JPH0282681A - semiconductor light emitting device - Google Patents
semiconductor light emitting deviceInfo
- Publication number
- JPH0282681A JPH0282681A JP63235751A JP23575188A JPH0282681A JP H0282681 A JPH0282681 A JP H0282681A JP 63235751 A JP63235751 A JP 63235751A JP 23575188 A JP23575188 A JP 23575188A JP H0282681 A JPH0282681 A JP H0282681A
- Authority
- JP
- Japan
- Prior art keywords
- section
- modulation
- oscillation
- laser
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 12
- 230000003321 amplification Effects 0.000 claims description 16
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 16
- 239000000969 carrier Substances 0.000 claims description 7
- 230000010355 oscillation Effects 0.000 description 33
- 230000003287 optical effect Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000005253 cladding Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔概要〕
大容量長距離光通信用半導体レーザに関し、高速変調時
の多モード化あるいは、チャーピングの問題を解決する
ことを目的とし、
分布帰還型または分布反射型半導体レーザにおいて、電
気的に分離され、活性層にキャリアを注入する変調部と
増幅部とを有し、該活性層における該変調部の長さは、
該増幅部の1/2以下の長さに構成する。[Detailed Description of the Invention] [Summary] The purpose of this invention is to solve the problem of multi-mode or chirping during high-speed modulation in semiconductor lasers for large-capacity, long-distance optical communications, and to develop distributed feedback or distributed reflection semiconductor lasers. The laser has a modulation section and an amplification section that are electrically separated and inject carriers into the active layer, and the length of the modulation section in the active layer is:
It is configured to have a length less than 1/2 of the amplifying section.
本発明は、大容置長距離光通信用半導体レーザに関する
。大容量長距離光通信用半導体レーザとして、光ファイ
バの分散による伝送特性劣化を避けるため、単一軸モー
ド発振が要求されている。The present invention relates to a semiconductor laser for large-capacity, long-distance optical communication. Single-axis mode oscillation is required for semiconductor lasers for large-capacity, long-distance optical communications to avoid deterioration of transmission characteristics due to dispersion of optical fibers.
単一軸モード発振半導体レーザとして、従来より分布帰
還型(D F B)あるいは、分布反射型(DBR)レ
ーザが堤供さている。Distributed feedback (DFB) or distributed reflection (DBR) lasers have conventionally been provided as single-axis mode oscillation semiconductor lasers.
第3A図に従来の半導体レーザ構造を示す。図中、10
0はNti、101はPti、l 12 ハPクラッド
層、+13は活性層、114は光ガイド層、115はコ
ルゲーション、116は1反、117はバイアス電源、
11日はパルス発振器である。FIG. 3A shows a conventional semiconductor laser structure. In the figure, 10
0 is Nti, 101 is Pti, l 12 is P cladding layer, +13 is active layer, 114 is optical guide layer, 115 is corrugation, 116 is 1 anti, 117 is bias power supply,
The 11th is a pulse oscillator.
これら、単一軸モード半導体レーザにおいても、高速度
調時発振波長の多モード化、さらには、単一軸発振を行
ってもチャーピングと呼ばれる軸モード幅の増大という
問題がある。Even in these single-axis mode semiconductor lasers, there is a problem that the high-speed timing oscillation wavelength becomes multi-mode, and furthermore, even if single-axis oscillation is performed, the axial mode width increases, which is called chirping.
第3B図(a)〜(c)に、従来のレーザの入出力特性
図を示す。FIGS. 3B (a) to (c) show input/output characteristic diagrams of conventional lasers.
同図(C)において、レーザのしきい値付近のI、にバ
イアスしておいて、矩形波の駆1J] 電m I pを
レーザに印加した場合、原理的には矩形波の光出力が出
るはずであるが、実際上は、同図(b)に示す活性層の
キャリア密度は、規格値のNpよ?) オーバーシュー
トし、緩和振動が生しる。そのため、同図(a)の光出
力はキャリア密度の変動にともない緩和振動する。In the same figure (C), if the laser is biased to I near the threshold value and a rectangular wave electric current m I p is applied to the laser, in principle the optical output of the rectangular wave will be However, in reality, the carrier density in the active layer shown in FIG. ) Overshoots and relaxation oscillation occurs. Therefore, the optical output shown in FIG. 3(a) undergoes relaxation oscillation as the carrier density changes.
このような現象が起こる゛のは、1人される電流と、発
光との間に時間遅れδtがあるためで、駆動電流■2が
印加された時、定常の光出力P、が得られるキャリア密
度N、より多く電流が流れ込み、キャリア密度がオーバ
ーシュートし、光は定常値P、より多く出力する。次に
この光出力にともなうキャリアの再結合で、キャリア密
度は定常値N、より減少し、それに従い光出力も減少す
る。This phenomenon occurs because there is a time delay δt between the electric current and the light emission, and when the driving current 2 is applied, the carrier that can obtain a steady optical output P is Density N, more current flows in, carrier density overshoots, and light outputs more than steady value P. Next, due to the recombination of carriers accompanying this optical output, the carrier density decreases by the steady-state value N, and the optical output also decreases accordingly.
このようにして、キャリア密度と、光出力には緩和振動
が生じる。In this way, relaxation oscillations occur in carrier density and optical output.
この緩和振動によるレーザ特性への影響を第3C(a)
、(b)図で説明する。実際には、DFBレーザにも同
図(a)のようにメインモードの他にこれよりしきい値
が高いいくつかのモードがある。そのため、緩和振動の
ピークが大きい場合には、メインモード以外の副次のモ
ードの発光が生じることになり、同図(b)のように、
発光スペクトにメインモードB以外のモードAが出現す
る。The influence of this relaxation oscillation on the laser characteristics is explained in Section 3C(a).
, (b) will be explained in the figure. Actually, in addition to the main mode, the DFB laser also has several modes with higher thresholds than the main mode, as shown in FIG. 2(a). Therefore, if the peak of the relaxation oscillation is large, light emission in a secondary mode other than the main mode will occur, as shown in Figure (b).
Mode A other than main mode B appears in the emission spectrum.
さらに緩和振動のもう一つの影響は、同図(b)にΔλ
1と示す、スペクトル幅の広がりとして現れる。Furthermore, another effect of relaxation oscillation is Δλ
1, which appears as a broadening of the spectral width.
キャリア密度の変動ΔNは、屈折率の変動へ〇を生じ、
キャリア密度が高くなると、屈折率が小さ(なる。その
ため、レーザの発光が短波長側に寄り、スペクトルの波
長の短い側に膨らみがでる。The carrier density variation ΔN causes the refractive index variation,
When the carrier density increases, the refractive index decreases.As a result, the laser light emission shifts toward the short wavelength side, and the spectrum bulges toward the short wavelength side.
キャリアの変動が大きいと膨らみも大きくなる。The larger the career fluctuation, the larger the bulge.
以上のように、従来の構造では、キャリアのオーバーシ
ュートのため、DFBメインモードしきい値利得より大
きな他のモードのしきい値利得以上に全体の利得が増大
し、多モード発振するという欠点、さらに、このオーバ
ーシュートにより過剰になったキャリアのため活性領域
の屈折率が減少するためDFBメインモード自身短波長
側にずれるため、スペクトル幅がΔλ、たけ増大すると
いう問題があった。As described above, in the conventional structure, due to carrier overshoot, the overall gain increases beyond the threshold gain of other modes, which is larger than the DFB main mode threshold gain, resulting in multimode oscillation. Furthermore, because the refractive index of the active region decreases due to excess carriers due to this overshoot, the DFB main mode itself shifts to the short wavelength side, resulting in a problem that the spectral width increases by Δλ.
従来のDFBレーザあるいは、DBRレーザにおいて、
高速変調時の多モード化あるいは、チャーピングは、前
記したように、高速変調による活性領域のキャリア密度
の時間的、空間的不均一による。したがって、これらの
現象を防ぎ高速変調時にも安定な単一軸モード発振を実
現するためには、活性領域のキャリア密度変動をできる
だけ小さくする必要があり、本発明は、この問題を解決
しようとするものである。In conventional DFB laser or DBR laser,
As described above, multi-mode formation or chirping during high-speed modulation is due to temporal and spatial non-uniformity of carrier density in the active region due to high-speed modulation. Therefore, in order to prevent these phenomena and realize stable single-axis mode oscillation even during high-speed modulation, it is necessary to minimize carrier density fluctuations in the active region.The present invention attempts to solve this problem. It is.
本発明は、分布帰還型または分布反射型半導体レーザに
おいて、電気的に分離され、活性層にキャリアを注入す
る変調部と増幅部とを存し、該活性層における該変調部
の長さは、該増幅部の1/2以下の長さとする半導体発
光装置を提供し、光スィッチおよび増幅器として動作さ
せる際の上記従来の問題点を解決するものである。The present invention provides a distributed feedback or distributed reflection semiconductor laser including a modulation section and an amplification section that are electrically separated and inject carriers into an active layer, and the length of the modulation section in the active layer is: It is an object of the present invention to provide a semiconductor light emitting device whose length is one-half or less of the amplifying section, and to solve the above-mentioned conventional problems when operating as an optical switch and an amplifier.
本発明の原理図を第1A図に示している。A principle diagram of the present invention is shown in FIG. 1A.
第1A図中、12はPクラッド層、13は活性層、14
は光ガイド層、I5はコルゲーション、I6は基板であ
る。そして、10のN電極、11のP電極で増幅部電極
を構成し、一方20.’21により変調部電極を構成し
ており、増幅部電極11と変調部電極2■とは電気的に
分離される。この電気的分離方法としては、例えば、図
示4Iのように高抵抗部を用いる。In FIG. 1A, 12 is a P cladding layer, 13 is an active layer, and 14
is a light guide layer, I5 is a corrugation, and I6 is a substrate. The amplifying section electrodes are composed of 10 N electrodes and 11 P electrodes, while 20. '21 constitutes a modulating section electrode, and the amplifying section electrode 11 and the modulating section electrode 22 are electrically separated. As this electrical isolation method, for example, a high resistance portion is used as shown in 4I in the figure.
17は増幅部バイアス電源、18は変調部バイアス電源
、19はパルス発振器である。17 is an amplifier bias power supply, 18 is a modulation part bias power supply, and 19 is a pulse oscillator.
第1A図のレーザにおいて、増幅部電極1. I、およ
び変調部電極21に、順方向のバイアスを印加した時の
、所要の光出力をPoとする。この時増幅部電極Itお
よび変調部電極21より注入される電流密度を同一とす
る。この状態は従来例の第3A図に順方向バイアスを印
加した場合と同しである。In the laser of FIG. 1A, the amplifier electrode 1. Let Po be the required optical output when a forward bias is applied to I and the modulator electrode 21. At this time, the current densities injected from the amplifying section electrode It and the modulating section electrode 21 are made to be the same. This state is the same as the conventional example shown in FIG. 3A when a forward bias is applied.
次に、変調部ti21の順バイアスを減少させる。Po
が大の場合、順バイアスを零としてもDFBレーザは発
振し続けている。この時、変調部に逆バイアスを印加す
ることにより、非発振の状態にすることができる。これ
は、逆バイアス時フランツ・ケルデイシュ効果により、
変調部の光吸収による損失が増大するためである。この
非発振の状態で、変調部に順方向バイアスとなるパルス
を印加する。Next, the forward bias of the modulator ti21 is reduced. Po
When is large, the DFB laser continues to oscillate even if the forward bias is zero. At this time, by applying a reverse bias to the modulation section, it can be brought into a non-oscillating state. This is due to the Franz Kjeldysch effect at the time of reverse bias.
This is because loss due to light absorption in the modulation section increases. In this non-oscillating state, a forward bias pulse is applied to the modulation section.
直接変調を行う9通のレーザの場合、緩和振動の影響が
あって、光出力が定常状態より上昇し、緩和振動する。In the case of nine lasers that perform direct modulation, there is an effect of relaxation oscillation, and the optical output increases from the steady state, causing relaxation oscillation.
本発明のレーザでも、変調部では同じことが起こるが、
全体で見るとキャリアは増幅部に多くあるから、全体を
平均して見るとキャリアの変動は小さい。In the laser of the present invention, the same thing occurs in the modulation section, but
Looking at the whole, there are many carriers in the amplification section, so when looking at the whole, on average, the carrier fluctuations are small.
この様子を第18図(a)〜(d)に示す人出力特性図
で説明する。同図(d)のように1.の矩形波の駆動電
流を印加しても、同図(C)のように変調部では、従来
の場合と同様にキャリア密度に緩和振動が生じるので、
光出力にはキャリア密度の変動に応した緩和振動が生じ
る。すなわち、駆動電流が矩形で印加されても、発光に
遅れδtがあるので、実際の活性層のキャリア密度は同
図(C)に斜線で示すように、活性層の中に溜まってし
まい、定常値N2より多(なり、δを後の発光時にはキ
ャリアの再結合によりキャリアが定常より少なくり、キ
ャリア密度の緩和振動が生じる。This situation will be explained using the human output characteristic diagrams shown in FIGS. 18(a) to 18(d). As shown in Figure (d), 1. Even if a rectangular wave drive current of
Relaxation oscillations occur in the optical output in response to changes in carrier density. In other words, even if the drive current is applied in a rectangular shape, there is a delay δt in light emission, so the actual carrier density in the active layer accumulates in the active layer, as shown by diagonal lines in Figure (C), and becomes stationary. When the value N2 is greater than δ, during light emission after δ, the number of carriers becomes smaller than the steady state due to carrier recombination, and relaxation oscillation of the carrier density occurs.
ところが、本発明の構造においては、変調部と増幅部と
が分離しており、周りの増幅部の電流密度は一定で、キ
ャリア密度は一定になっているから、レーザ全体として
みたときの活性層の平均キャリア密度は、変動のない増
幅部と変動のある変調部との平均値となり、変調部と増
幅部の大きさの割合で平均化されることになり、同図(
b)に示すように、それだけ変動幅が小さくなる。例え
ば、増幅部2:変調部1の割合なら、キャリア密度の変
動幅は1/3になる。従って、光出力の変動幅も同図(
a)のように小さくなる。However, in the structure of the present invention, the modulation section and the amplification section are separated, the current density in the surrounding amplification section is constant, and the carrier density is constant, so the active layer when looking at the laser as a whole The average carrier density of is the average value of the amplification section with no fluctuation and the modulation section with fluctuation, and is averaged according to the ratio of the sizes of the modulation section and the amplification section, as shown in the figure (
As shown in b), the fluctuation range becomes smaller accordingly. For example, if the ratio is 2 amplification units: 1 modulation unit, the variation range of carrier density will be 1/3. Therefore, the fluctuation range of the optical output is also shown in the same figure (
It becomes smaller as shown in a).
上述のように、本発明によれば、キャリア密度の緩和振
動のピークが従来より小さくなるので、次の2つの作用
が得られる。As described above, according to the present invention, the peak of the relaxation oscillation of carrier density is smaller than that of the prior art, so the following two effects can be obtained.
第1c図(a)、(b)参照
■同図(b)に示すように、高速変調時の多モード発振
が防止される。See FIGS. 1c (a) and (b) ■ As shown in FIG. 1c (b), multimode oscillation during high-speed modulation is prevented.
本発明では、キャリア密度の緩和振動のピーク値が従来
より低くなるので、同図(a)のように基本モードより
高いしきい値をもつ他のモードのしきい値利得に達する
ことがなく、副次的モードの発振が生じない。In the present invention, the peak value of the relaxation oscillation of the carrier density is lower than before, so the threshold gain of other modes having a higher threshold than the fundamental mode is not reached as shown in FIG. No secondary mode oscillation occurs.
■同図(b)に示すように、高速変調時の発振スペクト
ル幅増大Δλが従来より軽減する。(2) As shown in FIG. 6(b), the increase in oscillation spectrum width Δλ during high-speed modulation is reduced compared to the conventional method.
先に第3C図(b)に関して説明したように、キャリア
密度の変動ΔNは、屈折率の変動Δnを生じ、キャリア
密度が高くなると、屈折率が小さくなる。そのため、レ
ーザの発光が短波長側に寄り、スペクトルの波長の短い
側に膨らみΔλ、がでる。キャリアの変動が大きいと膨
らみも大きくなる。ところが、本発明によれば従来より
共振器内のキャリア密度の変動が小さいので、第1C図
(b)の発振スペクトル幅の変動Δλが小さくなる。As previously explained with reference to FIG. 3C(b), the variation ΔN in carrier density causes a variation Δn in the refractive index, and as the carrier density increases, the refractive index decreases. Therefore, the laser light emission shifts to the short wavelength side, and a bulge Δλ appears on the short wavelength side of the spectrum. The larger the career fluctuation, the larger the bulge. However, according to the present invention, the variation in the carrier density within the resonator is smaller than in the prior art, so the variation Δλ in the oscillation spectrum width shown in FIG. 1C (b) is reduced.
次に、本発明において、変調部は増幅部の172以下の
長さに限定されることを説明する。Next, it will be explained that in the present invention, the length of the modulation section is limited to 172 or less lengths of the amplification section.
増幅部と変調部との割合は、第一に発振の安定性から考
えなければならない。変調部は増幅部の1/2程度ない
しそれ以下であることが、高速変調時に安定な発振を得
るために必要である。The ratio of the amplification section to the modulation section must be considered first from the viewpoint of oscillation stability. In order to obtain stable oscillation during high-speed modulation, the modulation section must be approximately 1/2 or less than the amplification section.
これを試算してみる。Let's try calculating this.
DFBレーザにおいて、安定な忙−モード発振を維持す
る条件は、
にL=0.5〜1. 0 −−−− fi1式である
ことが知られている。ここで、に:結合係数、L:キャ
ビティ長である。In a DFB laser, the conditions for maintaining stable busy-mode oscillation are L=0.5 to 1. 0 ---- It is known that the formula is fi1. Here, N: coupling coefficient, L: cavity length.
変調時安定な単一モード動作を行うためには、レーザが
ONおよびOFFの両状態とも・このfi1式の安定条
件を満たさなければならない。In order to perform stable single mode operation during modulation, the stability condition of the fi1 equation must be satisfied in both the ON and OFF states of the laser.
ON状態にLON=1.Oの上限とした場合・増幅部の
長さを2、変調部の長さを1の割合・とじたとき、
OFF状態では、
にLOFF =にx (2/ (2+ 1) ] L、
N=にX (2/3)L、、=0.66
となり、分離層の長さを考慮して、
にLOFF #0. 5となる。LON=1 in ON state. When the upper limit of O is taken as the ratio of the length of the amplification section to 2 and the length of the modulation section to 1, in the OFF state, LOFF = x (2/ (2+ 1) ] L,
N=X(2/3)L,,=0.66, considering the length of the separation layer, LOFF #0. It becomes 5.
すなわち上記(11式の範囲内であり、安定な単一モー
ド動作が行われることを示している。That is, it is within the range of Equation 11 above, indicating that stable single mode operation is performed.
次にもっと変調部が小さい場合の試算をする。Next, we will make a trial calculation for a case where the modulation section is even smaller.
〔試算2〕
oN状BにLoN=4.0の上限とした場合、増幅部の
長さが3、変調部の長さが1の場合にLOFF =にx
(3/ (3+ i ) t、、。[Estimation 2] When the upper limit of LoN = 4.0 is set for oN-like B, when the length of the amplifier section is 3 and the length of the modulation section is 1, LOFF = x
(3/ (3+ i) t,,.
=にX (3/4)=0.75
となり、分離層の長さを考慮しても、
0.75>にLOFF >0. 5とでき、やはりfi
1式の安定条件を満たしている。=X(3/4)=0.75, and even considering the length of the separation layer, LOFF>0.75>. 5 and still fi
It satisfies the stability condition of Equation 1.
この試算から明らかなように、増幅部は変調部の2倍以
上(すなわち変調部は増幅部の172以下)であれば、
il1式の安定な単一モード発振条件を満たすことにな
る。As is clear from this estimate, if the amplification section is more than twice as large as the modulation section (that is, the modulation section is 172 times or less than the amplification section), then
This satisfies the stable single mode oscillation condition of the il1 formula.
一方、変調部は次の2つの理由により小さい方が良い。On the other hand, it is better for the modulation section to be smaller for the following two reasons.
■変調部の寸法を小さくすると、容量が小さくなり、高
速動作上有利となる。(2) Reducing the dimensions of the modulation section reduces the capacitance, which is advantageous for high-speed operation.
■変調部が小さければそれだけ平均キャリア密度の変動
量が小さくなる。■The smaller the modulation section, the smaller the amount of variation in average carrier density.
以上■■から、変調部は小さい程よいのだが、あまり小
さくすると、発振を有効にON、OFFできキなくなる
から、レーザ発振をOFFするのに必要なt員失と電極
形成可能なサイズにより限界がある。From the above, the smaller the modulation part, the better, but if it is made too small, it will not be possible to effectively turn on and off the oscillation, so there is a limit depending on the number of T members needed to turn off the laser oscillation and the size that can be used to form the electrode. be.
〔実施例]
第2図にInGaAsP系DFBレーザに本発明を適用
した実施例を示す。(a)は平面図、(b)は共振器方
向断面図、(C)は共振器に垂直な断面図である。[Example] FIG. 2 shows an example in which the present invention is applied to an InGaAsP-based DFB laser. (a) is a plan view, (b) is a sectional view in the direction of the resonator, and (C) is a sectional view perpendicular to the resonator.
同図(a)〜(C)において、11は増幅部電極、21
は変調部ii極、23はn−1nPJJ板32に至る溝
で、レーザの容量低減と共に、増幅部電極11と変調部
電極21を分離するものである。In the same figures (a) to (C), 11 is an amplification part electrode, 21
23 is a groove extending to the n-1n PJJ plate 32, which reduces the capacity of the laser and separates the amplifier electrode 11 and the modulator electrode 21.
22は1nGaAsP活性Ji35に至らない溝で、光
路を遮断することな(増幅部電極11=変調部電極21
を分離する。また、電気的分離を確実にするためプロト
ン照射により高抵抗部41を形成している。22 is a groove that does not reach the 1nGaAsP active Ji35 and does not block the optical path (amplifier electrode 11 = modulator electrode 21).
Separate. Further, in order to ensure electrical isolation, a high resistance portion 41 is formed by proton irradiation.
31はN電極、33はコルゲーション、34はN G
a1nAsP光ガイド層、36はP−1nPクラッド層
、37はP 1nGaAspコンタクト層である。31 is N electrode, 33 is corrugation, 34 is N G
36 is a P-1nP cladding layer, and 37 is a P1nGaAsp contact layer.
ここで、共振器長L9は400μm1増幅部電極の長さ
/I+は60μm、変調部電極の長さ1tは60μm2
分離部幅l。は20μmである。Here, the resonator length L9 is 400 μm, the length of the amplifier electrode/I+ is 60 μm, and the length 1t of the modulator electrode is 60 μm2.
Separation part width l. is 20 μm.
本実施例で共振器部を中央に設けたのは、各増幅部での
順方向バイアス時、DFB発光を抑制するためである。The reason why the resonator section is provided in the center in this embodiment is to suppress DFB light emission when each amplifier section is forward biased.
本実施例では、全領域に電流を均一に流した時のしきい
値Iいは、30mA、光出力5mWとするためには、5
0mAの駆動電流を要した。この状態で、変調部に2v
の逆バイアスを印加することにより、非発光状態にする
ことができ、順方向に3.3vのパルス電圧を印加する
ことにより、パルス発振(ピーク光出力5mW)を得る
ことができ、5 G b/S変調時単一軸モード発振が
得られ、チャーピングによる軸モード広がりも20dB
ダウン幅で、従来0.8nmであったものを0.4nm
まで狭くすることができた。In this example, the threshold value I when the current is uniformly applied to the entire area is 30 mA, and the optical output is 5 mW.
A driving current of 0 mA was required. In this state, 2V is applied to the modulation section.
By applying a reverse bias of , it is possible to make it into a non-emitting state, and by applying a pulse voltage of 3.3 V in the forward direction, pulse oscillation (peak optical output 5 mW) can be obtained, and 5 G b Single axis mode oscillation is obtained during /S modulation, and the axis mode spread due to chirping is also 20 dB.
The down width has been reduced from 0.8nm to 0.4nm.
I was able to narrow it down to
以上説明したように、本発明によれば、高速変調時のキ
ャリア変動を有効に抑制でき、安定な瑣−軸発振が可能
となる。また、チャーピングによる軸モード広がりも抑
制することができる。As described above, according to the present invention, carrier fluctuations during high-speed modulation can be effectively suppressed, and stable quaternary-axis oscillation can be achieved. Further, axial mode expansion due to chirping can also be suppressed.
第1A図は、本発明の原理図、
第1B図(a)〜(d)は本発明の装置の入出力特性図
、
第1C図(a)、(b>は本発明の装置のしきい値利得
と発振スペクトル図、
第2図は本発明の一実施例の構成図であり、(a)は平
面図、(b)は共振器方向断面図、(C)は共振器に垂
直な断面図、
第3A図は、従来例のレーザの要部断面図、第3B図(
a)〜(c)は従来例の人出力特性図、
第3C図(a)、(b)は従来のしきい値利得と発振ス
ペクトル図である。
10はN電極
11はP電極
I2はPクラフト層
13は活性層
14は光ガイド層
15はコルゲーション
6は基板
7は増幅部バイアス電源
8は変調部バイアス電源
9はパルス発振器
0.21は変調部電極
2.23は溝
lはN電極
2はN−[nPクラッド層
3はコルゲーション
4はN−Ga1nAsP光ガイド層
5は活性層
6はP−1nPクランド層
7はP−1nGaAsPコアタクト層
lは高抵抗部
00はN電極
01はPi4i
12は29976層
13は活性層
14は光ガイド層
15はコルゲーション
116は基板
117はバイアス′@源
118はパルス発振器Figure 1A is a principle diagram of the present invention, Figures 1B (a) to (d) are input/output characteristic diagrams of the device of the present invention, and Figures 1C (a) and (b> are thresholds of the device of the present invention. Value gain and oscillation spectrum diagram. Figure 2 is a configuration diagram of an embodiment of the present invention, where (a) is a plan view, (b) is a cross-sectional view in the direction of the resonator, and (C) is a cross-sectional view perpendicular to the resonator. Figure 3A is a sectional view of the main part of a conventional laser, and Figure 3B (
A) to (c) are human output characteristic diagrams of the conventional example, and FIGS. 3C (a) and (b) are conventional threshold gain and oscillation spectrum diagrams. 10 is the N electrode 11 is the P electrode I2 is the P craft layer 13 is the active layer 14 is the light guide layer 15 is the corrugation 6 is the substrate 7 is the amplifier section bias power supply 8 is the modulation section bias power supply 9 is the pulse oscillator 0.21 is the modulation section Electrode 2.23 has a groove l.N Electrode 2 has a N- Resistance part 00 is N electrode 01 is Pi4i 12 is 29976 layer 13 is active layer 14 is optical guide layer 15 is corrugation 116 is substrate 117 is bias' @ source 118 is pulse oscillator
Claims (1)
気的に分離され、活性層にキャリアを注入する変調部と
増幅部とを有し、該活性層における該変調部の長さは、
該増幅部の1/2以下の長さとしたことを特徴とする半
導体発光装置。A distributed feedback or distributed reflection semiconductor laser has a modulation section and an amplification section that are electrically separated and inject carriers into an active layer, and the length of the modulation section in the active layer is:
A semiconductor light emitting device characterized in that the length is 1/2 or less of the amplifying section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63235751A JP2631716B2 (en) | 1988-09-20 | 1988-09-20 | Semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63235751A JP2631716B2 (en) | 1988-09-20 | 1988-09-20 | Semiconductor light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0282681A true JPH0282681A (en) | 1990-03-23 |
JP2631716B2 JP2631716B2 (en) | 1997-07-16 |
Family
ID=16990688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63235751A Expired - Lifetime JP2631716B2 (en) | 1988-09-20 | 1988-09-20 | Semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2631716B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0632550A2 (en) * | 1993-06-30 | 1995-01-04 | Fujitsu Limited | Modulation of laser diodes |
KR100429531B1 (en) * | 2001-10-12 | 2004-05-03 | 삼성전자주식회사 | Distributed feedback semiconductor laser |
EP1705812A1 (en) * | 2005-03-25 | 2006-09-27 | Fujitsu Limited | Semiconductor device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5190770U (en) * | 1975-01-17 | 1976-07-20 | ||
JPS5878488A (en) * | 1981-11-05 | 1983-05-12 | Kokusai Denshin Denwa Co Ltd <Kdd> | Distributed feedback type semiconductor laser |
-
1988
- 1988-09-20 JP JP63235751A patent/JP2631716B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5190770U (en) * | 1975-01-17 | 1976-07-20 | ||
JPS5878488A (en) * | 1981-11-05 | 1983-05-12 | Kokusai Denshin Denwa Co Ltd <Kdd> | Distributed feedback type semiconductor laser |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0632550A2 (en) * | 1993-06-30 | 1995-01-04 | Fujitsu Limited | Modulation of laser diodes |
EP0632550A3 (en) * | 1993-06-30 | 1995-04-26 | Fujitsu Ltd | Modulation of laser diodes. |
US6044097A (en) * | 1993-06-30 | 2000-03-28 | Fujitsu Limited | Modulator integrated distributed feed-back laser diode module and device using the same |
KR100429531B1 (en) * | 2001-10-12 | 2004-05-03 | 삼성전자주식회사 | Distributed feedback semiconductor laser |
EP1705812A1 (en) * | 2005-03-25 | 2006-09-27 | Fujitsu Limited | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2631716B2 (en) | 1997-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4349905A (en) | Tapered stripe semiconductor laser | |
CN110168824B (en) | Semiconductor optical amplifier, method for manufacturing the same, and optical phase modulator | |
JPH1073736A (en) | Semiconductor optical device, fiber type optical amplifier and optical transmission device | |
JP2003017803A (en) | Wavelength tunable semiconductor laser and optical module | |
JPH06103778B2 (en) | Optical device including semiconductor distributed feedback laser and method of driving the same | |
Matsuda et al. | 1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate | |
US20220352692A1 (en) | Optical Transmitter | |
US7283573B2 (en) | Optical microwave source | |
US4639922A (en) | Single mode injection laser structure | |
JPH0282681A (en) | semiconductor light emitting device | |
EP4037114B1 (en) | Optical transmitter | |
Pedersen et al. | Mode-locked 1.5/spl mu/m semiconductor optical amplifier fiber ring | |
US6332048B1 (en) | Modulator and method for manufacturing of such a modulator | |
US6782025B2 (en) | High power distributed feedback ridge waveguide laser | |
Russer et al. | Direct modulation of semiconductor injection lasers | |
JP4570319B2 (en) | Semiconductor laser device, semiconductor laser module, and semiconductor laser control method | |
JP4157736B2 (en) | Optical transmitter | |
JP3275456B2 (en) | Collision pulse mode-locked semiconductor laser device | |
JPH04162481A (en) | Integrated light source apparatus | |
JP2020004752A (en) | Semiconductor laser | |
Braagaard et al. | Modeling the DBR laser used as wavelength conversion device | |
JPS61107781A (en) | Single axial-mode semiconductor laser device | |
JP2019057541A (en) | Semiconductor optical integrated element | |
WO2020166530A1 (en) | High-output direct modulation laser | |
WO2001054240A1 (en) | High power distributed feedback ridge waveguide laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080425 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |