JPH0283033A - Method for producing heat-resistant alumina carrier - Google Patents
Method for producing heat-resistant alumina carrierInfo
- Publication number
- JPH0283033A JPH0283033A JP63237119A JP23711988A JPH0283033A JP H0283033 A JPH0283033 A JP H0283033A JP 63237119 A JP63237119 A JP 63237119A JP 23711988 A JP23711988 A JP 23711988A JP H0283033 A JPH0283033 A JP H0283033A
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- lanthanum
- carrier
- impregnated
- transitional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims description 77
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000010298 pulverizing process Methods 0.000 claims description 15
- 239000011163 secondary particle Substances 0.000 claims description 15
- 238000001354 calcination Methods 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 9
- 150000002604 lanthanum compounds Chemical class 0.000 claims description 8
- 230000007704 transition Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 description 26
- 229910052746 lanthanum Inorganic materials 0.000 description 18
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 18
- 239000003054 catalyst Substances 0.000 description 17
- 239000002994 raw material Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 8
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 230000001394 metastastic effect Effects 0.000 description 3
- 206010061289 metastatic neoplasm Diseases 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 238000007084 catalytic combustion reaction Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- OXHNIMPTBAKYRS-UHFFFAOYSA-H lanthanum(3+);oxalate Chemical compound [La+3].[La+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O OXHNIMPTBAKYRS-UHFFFAOYSA-H 0.000 description 2
- JLRJWBUSTKIQQH-UHFFFAOYSA-K lanthanum(3+);triacetate Chemical compound [La+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JLRJWBUSTKIQQH-UHFFFAOYSA-K 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- -1 norstrandite Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229910001680 bayerite Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〈産業上の利用分野)
本発明は耐熱性組成物、特に接触燃焼触媒あるいは自動
車排気浄化用触媒などに使用される触媒担体に適した耐
熱性アルミナ担体の製造方法に関するものである。[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a method for producing a heat-resistant composition, particularly a heat-resistant alumina carrier suitable for a catalyst carrier used in a catalytic combustion catalyst or a catalyst for automobile exhaust purification. It is something.
〈従来の技術〉
自動車排ガス除去、高温水蒸気改質、炭化水素や水素の
接触燃焼などの化学プロセスへの応用、更には最近では
、ガスタービンやボイラー等、高温下での触媒反応は、
ますます多用化の傾向にある。<Conventional technology> Applications to chemical processes such as automobile exhaust gas removal, high-temperature steam reforming, catalytic combustion of hydrocarbons and hydrogen, and more recently, catalytic reactions at high temperatures such as gas turbines and boilers.
There is a tendency for it to be used more and more frequently.
これら分野に用いられる触媒担体としては触媒の使用温
度が1000℃以上、時には1100℃を超える場合も
あり、このような条件下では使用担体の比表面積の低下
が少ない耐熱性に優れた特性を有する触媒担体が要求さ
れており、このような担体として転移性アルミナが多く
使用されている。Catalyst carriers used in these fields are used at temperatures of 1000°C or higher, sometimes exceeding 1100°C, and under such conditions the specific surface area of the carriers used has excellent heat resistance with little loss. A catalyst support is required, and transitional alumina is often used as such a support.
しかし、この転移性アルミナの欠点は周知のように10
00℃以上の高温下にさらされるとα−アルミナ形態へ
の転移を起こし、実質的に著しく比表面積が低下するこ
とである。However, as is well known, the disadvantage of this metastatic alumina is 10
When exposed to high temperatures of 00° C. or higher, a transition to an α-alumina form occurs, and the specific surface area substantially decreases significantly.
特に触媒担体として転移性アルミナをペレット状もしく
は他の成形物に被覆したB様において使用する場合には
、このα−アルミナへの転移による構造変化が被覆層の
脱落あるいは触媒成分のシンタリングを促進させる原因
となる。Particularly when using Type B, in which transitional alumina is coated on pellets or other molded objects as a catalyst carrier, the structural change due to this transition to α-alumina promotes shedding of the coating layer or sintering of the catalyst components. cause it to happen.
従来、この転移性アルミナにおける比表面積の低下を防
止するなど熱安定性の向上を計る方法として、アルカリ
土類元素や希土類元素を添加することは公知である。(
例えば、特開昭4417737号、特開昭48−146
00号、特開昭54−117387号、特開昭59−8
0752号、特開昭62−176542号、特開昭62
−180751号、特開昭62−191043号公報等
)。Conventionally, it has been known to add alkaline earth elements or rare earth elements as a method of improving the thermal stability of metastatic alumina, such as preventing a decrease in specific surface area. (
For example, JP-A No. 4417737, JP-A No. 48-146
No. 00, JP-A-54-117387, JP-A-59-8
No. 0752, JP-A-62-176542, JP-A-62
-180751, JP-A-62-191043, etc.).
しかしながら、これら公知の方法で得られた担体粉末を
成形したり他の成形物に被覆し易いように、粉砕を行う
と付与された耐熱性機能が極端に低下しガスタービン用
燃焼触媒あるいは自動車用触媒のように、1000℃以
上の高温下にさらされる触媒の担体としては使用出来な
い。However, if the carrier powder obtained by these known methods is pulverized so that it can be easily molded or coated on other molded products, the heat resistance function imparted to it will be extremely reduced, and it will be used as a combustion catalyst for gas turbines or for automobiles. It cannot be used as a carrier for catalysts that are exposed to high temperatures of 1000°C or higher.
他方、予め微粒で且つ高純度の転移性アルミナを用い、
これにランタンを含浸せしめ耐熱性アルミナ担体を得る
方法(特開昭62−180751)もあるが、この方法
では原料である微粒の転移性アルミナが高価なため安価
な触媒担体を得ることが出来ない。On the other hand, using fine grained and highly pure transitional alumina in advance,
There is also a method of impregnating this with lanthanum to obtain a heat-resistant alumina carrier (Japanese Patent Application Laid-open No. 62-180751), but with this method, it is not possible to obtain a cheap catalyst carrier because the raw material, fine-grained transitional alumina, is expensive. .
〈発明が解決しようとする課題)
かかる事情下に鑑み、本発明者等は、廉価で成形、被覆
性に優れる粒径を有し、かつ、1000℃以上の高温下
においても十分な比表面積を有する(比表面積の低下の
少ない)耐熱性に優れたアルミナ担体の製造方法を見出
すことを目的として鋭意検討した結果、遂に本発明方法
を完成するに至った。(Problems to be Solved by the Invention) In view of the above circumstances, the present inventors have developed a material that is inexpensive, has a particle size that is excellent in molding and coating properties, and has a sufficient specific surface area even at high temperatures of 1000°C or higher. As a result of extensive research aimed at finding a method for producing an alumina carrier with excellent heat resistance (with little reduction in specific surface area), the method of the present invention was finally completed.
(課題を解決するための手段〉
本発明方法は、転移性アルミナあるいはアルミナ水和物
の粉末に、ランタン化合物を含浸せしめその後仮焼を行
うことにより得られる耐熱性アルミナ担体の製造方法に
おいて、ランタン化合物を含浸する前の転移性アルミナ
あるいはアルミナ水和物の粉末を、平均二次粒子径が3
0μm以下になるごとく粉砕した後、300℃以上〜α
アルミナへの転移温度以下の温度で仮焼し、次いでラン
タン化合物を含浸せしめた後仮焼することを特徴とする
耐熱性アルミナ担体の製造方法を提供するにある。(Means for Solving the Problems) The method of the present invention is a method for producing a heat-resistant alumina carrier obtained by impregnating a powder of transitional alumina or alumina hydrate with a lanthanum compound and then calcining the powder. The powder of transitional alumina or alumina hydrate before being impregnated with the compound has an average secondary particle size of 3.
After grinding to 0μm or less, 300℃ or more ~ α
It is an object of the present invention to provide a method for producing a heat-resistant alumina carrier, which is characterized in that it is calcined at a temperature below the transition temperature to alumina, then impregnated with a lanthanum compound, and then calcined.
以下、本発明方法を更に詳細に説明する。The method of the present invention will be explained in more detail below.
本発明において、転移性アルミナあるいはアルミナ水和
物の粉末(以下、単に原料アルミナと称する場合がある
。)としては、ガンマ(γ)、デルタ(δ)、イータ(
η)、カイ (χ)、シータ(θ)、カッパ(に)、ロ
ー(ρ)などの形態を有する転移性アルミナ及び、バイ
ヤライト、ノルストランダイト、ジブサイト、擬ベーマ
イト、ベーマイトなどのアルミナ水和物が挙げられ、こ
れらのうちの1種または2種以上を使用する。In the present invention, the powder of transitional alumina or alumina hydrate (hereinafter sometimes simply referred to as raw alumina) includes gamma (γ), delta (δ), eta (
Transitional alumina with morphologies such as η), chi (χ), theta (θ), kappa (ni), and rho (ρ), and hydrated alumina such as bayerite, norstrandite, gibbsite, pseudoboehmite, and boehmite. One or more of these may be used.
また、これら転移性アルミナあるいはアルミナ水和物は
、市販品の他、硝酸アルミニウム、ハロゲン化アルミニ
ウム、硫酸アルミニラlなどの水溶性アルミニウム溶液
がら共沈澱させたものでよい。In addition to commercially available products, the transitional alumina or alumina hydrate may be one co-precipitated from a water-soluble aluminum solution such as aluminum nitrate, aluminum halide, or aluminum sulfate.
これら原料アルミナは製造方法あるいは製造条件にもよ
るが、通常、サブμmから数十μmの平均粒子径を有す
る一次粒子が凝集した数μmから数百μmの平均粒子径
を有する二次粒子より形成されており、二次粒子径が数
μm以下に制御されたこれら原料アルミナはなんらかの
製造条件を制御するなどしているため、概して通常のバ
イヤー法等により得られるアルミナに比較して著しく高
価である。These raw aluminas are usually formed from secondary particles with an average particle size of several μm to several hundred μm, which are agglomerated primary particles with an average particle size of sub-μm to several tens of μm, although it depends on the manufacturing method or manufacturing conditions. These raw aluminas, whose secondary particle size is controlled to a few micrometers or less, are generally significantly more expensive than alumina obtained by the normal Bayer method, etc., because some manufacturing conditions are controlled. .
本発明においては廉価な触媒担体の提供を目的とするた
め、−船釣には汎用の原料アルミナ、例えば平均二次粒
子径108m以上のバイヤー法により得られたアルミナ
水和物或いはこれをα−アルミナに転移する温度条件以
下で仮焼して得た転移性アルミナ、あるいは中和法によ
り得た副生ベーマイトゲル等の使用を推奨するが、これ
よりも平均二次粒子径の小さいものを粉砕することによ
り、出発原料アルミナよりもより微粒のものを得、これ
に本発明方法を適用する場合においては、単に粉砕する
方法に比較して優れた耐熱性向上効果を発揮するので、
原料アルミナの平均二次粒子径を限定するものではない
。In the present invention, since the purpose is to provide an inexpensive catalyst carrier, a general-purpose raw material alumina for boat fishing, such as alumina hydrate obtained by the Bayer method with an average secondary particle size of 108 m or more, or α- It is recommended to use transitional alumina obtained by calcining at a temperature below the temperature that transforms into alumina, or by-product boehmite gel obtained by neutralization, but pulverize those with a smaller average secondary particle size. By doing so, finer particles than the starting material alumina are obtained, and when the method of the present invention is applied to this, it exhibits a superior heat resistance improvement effect compared to a method of simply pulverizing.
There is no limitation on the average secondary particle size of the raw material alumina.
本発明方法においては原料アルミナは先ず粉砕される。In the method of the present invention, raw alumina is first pulverized.
粉砕の程度は限定されるものではないがランタン処理後
、仮焼し得られた粉末が通常、粒状、ペレット状、ハニ
カム状等に成形されたり、あるいは既に成形された成形
体表面に含浸法、スプレィ法、塗布法等により被覆して
使用される場合が多いので通常、約30μm以下、好ま
しくは約20μm以下に粉砕される。粉砕後の平均二次
粒子径が上記範囲よりも大きい場合には得られた成形体
の強度が弱く、また被覆層にあってはアルミナを分散さ
せたスラリーの安定性が悪くすぐに沈降するため作業性
が繁雑で工業的に安価に製造できず、また成形体への被
着力か弱く、脱落等の不都合を生起する。それゆえ、粒
径は出来るだけ小さい方が望ましいが、30μm以下を
超える、より微粒への粉砕は粉砕費用との兼ね合いによ
り決定すればよい。Although the degree of pulverization is not limited, the powder obtained by calcining after lanthanum treatment is usually formed into granules, pellets, honeycomb shapes, etc., or the surface of the already formed object is impregnated, Since it is often used by coating by spraying, coating, etc., it is usually ground to about 30 μm or less, preferably about 20 μm or less. If the average secondary particle diameter after pulverization is larger than the above range, the strength of the obtained molded product will be weak, and in the coating layer, the slurry in which alumina is dispersed will be unstable and will quickly settle. It is difficult to work with and cannot be produced industrially at low cost, and it also has weak adhesion to molded bodies, causing problems such as falling off. Therefore, it is desirable that the particle size be as small as possible, but pulverization into finer particles exceeding 30 μm or less may be determined based on the balance with the pulverization cost.
粉砕方法としては、転移性アルミナあるいはアルミナ水
和物の粉末を平均二次粒子径が30μm以下に粉砕出来
る方法で有ればよく、たとえばボールミル粉砕、振動ミ
ル粉砕、播潰機粉砕、ジェットミル粉砕などの方法が採
用出来、これらは乾式粉砕方法でも湿式粉砕方法でもよ
い。The pulverization method may be any method that can pulverize the powder of metastatic alumina or alumina hydrate to an average secondary particle size of 30 μm or less, such as ball mill pulverization, vibration mill pulverization, crusher pulverization, jet mill pulverization. Methods such as the following can be adopted, and these methods may be dry pulverization methods or wet pulverization methods.
粉砕後の原料アルミナは次いで約300℃以上〜α−ア
ルミナ転移温度以下の温度で30分以上、好ましくは約
り00℃〜約1000℃、1時間〜20時間仮焼される
。焼成雰囲気は通常大気下であるが真空下、不活性雰囲
気下等を用いてもよく、特に制限されるものではない。The raw material alumina after pulverization is then calcined at a temperature of about 300° C. or above and below the α-alumina transition temperature for 30 minutes or more, preferably at about 00° C. to about 1000° C. for 1 hour to 20 hours. The firing atmosphere is usually air, but may also be a vacuum, an inert atmosphere, etc., and is not particularly limited.
上記において仮焼温度が約300℃より低い場合にはラ
ンタン化合物を含浸させても得られるアルミナ担体の高
温耐熱性の改良効果は見られない。In the above, if the calcination temperature is lower than about 300° C., no effect of improving the high temperature heat resistance of the obtained alumina support is observed even if it is impregnated with a lanthanum compound.
本発明において粉砕、仮焼後の原料アルミナは次いでラ
ンタン化合物を含浸せしめる。該原料アルミナに対する
ランタン化合物の含浸量はA 1203に対しランタン
元素として約0.5重量%〜約lO重量%、好ましくは
約1重量%〜約7重量%の範囲であればよい、Al□0
.に対するランタンの含浸量が約0.5重量%未満の場
合には高温使用時の比表面積低下抑制効果が十分ではな
く、他方含浸量が多すぎる場合にはランタンとAl□0
.の複合酸化物が形成され粒成長を生起するためか比表
面積が低下する。In the present invention, the raw material alumina after being crushed and calcined is then impregnated with a lanthanum compound. The amount of the lanthanum compound impregnated into the raw material alumina may be in the range of about 0.5% by weight to about 10% by weight, preferably about 1% to about 7% by weight as lanthanum element based on A 1203.
.. If the impregnated amount of lanthanum is less than about 0.5% by weight, the effect of suppressing the decrease in specific surface area during high-temperature use will not be sufficient; on the other hand, if the impregnated amount is too large, lanthanum and Al
.. The specific surface area decreases probably because a composite oxide is formed and grain growth occurs.
原料アルミナへのランタンの含浸方法は特に制限される
ものではないが、例えば、酢酸ランタン[La (CH
s Coo)s ・3/2Hz OF、硝酸ランタン[
L a (Now ) s ・6 Hz OF、蓚
酸ランタン[L at (Cx Oa ) 3・98
tO]、塩化ランタン[LaC1,・7H1O]などの
ランタンを含む水溶液を用い、上記原料アルミナである
転移性アルミナあるいはアルミナ水和物がランタン水溶
液に浸るように浸漬した後、十分に攪拌しその後水分を
蒸発させ乾燥した後仮焼する方法が挙げられる。The method of impregnating raw material alumina with lanthanum is not particularly limited, but for example, lanthanum acetate [La (CH
s Coo)s ・3/2Hz OF, lanthanum nitrate [
L a (Now) s ・6 Hz OF, lanthanum oxalate [L at (Cx Oa) 3 98
Using an aqueous solution containing lanthanum such as lanthanum chloride [LaC1, 7H1O], the raw material alumina (transferable alumina or alumina hydrate) is immersed in the lanthanum aqueous solution, stirred thoroughly, and then water removed. An example is a method of evaporating and drying and then calcining.
仮焼は上記原料アルミナがα−アルミナへ転移する温度
以下で焼成すればよく、通常大気中で約300℃以上〜
800℃、1時間〜IO時間程度行えばよい。Calcination may be performed at a temperature below the temperature at which the above raw material alumina transforms into α-alumina, usually at about 300°C or higher in the atmosphere.
It may be carried out at 800° C. for about 1 hour to IO hours.
このようにして得られた転移性アルミナは、出発物質で
ある原料アルミナの比表面積がBET比表面積で約10
0rrr/g以上のものを用いていれば、1100℃、
3時間の加熱においても少なくとも60rrr/gの比
表面積を有する優れた耐熱性を有しており、そのままで
触媒担体として、あるいは各種形状触媒担体成形用原料
として、あるいは既成成形体表面に被覆する触媒担体と
して使用すればよい。The thus obtained transitional alumina has a BET specific surface area of approximately 10
If 0rrr/g or more is used, 1100℃,
It has excellent heat resistance with a specific surface area of at least 60 rrr/g even after heating for 3 hours, and can be used as a catalyst carrier as it is, or as a raw material for forming catalyst carriers of various shapes, or as a catalyst to be coated on the surface of a pre-formed product. It can be used as a carrier.
〈発明の効果)
以上詳述した如く、本発明方法はバイヤー法等により得
られる平均二次粒子が約10μm以上の安価な転移性ア
ルミナあるいはアルミナ水和物を原料アルミナとして用
い、これに粉砕→仮焼−ランタン含浸−仮焼の操作を加
えることによって 成形性、被覆性がよく、高温におい
ても実質的に初期の転移性アルミナの形態を維持し比表
面積が低下しにくい耐熱性アルミナ担体の供給を可能と
したもので、このものは、自動車排気浄化用触媒、燃焼
触媒等の高温下での耐熱性触媒担体として使用すること
ができ、その工業的価値は頗る大なるものである。<Effects of the Invention> As detailed above, the method of the present invention uses inexpensive transitional alumina or alumina hydrate with average secondary particles of about 10 μm or more obtained by the Bayer method etc. as the raw material alumina, and grinds it → By adding the operations of calcination, lanthanum impregnation, and calcination, we can supply a heat-resistant alumina carrier that has good formability and coating properties, maintains substantially the initial transitional alumina morphology even at high temperatures, and is resistant to a decrease in specific surface area. This product can be used as a heat-resistant catalyst carrier at high temperatures for automobile exhaust purification catalysts, combustion catalysts, etc., and its industrial value is extremely large.
〈実施例)
以下、本発明方法を実施例により更に詳細に説明するが
本発明方法は以下の実施例により制限されるものではな
い。<Examples> Hereinafter, the method of the present invention will be explained in more detail with reference to Examples, but the method of the present invention is not limited to the following Examples.
実施例1
平均二次粒子径55μm、BET表面積が190rrr
/gである擬ベーマイト水酸化アルミニウムを20j!
ボールミルに供給し、30分間粉砕し平均二次粒子径1
8μmにした後、熱風循環式乾燥機で490℃、18時
間仮焼した。Example 1 Average secondary particle diameter 55 μm, BET surface area 190 rrr
/g of pseudoboehmite aluminum hydroxide is 20j!
Supply it to a ball mill and grind it for 30 minutes until the average secondary particle size is 1.
After reducing the thickness to 8 μm, it was calcined in a hot air circulation dryer at 490° C. for 18 hours.
このようにして得たアルミナ1 kgを約1.5 kg
の酢酸ランタン(L a (CHs C00) s
・3/2H□0)水溶液に浸漬し、十分に攪拌しその
後水分を蒸発しアルミナに対し3重量%のランタンを含
浸した。Approximately 1.5 kg of 1 kg of alumina obtained in this way
Lanthanum acetate (L a (CHs C00) s
・3/2H□0) was immersed in an aqueous solution, thoroughly stirred, and then water was evaporated to impregnate 3% by weight of lanthanum based on the alumina.
その後、ランタン含浸した後のアルミナを取り出し電気
炉中で、490℃、4時間仮焼しアルミナ担体を得た。Thereafter, the alumina impregnated with lanthanum was taken out and calcined in an electric furnace at 490° C. for 4 hours to obtain an alumina carrier.
このものを試料mtと称する。This sample is referred to as sample mt.
実施例2
平均二次粒子径50μm、BET表面積が120rd/
gであるγ−アルミナ(商品名KC512:住友化学工
業株式会社製)を201ボールミルに供給し、30分間
粉砕し平均二次粒子径toIImにした後、熱風循環式
乾燥機で490℃、18時間焼成した。Example 2 Average secondary particle diameter 50 μm, BET surface area 120rd/
γ-alumina (trade name KC512, manufactured by Sumitomo Chemical Industries, Ltd.) was supplied to a 201 ball mill, pulverized for 30 minutes to give an average secondary particle size of toIIm, and then pulverized in a hot air circulation dryer at 490°C for 18 hours. Fired.
このようにして得たアルミナ1 kgを約1.5 kr
の蓚酸ランタン[Latcctoa)x ・9 Hz
O]水溶液に浸漬し、十分に攪拌しその後水分を蒸発し
アルミナに対し1重量%のランタンを含浸した。1 kg of alumina obtained in this way costs about 1.5 kr.
Lanthanum oxalate [Latcctoa] x 9 Hz
O] It was immersed in an aqueous solution, thoroughly stirred, and then water was evaporated to impregnate 1% by weight of lanthanum based on the alumina.
次いで、ランタン含浸後のアルミナを取り出し電気炉中
で、490℃、4時間仮焼しアルミナ担体を得た。この
ものを試料11m2と称する。Next, the alumina impregnated with lanthanum was taken out and calcined in an electric furnace at 490°C for 4 hours to obtain an alumina carrier. This sample is referred to as sample 11m2.
比較例1
ランタン含浸前に原料アルミナである擬ベーマイト水酸
化アルミニウムの粉砕処理を行わなかった他は仮焼−ラ
ンタン含浸−仮焼と実施例1と全(同様の原料を用い、
同様の処理を行いアルミナ担体を作成した。このものを
試料Il&lL3と称する。Comparative Example 1 The same procedure as in Example 1 (using the same raw materials and calcination, lanthanum impregnation, and calcination, except that the raw material alumina, pseudoboehmite aluminum hydroxide, was not pulverized before impregnation with lanthanum)
An alumina carrier was prepared by performing the same treatment. This is referred to as sample Il&lL3.
比較例2
実施例1において粉砕後の擬ベーマイト水酸化アルミニ
ウムを仮焼しないでランタンに浸漬した他は全く同様の
処理を行いアルミナ担体を作成した。このものを試料阻
4と称する。Comparative Example 2 An alumina carrier was prepared in exactly the same manner as in Example 1, except that the pulverized pseudoboehmite aluminum hydroxide was immersed in lanthanum without being calcined. This is called sample sample 4.
比較例3
実施例1と同じ擬ベーマイト水酸化アルミニウムを熱風
循環式乾燥機で490℃、18時間焼成した後、実施例
1と同じ方法でランタン3重量%を含浸し、これを49
0℃、4時間仮焼した後、201ボールミルで約30分
粉砕し、平均二次粒子径18μmのアルミナ担体を得た
。Comparative Example 3 The same pseudoboehmite aluminum hydroxide as in Example 1 was baked at 490°C for 18 hours in a hot air circulation dryer, and then impregnated with 3% by weight of lanthanum in the same manner as in Example 1.
After calcining at 0° C. for 4 hours, the mixture was pulverized in a 201 ball mill for about 30 minutes to obtain an alumina carrier having an average secondary particle size of 18 μm.
このものを試料磁5と称する。This is called sample magnet 5.
比較例4
実施例2において粉砕後のT−アルミナを仮焼しないで
ランタン水溶液に浸漬した他は全く同様の処理を行いア
ミルナ担体を作成した。このものを試料阻6と称する。Comparative Example 4 An alumina carrier was prepared in exactly the same manner as in Example 2, except that the T-alumina after pulverization was immersed in a lanthanum aqueous solution without being calcined. This is called a sample sample 6.
試験例
上記方法により得られた試料11m1〜試料隘6のアル
ミナ担体各5gをムライト製坩堝に入れ、シリコニット
炉中、大気下、1100℃、3時間加熱して耐熱試験を
行い、加熱後に置ける比表面積(BET法による)を測
定した。この結果を第1表に示す。Test Example 5 g each of the alumina carriers from sample 11ml to sample size 6 obtained by the above method were placed in a mullite crucible and heated in a siliconite furnace at 1100°C in the atmosphere for 3 hours to perform a heat resistance test. The surface area (by BET method) was measured. The results are shown in Table 1.
また、セラミック多孔質体等からなる成形体の表面への
被覆に使用するスラリー取扱い性の目安として、上記各
担体粒子試料30gを水100’ccに分散させスラリ
ー状にした後、該担体粒子の沈降時間を測定した。その
結果を第1表に示す。In addition, as a guide for the ease of handling the slurry used for coating the surface of a molded body made of a ceramic porous body, etc., 30 g of each of the above carrier particle samples was dispersed in 100 cc of water to form a slurry, and then the carrier particles were The settling time was measured. The results are shown in Table 1.
Claims (1)
タン化合物を含浸せしめその後仮焼を行うことにより得
られる耐熱性アルミナ担体の製造方法において、ランタ
ン化合物を含浸する前の転移性アルミナあるいはアルミ
ナ水和物の粉末を、平均二次粒子径が30μm以下にな
るごとく粉砕した後、300℃以上〜αアルミナへの転
移温度以下の温度で仮焼し、次いでランタン化合物を含
浸せしめた後仮焼することを特徴とする耐熱性アルミナ
担体の製造方法。In a method for producing a heat-resistant alumina carrier obtained by impregnating a powder of transitional alumina or alumina hydrate with a lanthanum compound and then performing calcination, the transitional alumina or alumina hydrate before being impregnated with a lanthanum compound. After pulverizing the powder so that the average secondary particle size is 30 μm or less, it is calcined at a temperature of 300°C or higher and lower than the transition temperature to α-alumina, and then impregnated with a lanthanum compound and then calcined. A method for producing a characteristic heat-resistant alumina carrier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63237119A JPH0283033A (en) | 1988-09-20 | 1988-09-20 | Method for producing heat-resistant alumina carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63237119A JPH0283033A (en) | 1988-09-20 | 1988-09-20 | Method for producing heat-resistant alumina carrier |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0283033A true JPH0283033A (en) | 1990-03-23 |
Family
ID=17010693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63237119A Pending JPH0283033A (en) | 1988-09-20 | 1988-09-20 | Method for producing heat-resistant alumina carrier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0283033A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5667875A (en) * | 1994-07-11 | 1997-09-16 | Usui Kokusai Sangyo Kabushiki Kaisha, Ltd. | Exhaust gas cleaning metallic substrate |
US5718879A (en) * | 1992-11-12 | 1998-02-17 | Rhone-Poulenc Chimie | Lanthanum-stabilized alumina particulates |
WO2018021192A1 (en) | 2016-07-29 | 2018-02-01 | 住友化学株式会社 | Alumina and method for producing automotive catalyst using same |
-
1988
- 1988-09-20 JP JP63237119A patent/JPH0283033A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5718879A (en) * | 1992-11-12 | 1998-02-17 | Rhone-Poulenc Chimie | Lanthanum-stabilized alumina particulates |
US5667875A (en) * | 1994-07-11 | 1997-09-16 | Usui Kokusai Sangyo Kabushiki Kaisha, Ltd. | Exhaust gas cleaning metallic substrate |
WO2018021192A1 (en) | 2016-07-29 | 2018-02-01 | 住友化学株式会社 | Alumina and method for producing automotive catalyst using same |
KR20190035704A (en) | 2016-07-29 | 2019-04-03 | 스미또모 가가꾸 가부시끼가이샤 | Alumina and a method for manufacturing an automobile catalyst using the same |
US10906816B2 (en) | 2016-07-29 | 2021-02-02 | Sumitomo Chemical Company, Limited | Alumina and method for producing automotive catalyst using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5106812A (en) | Catalyst carrier for use in high-temperature combustion | |
US5883037A (en) | Thermally stable/highly reducible catalyst compositions comprising alumina and the oxides of cerium and zirconium | |
JPS62180751A (en) | Heat resistant alumina carrier | |
JP2893648B2 (en) | Catalyst support material | |
US6013313A (en) | Methods for making highly dispersed homogeneous compositions | |
JPH10194742A (en) | Zirconium-cerium-based compound oxide and its production | |
US5718879A (en) | Lanthanum-stabilized alumina particulates | |
US12077449B2 (en) | Alumina-based composite oxide and production method for same | |
US4959338A (en) | Heat-resistant catalyst carrier moldings and catalysts for combustion | |
US3216954A (en) | Mangano-chromia-manganite catalyst and process for its production | |
JP2002537111A (en) | Stabilization of transition alumina | |
Wachowski et al. | Studies of physicochemical and surface properties of alumina modified with rare-earth oxides I. Preparation, structure and thermal stability | |
JP4595383B2 (en) | Production method of fine α-alumina | |
Huang et al. | Control of porosity and surface area in alumina: I. Effect of preparation conditions | |
JP3531299B2 (en) | Method for producing heat-resistant transition alumina | |
JP2009061383A (en) | Heat resistant alumina carrier and method for producing the same | |
JPH0283033A (en) | Method for producing heat-resistant alumina carrier | |
JPS60226414A (en) | Manufacturing method of lanthanum-alumina composite oxide | |
JPH0259045A (en) | Catalyst carrier | |
JPS62168544A (en) | Zirconia carrier | |
JP3102082B2 (en) | Production method of heat-resistant transition alumina | |
KR20070028975A (en) | Metal oxide with excellent heat resistance and its manufacturing method | |
JPS6283315A (en) | Production of gamma-alumina having superior heat stability | |
JP3458428B2 (en) | Method for manufacturing porous body | |
JPS6320035A (en) | Production of heat resistant catalyst carrier composition |