[go: up one dir, main page]

JPH0283936A - Manufacture of mos transistor - Google Patents

Manufacture of mos transistor

Info

Publication number
JPH0283936A
JPH0283936A JP63234854A JP23485488A JPH0283936A JP H0283936 A JPH0283936 A JP H0283936A JP 63234854 A JP63234854 A JP 63234854A JP 23485488 A JP23485488 A JP 23485488A JP H0283936 A JPH0283936 A JP H0283936A
Authority
JP
Japan
Prior art keywords
oxide film
gate electrode
region
thermal oxide
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63234854A
Other languages
Japanese (ja)
Inventor
Masaki Yamakawa
山川 雅喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP63234854A priority Critical patent/JPH0283936A/en
Publication of JPH0283936A publication Critical patent/JPH0283936A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an offset region without damaging source/drain regions by forming a thermal oxide film on a polysilicon gate electrode and by forming the offset region utilizing this thermal oxide film. CONSTITUTION:After forming a polysilicon gate electrode 4, a resist film 11 is eliminated and thermal oxidation is performed for forming a thermal oxide film 13 on the gate electrode 4. With this thermal oxide film 13 as a mask, doping in high concentration with an N-type dopant (normally arsenic) is performed, the thermal oxide film 13 on the gate electrode 4 is eliminated, and doping in low concentration with an N-type dopant (phosphor) is performed for providing a low-concentration region 6. Thus, only the processes for thermal oxidation and elimination of the thermal oxide film 13 are added for forming an offset region without making the process to be complex, thus preventing the source/drain regions from being damaged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゲート電極がポリシリコンからなり、ソース
・ドレイン領域のコンタクト部を含む高濃度領域とチャ
ンネル領域間にオフセット領域と呼ばれる低濃度領域を
有するMOSトランジスタの製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a gate electrode made of polysilicon, and a low concentration region called an offset region between a high concentration region including a contact portion of a source/drain region and a channel region. The present invention relates to a method of manufacturing a MOS transistor having the following.

〔従来の技術〕[Conventional technology]

染積回路の高密度化達成のために、、MOSトランジス
タがスケールダウンされ、チャンネル長が2μm以下の
デザインルールを使うN−MOS及びC−MOSトラン
ジスタの高集積回路が実現された。
In order to achieve high density integrated circuits, MOS transistors have been scaled down and highly integrated circuits of N-MOS and C-MOS transistors using design rules with channel lengths of 2 μm or less have been realized.

上記デザインレベルのN−MOS トランジスタでは、
信頼性の面から、ソースドレイン領域にコンタクト部を
含む高濃度領域とチャンネル領域の間にオフセット領域
と呼ばれる約0.2μm長の低濃度領域を一般ける構造
を採ることが多い。この構造をLDD(Ljght2y
 Doped Drain)n4造と呼んでいる。
In the above design level N-MOS transistor,
From the viewpoint of reliability, a structure is generally adopted in which a low concentration region of approximately 0.2 μm length, called an offset region, is provided between a high concentration region including a contact portion in the source/drain region and a channel region. This structure is called LDD (Ljght2y
It is called Doped Drain) n4 construction.

第2図はLDD構造のN−MOSトランジスタの一例を
示す。
FIG. 2 shows an example of an N-MOS transistor with an LDD structure.

図において1はP基板、2はフィールド酸化膜、3はr
−)酸化膜、4はポリシリコンr−)電極、5はn塙濃
度領域、6はn低濃度領域、7はCVD酸化膜である。
In the figure, 1 is a P substrate, 2 is a field oxide film, and 3 is an r
-) oxide film, 4 is a polysilicon r-) electrode, 5 is an n-concentration region, 6 is an n-low concentration region, and 7 is a CVD oxide film.

上記のn低濃度領域(オフセット領域)は、従来のフォ
トリングラフイー技術では、アライナのアライメント精
度、レノストの解像度などの点から、形成が難しいので
、これを解決するために、色々な手段が提案されている
The above-mentioned n low concentration region (offset region) is difficult to form using conventional photophosphorography technology due to the alignment accuracy of the aligner, the resolution of the Lennost, etc., so various methods have been developed to solve this problem. Proposed.

第3図は従来のLDD 、*造をつくる方法の一例を示
す。
FIG. 3 shows an example of a method for making a conventional LDD.

P基板1表面に形成したフィールド酸化膜2及びゲート
酸化膜3上にポリシリコン膜を形成し、拡散またはイオ
ン注入によってPを多量にドーグしてシート抵抗を下げ
、レノスト11をマスクに・9ターニングしてポリシリ
コンゲート電極4を形成し、このr−)電極4をマスク
に低濃度のN型ドーパントをドーピングする〔図(、)
 )。
A polysilicon film is formed on the field oxide film 2 and gate oxide film 3 formed on the surface of the P substrate 1, a large amount of P is doped by diffusion or ion implantation to lower the sheet resistance, and nine turns are performed using Lenost 11 as a mask. Then, a polysilicon gate electrode 4 is formed, and a low concentration N-type dopant is doped using this r-) electrode 4 as a mask [Fig.
).

次に、上記工程を終えたウェハ表面にCVD 酸化膜1
2を形成し〔図(b)〕、このCVDば化膜12をRi
g(リアクティブ・イオン・エツチング;異方性エツチ
ング)でエツチングし、ゲート電極4両サイドにCVD
寂化膜工2のスペーサを形成する〔図(C)〕。このス
ペーサ12をマスクに高濃度のN型ドーノぐンドをドー
ピングし、スペーサ12とレジス)11を除去し、表面
にCVD 7g化膜7(PSG)を形成するC図(d)
〕。
Next, a CVD oxide film 1 is applied to the surface of the wafer after the above steps.
2 [Figure (b)], and this CVD film 12 is coated with Ri.
G (reactive ion etching; anisotropic etching) and CVD on both sides of the gate electrode 4.
Form the spacer for Jakuka Membrane Work 2 [Figure (C)]. Using this spacer 12 as a mask, dope with a high concentration of N-type doping, remove the spacer 12 and resist 11, and form a CVD 7G film 7 (PSG) on the surface (Figure C)
].

以上によって、層高濃度領域5とnti11度領域6が
できる。
Through the above steps, a layer high concentration region 5 and an nti 11 degree region 6 are formed.

上記以外の工程は一般によく知られているので説明を省
略する。
Since the steps other than those described above are generally well known, their explanation will be omitted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来の方法は、高濃度領域のドアピングマスクと
するスペーサを形成するためのCVD 。
The conventional method described above is CVD to form a spacer that serves as a doping mask for a high concentration region.

RIE工程の導入により、工程が複雑化するとともに、
 RIE工程においてソース・ドレイン領域が損傷され
るという問題点があった。
With the introduction of the RIE process, the process becomes more complex, and
There is a problem in that the source/drain regions are damaged during the RIE process.

本発明は上記問題点を解消するためになされたもので、
工程が余り複雑化することなく、ソース・ドレイン領域
が損傷されることのない方法を提供することを目的とす
る。
The present invention was made to solve the above problems, and
It is an object of the present invention to provide a method that does not cause damage to source/drain regions without complicating the process too much.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の方法は、熱酸化では、ドー・9ンドがリンや砒
素の高濃度シリコン上での酸化速度が低濃度シリコンの
場合に比べ遥かに速いことに着目して、ポリシリコンゲ
ート[極上に膜厚約0.2μmの熱酸化膜をつ〈シ、こ
の熱酸化膜を利用してオフセット領域を形成するもので
ある。
The method of the present invention focuses on the fact that in thermal oxidation, the oxidation rate of dope and arsenic on silicon with high concentrations of phosphorus and arsenic is much faster than on silicon with low concentrations. A thermal oxide film with a thickness of approximately 0.2 μm is used to form the offset region.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す。 FIG. 1 shows an embodiment of the invention.

図(、)に示す状態までの工程は、従来の通常の工程と
同じである。
The process up to the state shown in the figure (,) is the same as the conventional normal process.

P基板1表面にフィールド酸化膜2及びケ゛−ト酸化膜
3を設け、このば化膜2,3上にCVD法でポリシリコ
ンをデポし、Pを拡散またはイオン注入によって多量に
ドーグしく 10”/cyn3オーダの濃度)、フォト
リソ・エツチングによってポリシリコンゲ−ト電極4を
形成する〔図(a)〕。
A field oxide film 2 and a gate oxide film 3 are provided on the surface of the P substrate 1, polysilicon is deposited on the oxide films 2 and 3 by the CVD method, and a large amount of P is doped by diffusion or ion implantation. /cyn3 order), and a polysilicon gate electrode 4 is formed by photolithography and etching [Figure (a)].

次に、レジストllを除去し、約900℃で熱酸化を行
ない、ポリシリコンゲ−ト電極4上に膜厚約0.2μm
の熱酸化膜13を形成する。
Next, the resist 11 is removed, thermal oxidation is performed at about 900°C, and a film with a thickness of about 0.2 μm is formed on the polysilicon gate electrode 4.
A thermal oxide film 13 is formed.

濃度が1020/crn3オーダのポリシリコンゲート
電極4上には、例えば濃度が1o16/(7)3オーダ
の低濃度シリコンの場合の約3〜4倍の酸化速度で熱酸
化膜13が形成される。
A thermal oxide film 13 is formed on the polysilicon gate electrode 4 with a concentration on the order of 1020/crn3 at an oxidation rate approximately 3 to 4 times that of low-concentration silicon with a concentration on the order of 1016/(7)3, for example. .

この熱酸化膜13をマスクとして、N型ドーパント(通
常、砒素)を高濃度にドーグする。
Using this thermal oxide film 13 as a mask, an N-type dopant (usually arsenic) is doped at a high concentration.

(10157,、,2オーダ)〔図(b)〕。(10157,,,2 orders) [Figure (b)].

次に1弗化水素によってゲート電極4上の熱酸化膜13
を除去し、ゲート電極4をマスクとして、N型ドーパン
ト(リン)を低濃度(通常lO〜107cm  オーダ
)にドーグし〔図(c) ) 、熱酸化膜13の膜厚0
.2μmに規制され約0.2μm長の低濃度領域6(オ
フセット領域)を設ける〔図(d)〕。
Next, the thermal oxide film 13 on the gate electrode 4 is heated using hydrogen monofluoride.
Using the gate electrode 4 as a mask, an N-type dopant (phosphorus) is doped at a low concentration (usually on the order of 10 to 10 cm) [Figure (c)), and the thickness of the thermal oxide film 13 is reduced to 0.
.. A low concentration region 6 (offset region) regulated to 2 μm and approximately 0.2 μm long is provided [Figure (d)].

その後、表面にCVD酸化膜7 (PSG)を形成し〔
図(、) ] 、電極取出し部分を窓あけして、アルミ
ニュームなどの金属膜を蒸着し、電極を形成するなどの
工程は、従来の通常の方法と全く同じである。
After that, a CVD oxide film 7 (PSG) is formed on the surface [
Figure (,) ] The steps of opening a window at the electrode extraction portion, depositing a metal film such as aluminum, and forming the electrode are exactly the same as the conventional method.

上記方法は、オフセット領域形成のために、熱酸化と熱
酸化物の除去という簡単な工程が加わるのみで、工程が
複雑化することがなく、また、RIE法によらないため
に、ソース・ドレイン領域が損傷されることがない。
In the above method, the simple steps of thermal oxidation and thermal oxide removal are added to form the offset region, and the process is not complicated. No area is damaged.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によると、従来の方法に比
べ、工程が簡単になるとともに、高価な装置が必要でな
くなり、コストダウンに連なり、また、ソース・ドレイ
ン領域が損傷されることがなくなるという効果がある。
As explained above, the present invention simplifies the process compared to conventional methods, eliminates the need for expensive equipment, leads to cost reduction, and eliminates damage to the source and drain regions. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す説明図、第2図はLD
D構造のN−MOlトランジスタの一例を示す説明図、
第3図は従来のLDD構造をつくる方法の一例を示す説
明図である。 ■・・・P基板、2・・・フィールド酸化膜、3・・・
ゲート酸化膜、4・・・ポリシリコンゲート電極、5・
・・n+高濃度領域、6・・・0低濃度領域、7・・・
CVD鍍化膜化膜SG) 、 11・・・レノスト、1
3・・・熱酸化膜。 なお図中同一符号は同一または相当する部分を示す0
Fig. 1 is an explanatory diagram showing one embodiment of the present invention, Fig. 2 is an LD
An explanatory diagram showing an example of a D-structure N-MOl transistor,
FIG. 3 is an explanatory diagram showing an example of a method for making a conventional LDD structure. ■...P substrate, 2...field oxide film, 3...
Gate oxide film, 4... Polysilicon gate electrode, 5.
...n+ high concentration area, 6...0 low concentration area, 7...
CVD plating film SG), 11... Renost, 1
3...Thermal oxide film. The same symbols in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] ゲート電極がポリシリコンからなり、ソース・ドレイン
領域のコンタクト部を含む高濃度領域とチャンネル領域
間にオフセット領域と呼ばれる低濃度領域を有するMO
Sトランジスタの製造方法において、シリコン基板表面
に形成したフィールド酸化膜とゲート酸化膜上にポリシ
リコン膜を形成し、拡散またはイオン注入によりP(り
ん)を多量にドーグした後パターニングによって形成し
たゲート電極上に約900℃での熱酸化により膜厚約0
.2μmのシリコン酸化膜を形成し、このシリコン酸化
膜をマスクにソース・ドレイン領域の高濃度領域を形成
し、上記シリコン酸化膜を弗化水素で除去した後上記ゲ
ート電極をマスクにソース・ドレイン領域の低濃度領域
を形成することを特徴とするMOSトランジスタの製造
方法。
An MO in which the gate electrode is made of polysilicon and has a low concentration region called an offset region between the high concentration region including the contact part of the source/drain region and the channel region.
In the manufacturing method of an S transistor, a polysilicon film is formed on a field oxide film and a gate oxide film formed on the surface of a silicon substrate, and a gate electrode is formed by doping a large amount of P (phosphorus) by diffusion or ion implantation and then patterning. Thermal oxidation at approximately 900°C reduces the film thickness to approximately 0.
.. A 2 μm thick silicon oxide film is formed, and using this silicon oxide film as a mask, high concentration regions of the source/drain region are formed.After removing the silicon oxide film with hydrogen fluoride, the source/drain region is formed using the gate electrode as a mask. 1. A method for manufacturing a MOS transistor, comprising forming a low concentration region.
JP63234854A 1988-09-21 1988-09-21 Manufacture of mos transistor Pending JPH0283936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63234854A JPH0283936A (en) 1988-09-21 1988-09-21 Manufacture of mos transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63234854A JPH0283936A (en) 1988-09-21 1988-09-21 Manufacture of mos transistor

Publications (1)

Publication Number Publication Date
JPH0283936A true JPH0283936A (en) 1990-03-26

Family

ID=16977390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63234854A Pending JPH0283936A (en) 1988-09-21 1988-09-21 Manufacture of mos transistor

Country Status (1)

Country Link
JP (1) JPH0283936A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541703A (en) * 1978-09-18 1980-03-24 Toshiba Corp Production of semiconductor device
JPS63124571A (en) * 1986-11-14 1988-05-28 Nec Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541703A (en) * 1978-09-18 1980-03-24 Toshiba Corp Production of semiconductor device
JPS63124571A (en) * 1986-11-14 1988-05-28 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JPS63316476A (en) Semiconductor device and manufacture thereof
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
JP3746907B2 (en) Manufacturing method of semiconductor device
JP3019526B2 (en) Method for manufacturing thin film transistor
JPH06163572A (en) Manufacture of mos field effect transistor
JPH0283936A (en) Manufacture of mos transistor
JPH0621369A (en) Manufacture of mos integrated circuit
JPS63241965A (en) Insulated gate field effect transistor and its manufacturing method
JPH03266435A (en) Semiconductor device and manufacture thereof
KR100299373B1 (en) Mos transistor of low doping drain structure and method for fabricating the same
JP3058981B2 (en) Method for manufacturing transistor
KR100250686B1 (en) Semiconductor device manufacturing method
KR930008534B1 (en) Manufacturing method of dual-gate transistor
JPH02304935A (en) Manufacture of semiconductor integrated circuit
JP3055614B2 (en) Method of manufacturing semiconductor device and semiconductor device manufactured by the method
JPH03283419A (en) Semiconductor and manufacture thereof
KR850000037B1 (en) The method of mos with self alignment metal electroid
JPS6316672A (en) Manufacture of semiconductor element
KR0146079B1 (en) Semiconductor device manufacturing method
JPH05326551A (en) Manufacture of semiconductor device
JPH08111525A (en) Semiconductor device and manufacturing method thereof
JPS63153862A (en) Manufacture of semiconductor device
JPH02181963A (en) Manufacture of semiconductor device
JPS61166154A (en) Manufacturing method of MIS type semiconductor device
JPS6051275B2 (en) Manufacturing method of semiconductor device