JPH028301B2 - - Google Patents
Info
- Publication number
- JPH028301B2 JPH028301B2 JP59066501A JP6650184A JPH028301B2 JP H028301 B2 JPH028301 B2 JP H028301B2 JP 59066501 A JP59066501 A JP 59066501A JP 6650184 A JP6650184 A JP 6650184A JP H028301 B2 JPH028301 B2 JP H028301B2
- Authority
- JP
- Japan
- Prior art keywords
- photoreceptor
- corona discharge
- developing
- bias voltage
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/50—Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/06—Apparatus for electrographic processes using a charge pattern for developing
- G03G15/065—Arrangements for controlling the potential of the developing electrode
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Developing For Electrophotography (AREA)
- Dry Development In Electrophotography (AREA)
- Control Or Security For Electrophotography (AREA)
Description
【発明の詳細な説明】
本発明は電子写真装置の画像濃度制御装置、特
に形成された画像の濃度むらを防止するのに適す
るものに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image density control device for an electrophotographic apparatus, and particularly to one suitable for preventing density unevenness in formed images.
例えばマイクロフイルムリーダプリンタなど
で、マイクロフイルムに撮影されている原画像は
ネガ画像の場合とポジ画像の場合がある。いずれ
の原画像であつても、そこから得る複写はポジ画
像であることが必要である。ネガ画像からポジ画
像を電子写真装置により形成するには反転現像を
している。レーザビームプリンタでもイメージの
ある部分でレーザが発振走査し、感光部分を反転
現像する方式のものが多い。 For example, with a microfilm reader printer, the original image taken on microfilm may be a negative image or a positive image. Regardless of the original image, the copy obtained from it must be a positive image. To form a positive image from a negative image using an electrophotographic device, reversal development is performed. Many laser beam printers use a method in which a laser oscillates and scans a certain part of the image, and the exposed part is reversely developed.
第1図に示す電子写真装置で、このような反転
現像がなされる場合の画像形成工程を説明する。
導電体を光導電層で覆つた感光体1を暗所で一次
帯電器2により一様に、例えば負に帯電してか
ら、ネガ原画像光3を投影して、ネガ静電潜像を
形成する。この静電潜像を現像器4から供給され
るトナー像により現像する。現像器4内のトナー
は相互摩擦或は現像スリーブ4aとの摩擦で負に
帯電する。スリーブ4a及びブレード4bには交
流電圧に負の直流電圧を重畳させたバイアス電圧
(偏倚交流電圧)が印加されていて、負帯電トナ
ーは、感光体1の像露光部分(表面電位略0V)
へ飛び移り現像する。得られたポジ像を転写帯電
器5により転写材Pの背面から正のコロナ放電を
して転写する。転写材P上の像は定着されてハー
ドコピーを得る。一方、転写後に感光体1上の残
留トナーはクリーナ装置6により清掃され、残留
電荷は均一光7を照射されて短絡消滅(除電)
し、次の画像形成工程に入る。 The image forming process when such reversal development is performed using the electrophotographic apparatus shown in FIG. 1 will be described.
A photoreceptor 1 having a conductor covered with a photoconductive layer is uniformly charged, for example, negatively, by a primary charger 2 in a dark place, and then a negative original image light 3 is projected to form a negative electrostatic latent image. do. This electrostatic latent image is developed with a toner image supplied from a developing device 4. The toner in the developing device 4 is negatively charged due to mutual friction or friction with the developing sleeve 4a. A bias voltage (biased AC voltage) in which a negative DC voltage is superimposed on an AC voltage is applied to the sleeve 4a and the blade 4b.
Jump to and develop. The obtained positive image is transferred by applying positive corona discharge from the back side of the transfer material P by the transfer charger 5. The image on the transfer material P is fixed to obtain a hard copy. On the other hand, after the transfer, the residual toner on the photoreceptor 1 is cleaned by a cleaner device 6, and the residual charge is irradiated with uniform light 7 to eliminate short circuits (static charge removal).
Then, the next image forming process begins.
転写効率を良くするには、帯電器5の動作正電
圧を高くしている。ところがこの正電圧を高くす
ると、感光体1の電位も正になつてしまう。その
ため、感光体1の帯電特性(負)とは逆になつて
おり、除電光量をかなり高くしないと、残留電荷
が充分に除電されなくなる。特に転写材Pがとぎ
れた部分では、感光体1に直接正のコロナイオン
が当つて帯電するため、転写材Pを介してコロナ
帯電された部分よりも感光体1の電位が高くなつ
て、電荷が多く残つてしまう。実験によれば、一
次帯電電位が−800Vの感光体の表面に、転写材
を介してコロナ放電して+80Vになるような転写
帯電器の電圧で、転写材を介さないで直接コロナ
放電したところ、+500Vになつた。このような残
留電荷状態であると除電光7の光量を多くして
も、除電状態が不均一になつてしまう。不均一な
電荷の状態のまま、次の画像形成工程で再度一次
帯電されると、一次帯電電位が不均一になつてし
まう。通常、感光体1の外周は、転写材Pの長さ
より短い場合が多い。そのため感光体1の1回転
では1枚の複写が終らないで、2回乃至数回要す
る場合もある。感光体1は、2回転目以降では前
回の回転で転写コロナ放電を受けた経歴があり、
1枚の複写物のなかに一次帯電の状態が異なつた
ままに画像形成されている領域があり、画像濃度
むらを生じてしまうことになる。 In order to improve the transfer efficiency, the positive operating voltage of the charger 5 is increased. However, when this positive voltage is increased, the potential of the photoreceptor 1 also becomes positive. Therefore, the charging characteristic (negative) of the photoreceptor 1 is opposite to that of the photoreceptor 1, and the residual charge cannot be removed sufficiently unless the amount of charge removal light is considerably increased. In particular, in the part where the transfer material P is interrupted, the photoconductor 1 is directly charged with positive corona ions, so the potential of the photoconductor 1 becomes higher than the part corona-charged via the transfer material P, and the charge is increased. Many will remain. According to experiments, corona discharge was applied directly to the surface of a photoreceptor whose primary charging potential was -800V without passing through the transfer material using a transfer charger voltage that caused corona discharge to reach +80V through the transfer material. , it became +500V. In such a residual charge state, even if the amount of the static eliminating light 7 is increased, the static eliminating state will become uneven. If the non-uniformly charged state is primary charged again in the next image forming step, the primary charging potential will become non-uniform. Usually, the outer circumference of the photoreceptor 1 is often shorter than the length of the transfer material P. Therefore, one rotation of the photoreceptor 1 does not complete the copying of one sheet, and it may take two or several times. From the second rotation onward, the photoreceptor 1 has a history of receiving transfer corona discharge during the previous rotation.
In one copy, there are areas in which images are formed with different states of primary charging, resulting in uneven image density.
本発明はこのような事態に鑑みてなされたもの
で、均質な画像濃度の得られる電子写真の画像濃
度制御装置を提供することを目的とするものであ
る。 The present invention has been made in view of the above situation, and an object of the present invention is to provide an image density control device for electrophotography that can obtain a uniform image density.
この目的を達成する本発明は、回転する感光体
上に形成されたトナー像をシートに転写する電子
写真装置において、感光体の静電潜像電荷と同極
性の電荷をもつトナーにより現像を行う現像手段
と、現像手段に現像バイアス電圧を与えるバイア
ス電圧手段と、感光体上のトナー像をシートに転
写するため転写位置で感光体にコロナ放電を与え
るコロナ放電手段と、感光体の該コロナ放電手段
によりコロナ放電を受けた領域を検知する検知手
段と、感光体の該コロナ放電手段によりコロナ放
電を受けた領域に形成された静電潜像を現像する
場合と、コロナ放電を受けない領域に形成された
静電潜像を現像する場合とで現像バイアス電圧を
異ならせるように検知手段の出力により現像バイ
アス電圧を切替える手段と、コロナ放電を受けた
領域と受けない領域の現像バイアス電圧を調整す
る調整手段とを有することを特徴とする電子写真
装置の画像濃度制御装置である。 The present invention achieves this object in an electrophotographic apparatus that transfers a toner image formed on a rotating photoreceptor onto a sheet, and develops the image using a toner having a charge of the same polarity as the electrostatic latent image charge on the photoreceptor. a developing means, a bias voltage means for applying a developing bias voltage to the developing means, a corona discharge means for applying a corona discharge to the photoreceptor at a transfer position for transferring the toner image on the photoreceptor to a sheet, and the corona discharge of the photoreceptor. a detection means for detecting an area that has received corona discharge by means of the corona discharge means; a detection means for developing an electrostatic latent image formed in the area of the photoreceptor that has received corona discharge by the corona discharge means; Means for switching the developing bias voltage based on the output of the detection means so that the developing bias voltage is different when developing the formed electrostatic latent image, and adjusting the developing bias voltage for areas receiving corona discharge and areas not receiving corona discharge. An image density control device for an electrophotographic apparatus, characterized in that the image density control device has an adjusting means for controlling the image density of an electrophotographic device.
以下本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.
第1図は本発明を適用する画像濃度制御装置で
制御される電子写真装置である。同図で、8は光
電センサで、転写材Pの有無を検知するものであ
る。その他の各部は、先に説明した通りであるか
ら再度の説明を省略する。なお、9はスリツト、
10はシヤツタである。 FIG. 1 shows an electrophotographic apparatus controlled by an image density control device to which the present invention is applied. In the figure, 8 is a photoelectric sensor that detects the presence or absence of the transfer material P. The other parts are as described above, and will not be explained again. In addition, 9 is slit,
10 is a shutter.
第2図は本発明を適用する画像濃度制御装置の
回路ブロツク図である。同図に於て、20はマイ
クロコンピユータで、中央演算処理装置CPU、
記憶装置ROM・RAM、入出力部I/Oなどが
1チツプになつている。21はドライブ回路で、
マイクロコンピユータ20の指令で、帯電器2・
帯電器5・現像スリーブ4a及びブレード4bに
夫々駆動電圧HV−・HV+・HACを送る。22
は波形整形回路で、転写材Pの有無を検知したセ
ンサ8の信号を波形整形しマイクロコンピユータ
20に送る。23は電圧設定回路で、可変抵抗
VRにより偏倚交流電圧HACの直流分電圧(以下
「現像バイアス電圧」という)を調整し、そのリ
モート信号VREMをドライブ回路21に送るもの
である。この可変抵抗VRの調整により、現像画
像の濃度が任意的に調整できる。 FIG. 2 is a circuit block diagram of an image density control device to which the present invention is applied. In the figure, 20 is a microcomputer with a central processing unit CPU,
The storage device ROM/RAM, input/output section I/O, etc. are all integrated into one chip. 21 is the drive circuit,
Based on the command from the microcomputer 20, the charger 2.
Drive voltages HV-, HV+, and HAC are sent to the charger 5, developing sleeve 4a, and blade 4b, respectively. 22
A waveform shaping circuit shapes the waveform of the signal from the sensor 8 that detects the presence or absence of the transfer material P and sends it to the microcomputer 20. 23 is a voltage setting circuit, a variable resistor
The DC component voltage (hereinafter referred to as "developing bias voltage") of the biased AC voltage HAC is adjusted by VR, and the remote signal V REM is sent to the drive circuit 21. By adjusting the variable resistor VR, the density of the developed image can be adjusted arbitrarily.
バイアス電圧設定回路23の詳細は第3図に示
してある。同図の回路で、リレーRY1がオンし
ているときは、定電圧VCCを抵抗R1・可変抵抗
VR・抵抗R2で分圧して、リモート信号VREMとし
てドライブ回路21に出力する。リレーRY1が
オフしているときは、電圧VCCを抵抗R3・抵抗
R1・可変抵抗VR・抵抗R2で分圧して、リモー
ト信号VREMとしてドライブ回路21に出力する。
従つて、画像濃度調整(可変抵抗VRによる調
整)を変えなければ、リレーRY1がオフのとき
の方が、リモート信号VREMは低くなる。そして
その低下の度合は、画像濃度調整の程度(可変抵
抗VRの抵抗分割比)によつて変化する。リモー
ト信号VREMの電圧が高いときには大巾に低下し、
低いときにはあまり低下しない。 Details of the bias voltage setting circuit 23 are shown in FIG. In the circuit shown in the figure, when relay RY1 is on, constant voltage V CC is connected to resistor R1 and variable resistor.
The voltage is divided by VR and resistor R2 and output to the drive circuit 21 as a remote signal VREM . When relay RY1 is off, voltage V CC is connected to resistor R3
The voltage is divided by R1, variable resistor VR, and resistor R2, and output to the drive circuit 21 as a remote signal V REM .
Therefore, unless the image density adjustment (adjustment using the variable resistor VR) is changed, the remote signal V REM will be lower when the relay RY1 is off. The degree of reduction varies depending on the degree of image density adjustment (resistance division ratio of variable resistor VR). When the voltage of the remote signal V REM is high, it drops significantly,
When it's low, it doesn't drop much.
リモート信号VREMの電圧による、現像バイア
ス電圧VDCの変化が第4図に示してある。リレー
RY1がオンしているとき(出力信号outはロウ)
リモート信号VREM電圧が可変抵抗VRにより10V
に調整されていると現像バイアス電圧VDCは−
400Vである。リレーRY1がオフになると(出力
信号outはハイ)リモート信号VREM電圧が9Vに下
り現像バイアス電圧VDCも−360Vに下る。リレー
RY1がオンのときリモート信号VREM電圧がやや
低い7.5Vに調整されていると現像バイアス電圧
VDCは−300Vで、リレーRY1がオフに変ればリモ
ート信号VREM電圧が6.75Vに下り現像バイアス電
圧VDCも−360Vに下る。リモート信号VREM電圧の
調整値により、リモート信号VREM電圧の降下量
も変ると同時に現像バイアス電圧降下量も変る。 The variation of the developing bias voltage V DC with the voltage of the remote signal V REM is shown in FIG. relay
When RY1 is on (output signal out is low)
Remote signal V REM voltage is set to 10V by variable resistor VR
When the developing bias voltage V DC is adjusted to -
It is 400V. When relay RY1 is turned off (output signal out is high), the remote signal V REM voltage drops to 9V and the developing bias voltage V DC also drops to -360V. relay
When RY1 is on, the remote signal V REM voltage is adjusted to a slightly lower 7.5V, and the developing bias voltage
V DC is -300V, and when relay RY1 is turned off, the remote signal V REM voltage drops to 6.75V and the developing bias voltage V DC also drops to -360V. Depending on the adjustment value of the remote signal V REM voltage, the amount of drop in the remote signal V REM voltage changes, and at the same time, the amount of drop in the developing bias voltage also changes.
マイクロコンピユータ20は、そのROMエリ
アに記憶されたプログラム手順により各機能が動
作する。画像形成のシーケンスの内、本発明の構
成が含まれる部分のプログラムを実行するフロー
チヤートが第6図に示してある。なおこのプログ
ラムは1枚複写の場合の例である。以下このフロ
ーチヤートに従い動作を説明する。 Each function of the microcomputer 20 operates according to program procedures stored in its ROM area. FIG. 6 shows a flowchart for executing a program for a portion of the image forming sequence that includes the configuration of the present invention. Note that this program is an example for copying one sheet. The operation will be explained below according to this flowchart.
まず一連の画像形成シーケンスのなかで、回転
している感光体1に対し一次帯電をする。ドライ
ブ回路21により負の高電圧HV−を一次帯電器
2に印加する(ステツプ101)。シヤツタ10が開
き画像露光を開始したら、ステツプ102でマイク
ロコンピユータ20のカウンタがクロツクCLの
カウントを開始する。開始後、感光体1の回転速
度と現像器4の位置とから予め設定される時間
T1を経過したら(ステツプ103)、ステツプ104で
一端クロツクCLのカウントを停止してから、偏
倚交流電圧HACを印加する信号をドライバ21
に出力する(ステツプ105)。このとき、出力out
からの信号はロウのままなので、リレーRY1に
は通電しているため、現像バイアス電圧VDCは高
くなつている。次に、ステツプ106で光電センサ
8を動作させ、転写材Pを検知したら(ステツプ
107)、クロツクCLのカウントを開始する(ステ
ツプ108)。開始後、転写材Pの給送速度(感光体
1の回転速度)とセンサ12−転写帯電器5間の
距離とから予め設定される時間T2を経過したら
(ステツプ109)、転写帯電器5に正の高電圧HV
+を印加する信号をドライブ回路21に出す(ス
テツプ110)。同じくクロツクCLが感光体1の回
転速度とセンサ12−現像器4間の距離とから予
め設定される時間T3を経過したら(ステツプ
111)、ステツプ112で設定回路23に対する出力
outの信号をハイにする。すると、リレーRY1は
通電が断たれ、リモート信号VREMが降下し、現
像バイアス電圧VDCが下る。即ち、感光体1上の
転写帯電を受けた領域が、再度一次帯電されてか
ら画像露光されて静電潜像が形成され、現像器4
の位置までくると、現像バイアス電圧VDCが低く
なる。 First, in a series of image forming sequences, the rotating photoreceptor 1 is primarily charged. A negative high voltage HV- is applied to the primary charger 2 by the drive circuit 21 (step 101). When the shutter 10 opens and starts image exposure, the counter of the microcomputer 20 starts counting the clock CL in step 102. After the start, the time is preset based on the rotational speed of the photoreceptor 1 and the position of the developing device 4.
After T 1 has elapsed (step 103), the count of the clock CL is stopped at one end in step 104, and then a signal for applying the biased AC voltage HAC is sent to the driver 21.
(Step 105). At this time, output out
Since the signal from VDC remains low, relay RY1 is energized, and the developing bias voltage V DC is high. Next, in step 106, the photoelectric sensor 8 is operated to detect the transfer material P (step 106).
107), and starts counting the clock CL (step 108). After the start, when a time T2 preset from the feeding speed of the transfer material P (rotational speed of the photoreceptor 1) and the distance between the sensor 12 and the transfer charger 5 has elapsed (step 109), the transfer charger 5 positive high voltage HV
A signal for applying + is sent to the drive circuit 21 (step 110). Similarly, when the clock CL passes a time T3 preset from the rotational speed of the photoreceptor 1 and the distance between the sensor 12 and the developing unit 4 (step
111), output to the setting circuit 23 in step 112
Make the out signal high. Then, relay RY1 is de-energized, remote signal V REM drops, and developing bias voltage V DC drops. That is, the area on the photoreceptor 1 that has been transferred and charged is once again primarily charged and then exposed to image light to form an electrostatic latent image.
When it reaches the position, the developing bias voltage V DC becomes low.
第5図は、感光体1に一次帯電器2により一次
帯電し露光したときの露光量と表面電位との関係
を示す曲線(E−V特性曲線)である。曲線aは
転写帯電を受けなかつた領域のE−V特性であ
る。なお、曲線aは暗減衰のため、露光量0でも
表面電位は一次帯電電位の−800Vより低くなる。
曲線bは転写帯電を受けた領域に、一次帯電器2
に同一の電圧を印加してから露光したときのE−
V特性である。濃度の高い原画フイルムと濃度の
低い原画フイルムを同一光量の光源(不図示)で
感光体1に露光する。高濃度フイルムに含まれる
最も濃度の高い部分(ダーク部)と最も濃度の低
い部分(ライト部)のE−V特性曲線a上の点を
夫々Pd1とPl1とし、その時の現像濃度が適正とな
る現像バイアス電圧VDCをVDC1とする。低濃度フ
イルムのダーク部とライト部のE−V特性曲線a
上の点を夫々Pd2とPl2とし、その時の現像濃度が
適正となる現像バイアス電圧VDCをVDC2とする。
曲線b上では夫々高濃度フイルムのダーク部
Pd1′・ライト部Pl1′、低濃度フイルムのダーク部
Pd2′・ライト部Pl2′になる。現像濃度は現像バイ
アス電圧VDCと感光体表面の電位Vとの差V−
VDCに対応するため、現像濃度を同一に維持でき
る現像バイアス電圧VDCは夫々VDC1′・VDC2′であ
る。ダーク部での現像バイアス電圧VDC1とVDC1′
の差v1はライト部の現像バイアス電圧VDC2と
VDC2′の差v2より大きい。すなわち、濃度の低い
フイルムほど原画像に対応する電位は特性曲線
上、右へ移動し、現像バイアス電圧VDCは下がつ
てくる。曲線aとbは表面電位が下がるほど(+
方向)、その差が小さくなる。従つて、フイルム
濃度が低くなればなるほど、現像バイアス電圧を
変化させる量は少なくてよいことになる。 FIG. 5 is a curve (EV characteristic curve) showing the relationship between the exposure amount and the surface potential when the photoreceptor 1 is primarily charged by the primary charger 2 and exposed to light. Curve a is the EV characteristic of the area not subjected to transfer charging. Note that since the curve a is dark decay, the surface potential is lower than the primary charging potential of -800V even when the exposure amount is 0.
Curve b indicates that the primary charger 2
E- when exposed after applying the same voltage to
This is a V characteristic. A high-density original film and a low-density original film are exposed to a photoreceptor 1 using a light source (not shown) with the same amount of light. The points on the EV characteristic curve a of the highest density part (dark part) and the lowest density part (light part) included in the high density film are respectively defined as Pd 1 and Pl 1 , and the developed density at that time is appropriate. Let the developing bias voltage V DC be V DC1 . EV characteristic curve a of dark and light areas of low density film
Let the upper points be Pd 2 and Pl 2 , respectively, and let the development bias voltage V DC at which the development density at that time becomes appropriate be V DC2 .
On curve b, there are dark areas of high-density film.
Pd 1 ′, light area Pl 1 ′, dark area of low density film
Pd 2 ′ and light part Pl 2 ′. The developed density is determined by the difference V- between the developing bias voltage V DC and the potential V on the surface of the photoreceptor.
The development bias voltages V DC that can maintain the same development density are V DC1 ′ and V DC2 ′ , respectively. Development bias voltage V DC1 and V DC1 ′ in dark area
The difference between V 1 and the developing bias voltage V DC2 of the light section is
The difference between V DC2 ′ is greater than v 2 . That is, the lower the density of the film, the more the potential corresponding to the original image moves to the right on the characteristic curve, and the developing bias voltage V DC decreases. Curves a and b show that the lower the surface potential (+
direction), the difference becomes smaller. Therefore, the lower the film density, the smaller the amount by which the developing bias voltage needs to be changed.
本発明の画像濃度制御装置では、転写帯電を受
けた領域が現像器4に対向する位置にきたときに
出るマイクロコンピユータ20の出力信号outに
より、リモート信号VREM電圧が増減すると、同
時にドライブ回路21の現像バイアス電圧降下量
もこれに応じて増減する。従つて、転写帯電を受
けていない領域のE−V特性曲線aから、受けた
領域の曲線bに変ると、現像バイアス電圧VDC1・
VDC2を夫々VDC1′・VDC2′に変る。このようにして
現像濃度が最適なものに制御される。また、転写
帯電器5による放電は、転写材Pが感光体1との
間に介在しているときだけであるから、感光体1
上の転写帯電を受けた領域と受けなかつた領域と
では、残留電荷の差は少なく、除電後の電位の差
も少ない。従つて、曲線aとbとの差が比較的少
ないから、現像バイアス電圧の変化量は少なくて
も、現像濃度が一定になる。 In the image density control device of the present invention, when the remote signal V REM voltage increases or decreases due to the output signal out of the microcomputer 20, which is generated when the transferred charged area comes to a position facing the developing device 4, the drive circuit 2 The developing bias voltage drop amount also increases or decreases accordingly. Therefore, when the EV characteristic curve a for the area not subjected to transfer charging changes to the curve b for the area subjected to transfer charging, the developing bias voltage V DC1 .
Change V DC2 to V DC1 ′ and V DC2 ′ respectively. In this way, the development density is controlled to be optimal. Further, since the transfer charger 5 discharges only when the transfer material P is interposed between the photoreceptor 1 and the photoreceptor 1,
There is little difference in residual charge between the area that received the transfer charge and the area that did not, and the difference in potential after charge removal is also small. Therefore, since the difference between curves a and b is relatively small, the developed density remains constant even if the amount of change in the developing bias voltage is small.
なお、上記実施例において、具体的に数値を示
した電圧値に限られることなく、感光体の特性・
使用条件などにより適宜変更して適用できる。本
実施例では一次帯電として負電圧を印加したが、
正特性を有する感光体を使用して、一次帯電とし
て正電圧を印加して画像形成する場合でも、現像
バイアス電圧VDCの変化を正負逆にすれば適用で
きる。また、現像バイアス電圧を変化させるタイ
ミングはマイクロコンピユータ内蔵のカウンタに
よるソフト処理で算出したが、回転する感光体に
設けられたフオトインタラプタなどのエンコーダ
からタイミングを取るハード的な処理でもよい。
現像バイアス電圧の設定回路は、現像バイアス電
圧VDCの設定に応じて切替え変化量が変る回路で
あれば、前例以外の回路であつても適用でき、例
えばA/Dコンバータ・D/Aコンバータなどを
用いて設定できるようにしてもよい。 Note that in the above examples, the characteristics and characteristics of the photoreceptor are not limited to the voltage values specifically shown.
It can be modified and applied as appropriate depending on the conditions of use. In this example, a negative voltage was applied as primary charging, but
Even when a photoreceptor having positive characteristics is used and a positive voltage is applied as primary charging to form an image, the present invention can be applied by reversing the positive and negative changes in the developing bias voltage V DC . Further, although the timing for changing the developing bias voltage was calculated by software processing using a counter built into a microcomputer, it may also be a hardware processing that takes the timing from an encoder such as a photointerrupter provided on a rotating photoreceptor.
The developing bias voltage setting circuit can be applied to circuits other than those described above, as long as the amount of switching change changes depending on the setting of the developing bias voltage V DC , such as an A/D converter or a D/A converter. You may also be able to set it using .
以上説明したように、本発明の画像濃度制御装
置備えた電子写真装置によれば、均質な画像濃度
で、極めて高品質な複写画像が得られることにな
る。 As described above, according to the electrophotographic apparatus equipped with the image density control device of the present invention, extremely high quality copied images can be obtained with uniform image density.
第1図は本発明を適用可能な電子写真装置の概
略図、第2図は本発明を適用する画像濃度制御装
置のブロツク図、第3図はその要部回路図、第4
図は現像バイアスの変化を説明する図、第5図は
E−V特性曲線図、第6図は制御装置のフローチ
ヤート図である。
1は感光体、2は一次帯電器、4は現像器、5
は転写帯電器、8は転写材検出センサ、20はマ
イクロコンピユータ、21はドライブ回路、23
は現像バイアス設定回路である。
FIG. 1 is a schematic diagram of an electrophotographic apparatus to which the present invention can be applied, FIG. 2 is a block diagram of an image density control apparatus to which the present invention is applied, FIG. 3 is a circuit diagram of the main part thereof, and FIG.
FIG. 5 is an EV characteristic curve diagram, and FIG. 6 is a flowchart of the control device. 1 is a photoreceptor, 2 is a primary charger, 4 is a developer, 5
is a transfer charger, 8 is a transfer material detection sensor, 20 is a microcomputer, 21 is a drive circuit, 23
is a developing bias setting circuit.
Claims (1)
ートに転写する電子写真装置において、感光体の
静電潜像電荷と同極性の電荷をもつトナーにより
現像を行う現像手段と、現像手段に現像バイアス
電圧を与えるバイアス電圧手段と、感光体上のト
ナー像をシートに転写するため転写位置で感光体
にコロナ放電を与えるコロナ放電手段と、感光体
の該コロナ放電手段によりコロナ放電を受けた領
域を検知する検知手段と、感光体の該コロナ放電
手段によりコロナ放電を受けた領域に形成された
静電潜像を現像する場合と、コロナ放電を受けな
い領域に形成された静電潜像を現像する場合とで
現像バイアス電圧を異ならせるように検知手段の
出力により現像バイアス電圧を切替える手段と、
コロナ放電を受けた領域と受けない領域の現像バ
イアス電圧を調整する調整手段とを有することを
特徴とする電子写真装置の画像濃度制御装置。1. In an electrophotographic device that transfers a toner image formed on a rotating photoreceptor onto a sheet, there is a developing means that performs development with toner having a charge of the same polarity as the electrostatic latent image charge on the photoreceptor, and a developing means that performs development with a toner having the same polarity as the electrostatic latent image charge on the photoreceptor. A bias voltage means for applying a bias voltage, a corona discharge means for applying a corona discharge to the photoreceptor at a transfer position for transferring the toner image on the photoreceptor to a sheet, and an area of the photoreceptor that receives corona discharge by the corona discharge means. a detection means for detecting the corona discharge, and a detection means for developing an electrostatic latent image formed in an area of the photoreceptor that has been subjected to corona discharge by the corona discharge means, and a detection means for developing an electrostatic latent image formed in an area that has not received corona discharge. means for switching the developing bias voltage based on the output of the detecting means so that the developing bias voltage is different depending on when developing;
An image density control device for an electrophotographic apparatus, comprising an adjusting means for adjusting a developing bias voltage in an area that receives corona discharge and an area that does not receive corona discharge.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59066501A JPS60209763A (en) | 1984-04-03 | 1984-04-03 | Image density controller of electrophotographic device |
US07/038,194 US4814834A (en) | 1984-04-03 | 1987-04-14 | Electrophotographic apparatus |
US07/047,572 US4789878A (en) | 1984-03-04 | 1987-05-08 | Electrophotographic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59066501A JPS60209763A (en) | 1984-04-03 | 1984-04-03 | Image density controller of electrophotographic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60209763A JPS60209763A (en) | 1985-10-22 |
JPH028301B2 true JPH028301B2 (en) | 1990-02-23 |
Family
ID=13317632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59066501A Granted JPS60209763A (en) | 1984-03-04 | 1984-04-03 | Image density controller of electrophotographic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60209763A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104991430B (en) * | 2015-07-15 | 2022-05-13 | 珠海天威飞马打印耗材有限公司 | Toner cartridge and developing apparatus |
-
1984
- 1984-04-03 JP JP59066501A patent/JPS60209763A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60209763A (en) | 1985-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4811046A (en) | Tri-level highlight color printing apparatus with cycle-up and cycle-down control | |
US4847657A (en) | Electrophotographic apparatus for depositing developer only on the image area of the image bearing member | |
US5032870A (en) | Electrophotographic apparatus | |
US4591262A (en) | Electrostatic copying apparatus | |
JPH02183282A (en) | Image forming device | |
JPH028301B2 (en) | ||
JPH08211760A (en) | Image forming device | |
JPH11167230A (en) | Image forming device, and method for adjusting image density thereof | |
US5771423A (en) | Image forming apparatus | |
JPH03235963A (en) | Image formation | |
JP3249325B2 (en) | Image forming device | |
JP2547218B2 (en) | Reverse image forming device | |
JPH028302B2 (en) | ||
JPS6153668A (en) | Electrophotographic device | |
JP2737009B2 (en) | Image forming device | |
JP2514638B2 (en) | Image forming condition control method for image forming apparatus | |
JPH02129678A (en) | Image forming device | |
JP3016580B2 (en) | Image forming device | |
JP2975811B2 (en) | Image forming device | |
JP3234122B2 (en) | Image forming device | |
JPS6310146A (en) | Method for returning optical system to start position in copying device | |
JP2975810B2 (en) | Image forming device | |
JPS61289375A (en) | Negative and positive image forming device | |
JPH01195466A (en) | Image forming device | |
JP2024118995A (en) | Image forming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |