP63237437A 1988-09-21 1988-09-21 Intake air controller for internal combustion engine Pending JPH0286920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63237437A JPH0286920A (en) 1988-09-21 1988-09-21 Intake air controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63237437A JPH0286920A (en) 1988-09-21 1988-09-21 Intake air controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0286920A true JPH0286920A (en) 1990-03-27

Family

ID=17015348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63237437A Pending JPH0286920A (en) 1988-09-21 1988-09-21 Intake air controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0286920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275141A (en) * 1991-05-31 1994-01-04 Asmo, Co., Ltd. Actuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101620A (en) * 1984-10-23 1986-05-20 フオード モーター カンパニー Suction manifold for multicylinder internal combustion engine
JPS61250338A (en) * 1985-04-26 1986-11-07 Mazda Motor Corp Suction device for engine
JPS61286521A (en) * 1985-06-12 1986-12-17 Mazda Motor Corp Starting promoting device of diesel engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101620A (en) * 1984-10-23 1986-05-20 フオード モーター カンパニー Suction manifold for multicylinder internal combustion engine
JPS61250338A (en) * 1985-04-26 1986-11-07 Mazda Motor Corp Suction device for engine
JPS61286521A (en) * 1985-06-12 1986-12-17 Mazda Motor Corp Starting promoting device of diesel engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275141A (en) * 1991-05-31 1994-01-04 Asmo, Co., Ltd. Actuator

Similar Documents

Publication Publication Date Title
US6622695B2 (en) Intake control system of internal combustion engine
EP1994261B1 (en) Variable valve timing apparatus and control method therefor
JP2733252B2 (en) Intake control device for internal combustion engine
JPH0286920A (en) Intake air controller for internal combustion engine
JP4299327B2 (en) Variable valve timing device
JPH07133726A (en) Intake air controller of internal combustion engine
JP2752224B2 (en) Intake control device for internal combustion engine
JP4775243B2 (en) Abnormality judgment method of variable intake air control device
JP2686294B2 (en) Intake control device for internal combustion engine
US6595184B1 (en) Intake control system of multi-cylinder engine
JPH07115762A (en) Two-position oscillating type motor
JP3435952B2 (en) Intake control device for internal combustion engine
JP4045787B2 (en) Intake control device for internal combustion engine
JPH0370828A (en) Output control device of internal combustion engine
JPS6050237A (en) Control device in engine with controlled number of operating cylinder
JP2004183526A (en) Control device for internal combustion engine having variable valve train
JPH041420A (en) Intake air control device for internal combustion engine
JP4045784B2 (en) Intake control device for internal combustion engine
JP3621269B2 (en) Exhaust gas recirculation controller
JPH04179824A (en) Suction control apparatus for internal combustion engine
JP2003172169A (en) Intake control device for internal combustion engine
JPH04370322A (en) Intake air control device for internal combustion engine
JPH0385326A (en) Intake control device for internal combustion engine
JPH0658192A (en) Intake air control device for internal combustion engine
JPH07166900A (en) Intake control device for internal combustion engine