JPH0279711A - Gas insulation vessel - Google Patents
Gas insulation vesselInfo
- Publication number
- JPH0279711A JPH0279711A JP63276808A JP27680888A JPH0279711A JP H0279711 A JPH0279711 A JP H0279711A JP 63276808 A JP63276808 A JP 63276808A JP 27680888 A JP27680888 A JP 27680888A JP H0279711 A JPH0279711 A JP H0279711A
- Authority
- JP
- Japan
- Prior art keywords
- coating layer
- dielectric coating
- conductor
- dielectric
- metal casing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009413 insulation Methods 0.000 title abstract description 5
- 239000011247 coating layer Substances 0.000 claims abstract description 63
- 230000005684 electric field Effects 0.000 claims abstract description 31
- 125000006850 spacer group Chemical group 0.000 claims abstract description 23
- 239000010410 layer Substances 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims description 47
- 239000004020 conductor Substances 0.000 claims description 27
- 239000003989 dielectric material Substances 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 5
- 239000013528 metallic particle Substances 0.000 abstract 4
- 230000015556 catabolic process Effects 0.000 abstract 1
- 230000006866 deterioration Effects 0.000 abstract 1
- 239000002923 metal particle Substances 0.000 description 36
- 230000000694 effects Effects 0.000 description 6
- 238000007667 floating Methods 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- NMFHJNAPXOMSRX-PUPDPRJKSA-N [(1r)-3-(3,4-dimethoxyphenyl)-1-[3-(2-morpholin-4-ylethoxy)phenyl]propyl] (2s)-1-[(2s)-2-(3,4,5-trimethoxyphenyl)butanoyl]piperidine-2-carboxylate Chemical compound C([C@@H](OC(=O)[C@@H]1CCCCN1C(=O)[C@@H](CC)C=1C=C(OC)C(OC)=C(OC)C=1)C=1C=C(OCCN2CCOCC2)C=CC=1)CC1=CC=C(OC)C(OC)=C1 NMFHJNAPXOMSRX-PUPDPRJKSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G5/00—Installations of bus-bars
- H02G5/06—Totally-enclosed installations, e.g. in metal casings
- H02G5/066—Devices for maintaining distance between conductor and enclosure
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G5/00—Installations of bus-bars
- H02G5/06—Totally-enclosed installations, e.g. in metal casings
- H02G5/063—Totally-enclosed installations, e.g. in metal casings filled with oil or gas
- H02G5/065—Particle traps
Landscapes
- Gas-Insulated Switchgears (AREA)
- Installation Of Bus-Bars (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はガス絶縁開閉装置等を収納するガス絶縁容器
、特に、その内部において発生する金属粒子の絶線部分
への付着による絶縁性低下の抑制を図ったガス絶縁容器
に関するものである。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a gas insulated container for housing a gas insulated switchgear, etc., and in particular to a method for reducing the insulation properties due to adhesion of metal particles generated inside the container to disconnected parts. This relates to a gas insulated container designed to suppress
例えば特公昭60−28216号公報に示された従来の
ガス絶縁開閉装置等を収納したガス絶縁容器を第14図
および第15図を用いて説明する。第14図はガス絶縁
容器の縦断面図、第15図は同横断面図である。For example, a gas insulated container housing a conventional gas insulated switchgear shown in Japanese Patent Publication No. 60-28216 will be described with reference to FIGS. 14 and 15. FIG. 14 is a longitudinal cross-sectional view of the gas insulating container, and FIG. 15 is a cross-sectional view thereof.
図において、ガス絶縁容器は内部に絶縁性ガス6を封入
する金属筐体1と、高電圧を印加される導体2と、導体
2を絶縁支持する絶縁スペーサ3と、金属筐体lの内表
面に施された誘電体コーティング層4と、各導体2を接
続する通電接触子7と、通電接触子7をシールドする電
界緩和シールド5とを具備し、金属筐体lと絶縁スペー
サ3とはボルト8およびナツト9で密着固定されている
。In the figure, the gas insulating container includes a metal casing 1 that seals an insulating gas 6 inside, a conductor 2 to which a high voltage is applied, an insulating spacer 3 that insulates and supports the conductor 2, and an inner surface of the metal casing l. It includes a dielectric coating layer 4 applied to the conductor 2, a current-carrying contact 7 that connects each conductor 2, and an electric field relaxation shield 5 that shields the current-carrying contact 7, and the metal casing l and the insulating spacer 3 are connected to each other by bolts. 8 and a nut 9.
金属筐体1の内部1aにはアーク発生等に伴って生じた
金属粒子10が混在している。Metal particles 10 generated due to arc generation etc. are mixed in the interior 1a of the metal casing 1.
アーク放電等により発生して金属筐体1の内部空間に存
在する金属粒子10は、一般に金属粒子10と筐体lの
誘電体コーティング層4の内表面との間の部分放電ある
いは、金属筐体1の内表面に発生した電荷が誘電体コー
ティング層を貫通することなどにより金属粒子10に供
給され、金属粒子10が帯電される。そして帯電金属粒
子が付着接触している誘電体表面の部分には電界の集中
が生じる。The metal particles 10 generated by arc discharge and the like and existing in the internal space of the metal casing 1 are generally caused by partial discharge between the metal particles 10 and the inner surface of the dielectric coating layer 4 of the casing l, or by a partial discharge between the metal particles 10 and the inner surface of the dielectric coating layer 4 of the casing l. The charges generated on the inner surface of the metal particles 1 are supplied to the metal particles 10 by penetrating the dielectric coating layer, etc., and the metal particles 10 are charged. An electric field is concentrated on the portion of the dielectric surface where the charged metal particles are attached and in contact.
この集中した電界のため金属粒子は浮として交流電界に
よりランダム運動をくり返し絶縁スペーサ3等に付着し
て絶縁性を低下させる。Due to this concentrated electric field, the metal particles become floating and repeatedly move randomly due to the alternating current electric field, adhering to the insulating spacer 3 and the like, thereby reducing the insulation properties.
なお一般に誘電体コーティング層4は、本来は金属筐体
1の内表面の防錆対策および導体2および金属筐体1の
温度上昇対策のために設けられたものであり、金属筐体
1の内表面の電界強度が充分低く設定されている場合は
、金属粒子10が帯電しても誘電体コーティング層4に
よりある程度その飛翔は抑制される。In general, the dielectric coating layer 4 was originally provided to prevent rust on the inner surface of the metal case 1 and to prevent temperature increases in the conductor 2 and the metal case 1. When the electric field strength on the surface is set to be sufficiently low, even if the metal particles 10 are charged, their flight is suppressed to some extent by the dielectric coating layer 4.
従来のガス絶縁容器は以上のように構成されているため
、金属筐体1の内表面の電界強度が充分低い場合には金
属粒子10の飛翔を抑制することが可能である。しかし
ながら、UHV級ガス絶縁開閉装置等に適用した場合に
は、通常の運転時における金属容器内表面の電界強度が
高いため、帯電した金属粒子10が飛翔しやすく、絶縁
スペーサ3等に金属粒子10が付着すると著しい耐電圧
性能の低下を引き起こすという問題点を有していた。Since the conventional gas insulating container is configured as described above, it is possible to suppress the flying of the metal particles 10 when the electric field strength on the inner surface of the metal housing 1 is sufficiently low. However, when applied to UHV-class gas-insulated switchgear, etc., the electric field strength on the inner surface of the metal container during normal operation is high, so the charged metal particles 10 are likely to fly away, and the metal particles 10 There was a problem in that the adhesion of these substances caused a significant drop in withstand voltage performance.
この発明は以上のような問題点を解決するためになされ
たものであり、金属筐体の内表面の電界強度が高い場合
でも十分に金属粒子の飛翔を抑制するガス絶縁容器を提
供することを目的としている。This invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide a gas insulating container that sufficiently suppresses the flight of metal particles even when the electric field strength on the inner surface of the metal casing is high. The purpose is
この発明に係る請求項1のガス絶縁容器は、高電圧が印
加される導体と、
導体を絶縁支持する絶縁スペーサと、
絶縁スペーサおよび絶縁スペーサに絶縁支持された導体
を内包する金属筐体と、
金R筐体の内面上に設けられた第1の誘電体コーティン
グ層と、
第1の誘電体コーティング層とに密着して設けられた第
2の誘電体コーティング層と、金属筐体内部に封止され
た絶縁性ガスと、を具備したものである。A gas insulated container according to claim 1 of the present invention includes: a conductor to which a high voltage is applied; an insulating spacer that insulates and supports the conductor; and a metal casing that includes the insulating spacer and the conductor that is insulated and supported by the insulating spacer. A first dielectric coating layer provided on the inner surface of the metal housing, a second dielectric coating layer provided in close contact with the first dielectric coating layer, and a sealing layer inside the metal housing. It is equipped with an insulating gas that is stopped.
この発明に係る請求項2のガス絶縁容器は、高電圧が印
加される導体と、導体を絶縁支持する絶縁スペーサと、
絶縁スペーサおよび絶縁スペーサに絶縁支持された導体
を内包する金属筐体と、金属筐体の底部内面に電界緩和
領域を形成する電界緩和手段と、金属筐体の内面上に設
けられた第1の誘電体コーティング層と、第1の誘電体
コーティング層に密着して少なくとも電界緩和領域に設
けられた第2の誘電体コーティング層と、金属筐体内に
封止された絶縁性ガスと、を具備したものである。A gas insulating container according to claim 2 of the present invention includes: a conductor to which a high voltage is applied; an insulating spacer that insulates and supports the conductor;
a metal casing containing an insulating spacer and a conductor insulated and supported by the insulating spacer; an electric field relaxation means forming an electric field relaxation region on the inner surface of the bottom of the metal casing; A dielectric coating layer, a second dielectric coating layer provided in close contact with the first dielectric coating layer at least in the electric field relaxation region, and an insulating gas sealed in a metal housing. It is something.
第1の誘電体コーティング層は、従来例の誘電体コーテ
ィング層と同様、金属筐体の内表面の錆および導体およ
び金属筐体の温度上昇等を防止する。Like the conventional dielectric coating layer, the first dielectric coating layer prevents rust on the inner surface of the metal casing and temperature rise of the conductor and the metal casing.
第2の誘電体コーティング層に、例えば高抵抗材料の誘
電体を用いた場合、金属筐体から第2の誘電体コーティ
ング層を隔てて誘起される電荷の発生を防止し、金属粒
子の帯電が抑制される。When a dielectric made of a high-resistance material is used for the second dielectric coating layer, for example, the second dielectric coating layer is separated from the metal casing to prevent the generation of electric charge, and the charging of the metal particles is prevented. suppressed.
また第2のコーティング層に低誘電率材料を用いた場合
、金属粒子が第2の誘電体コーティング層と接融しても
第2の誘電体コーティング層近傍の電界が弱いため、金
属粒子の帯電が抑制される。Furthermore, when a low dielectric constant material is used for the second coating layer, even if the metal particles are fused with the second dielectric coating layer, the electric field near the second dielectric coating layer is weak, so that the metal particles are not charged. is suppressed.
この発明をこ係るガス絶縁容器を第1の実施例を示す第
1図および第2図を用いて説明する。第1図はこの発明
(こ係るガス絶縁容器の縦断面図、第2図は同横断面図
である。なお、従来例と同一の番号を付した部材は同一
とする。The present invention will be explained with reference to FIGS. 1 and 2 showing a first embodiment of this gas insulating container. FIG. 1 is a longitudinal cross-sectional view of a gas insulating container according to the present invention, and FIG. 2 is a cross-sectional view of the same. Note that members with the same numbers as in the conventional example are the same.
図において、ガス絶縁容器は内部に絶縁性ガス6を封入
する金属筐体1と、高電圧を印加される導体2と、導体
2を絶縁支持する絶縁スペーサ3と、金属筐体1の内表
面に施された第1の誘電体コーティング層12と、第1
の誘電体コーティング層12の上に密着して設けられた
第2の誘電体コーティング層11と、各導体2を接続す
る通電接触子7と、通電接触子7をシールドする電界緩
和シールド5とを具備し、金属筐体1と絶縁スペーサ3
とはボルト8およびナツト9で密着固定されている。金
属筐体1の内部1aにはアーク発生等に伴って生じた金
属粒子10が存在している。In the figure, the gas insulating container includes a metal casing 1 that seals an insulating gas 6 inside, a conductor 2 to which a high voltage is applied, an insulating spacer 3 that insulates and supports the conductor 2, and an inner surface of the metal casing 1. a first dielectric coating layer 12 applied to the first dielectric coating layer 12;
A second dielectric coating layer 11 provided in close contact with the dielectric coating layer 12, a current-carrying contact 7 that connects each conductor 2, and an electric field relaxation shield 5 that shields the current-carrying contact 7. Equipped with a metal casing 1 and an insulating spacer 3
are tightly fixed with bolts 8 and nuts 9. In the interior 1a of the metal housing 1, there are metal particles 10 generated due to arc generation and the like.
第3図は第1の実施例を三相−括型ガス絶縁開閉装置等
に応用した場合の横断面を示す。第2図および第3図に
おいて、第1および第2の誘電体コーティング層12お
よび11は金属筐体1の内面の全部分に設けられている
。FIG. 3 shows a cross section when the first embodiment is applied to a three-phase bracket type gas insulated switchgear. In FIGS. 2 and 3, the first and second dielectric coating layers 12 and 11 are provided on the entire inner surface of the metal housing 1. In FIGS.
第2の誘電体コーティング層11に高抵抗率材料の誘電
体を用いた場合、金属筐体1から第2の誘電体コーティ
ング層11を隔てて誘起される電荷が発生しにくくなり
、金属粒子10の帯電が抑制される。When a dielectric made of a high resistivity material is used for the second dielectric coating layer 11, charges induced across the second dielectric coating layer 11 from the metal casing 1 are less likely to occur, and the metal particles 10 electrification is suppressed.
また第2の誘電体コーティング層11に低誘電率材料を
用いた場合、金属粒子10と第2の誘電体コーティング
層11との接触部およびその近傍の電界の集中が弱めら
れ、金属粒子10と第2の誘電体コーティング層11と
の間での放電は発生しにくくなる。そのため、金属粒子
10の帯電°が抑制できる。Furthermore, when a low dielectric constant material is used for the second dielectric coating layer 11, the concentration of the electric field at and near the contact portion between the metal particles 10 and the second dielectric coating layer 11 is weakened, and the concentration of the electric field between the metal particles 10 and the second dielectric coating layer 11 is weakened. Discharge between the second dielectric coating layer 11 and the second dielectric coating layer 11 is less likely to occur. Therefore, charging of the metal particles 10 can be suppressed.
次に第4図および第5図にこの発明に係るガス絶縁容器
の第2の実施例を示す。第4図は第2の実施例の縦断面
図であり、第5図は同横断面図である。なお、第1図お
よび第2図に示した第1の実施例と同一の番号を付した
部材は同一とする。Next, FIGS. 4 and 5 show a second embodiment of the gas insulating container according to the present invention. FIG. 4 is a longitudinal cross-sectional view of the second embodiment, and FIG. 5 is a cross-sectional view thereof. Note that the members designated by the same numbers as in the first embodiment shown in FIGS. 1 and 2 are the same.
第4図および第5図において、第2の誘電体コーティン
グ層11を金属粒子10が付着しやすい金属筐体1の底
面部に限定して設けたものである。In FIGS. 4 and 5, the second dielectric coating layer 11 is provided only on the bottom surface of the metal casing 1 to which the metal particles 10 tend to adhere.
第6図は第2の実施例を三相−話形ガス絶縁開閉装置等
に応用した場合の横断図を示す。FIG. 6 shows a cross-sectional view when the second embodiment is applied to a three-phase, linear gas insulated switchgear, etc.
第7図はこの発明に係るガス絶縁容器の第3の実施例を
示す縦断面図である。図中、第2の誘電体コーティング
層11を金属筐体1の内表面との高電界部および絶縁ス
ペーサ3の近傍でかつ金属筐体lの底面部に限定して設
けたものである。FIG. 7 is a longitudinal sectional view showing a third embodiment of the gas insulating container according to the present invention. In the figure, the second dielectric coating layer 11 is provided only in the high electric field area with the inner surface of the metal casing 1, in the vicinity of the insulating spacer 3, and on the bottom surface of the metal casing l.
以との実施例に示すようにこの発明によれば金属粒子l
Oの帯電そのものが抑制されるため、金属筐体1の内表
面に大きな電界集中が生じるため金属粒子10の飛翔お
よび絶縁スペーサ3等への付着は抑制される。As shown in the following examples, according to the present invention, metal particles l
Since the charging of O itself is suppressed, a large electric field concentration occurs on the inner surface of the metal housing 1, so that the flying of the metal particles 10 and the adhesion to the insulating spacer 3 and the like are suppressed.
第8図、第9図はこの発明に係るガス絶縁容器の第4の
実施例を示す縦断面図及び横断面図である。図中、第1
図及び第2図に示した第1の実施例と同一の番号を付し
た部材は同一とする。13は金属筐体lの底部近傍に内
側から外側へ向って設けられた電界緩和手段としての突
出部、14はこの突出部13の蓋であり、蓋14の内面
には第1の誘電体コーティング層12へ密着して第2の
誘電体コーティング層11が設けられている。該第4の
実施例では突出部13内は導体2からの距離が他の部分
より遠くにあり電界緩和領域となっており、さらに第2
の誘電体コーティング層11による帯電抑制により金属
粒子10の再浮上を防止してこの突出部13内へ捕捉す
る構成となっている。そして当ガス絶縁容器の長期使用
中に溜った金属粒子10の取出し清掃が蓋14を1封す
ることにより容易にできる等の利点がある。FIGS. 8 and 9 are a longitudinal sectional view and a transverse sectional view showing a fourth embodiment of the gas insulating container according to the present invention. In the figure, the first
The members with the same numbers as those in the first embodiment shown in the figures and FIG. 2 are the same. Reference numeral 13 indicates a protrusion as an electric field relaxation means provided near the bottom of the metal casing l from the inside to the outside; 14 is a lid of the protrusion 13; the inner surface of the lid 14 is coated with a first dielectric material; A second dielectric coating layer 11 is provided in intimate contact with layer 12 . In the fourth embodiment, the inside of the protrusion 13 is farther away from the conductor 2 than other parts and serves as an electric field relaxation area, and
The structure is such that the metal particles 10 are prevented from re-floating and captured into the protrusion 13 by suppressing charging by the dielectric coating layer 11 . Another advantage is that metal particles 10 accumulated during long-term use of the gas insulating container can be easily removed and cleaned by sealing the lid 14.
第10図及び第11図はこの発明に係るガス絶縁容器の
第5の実施例を示す縦断面図及び横断面図である。図中
、第1図および第2図に示した第1の実施例と同一の番
号を付した部材は同一とする。10 and 11 are a longitudinal sectional view and a transverse sectional view showing a fifth embodiment of the gas insulating container according to the present invention. In the figure, the members denoted by the same numbers as those in the first embodiment shown in FIGS. 1 and 2 are the same.
15は導体2と金属筐体1の底部内面との間に1配置部
内面と間隙を隔て沿って設けられた電界緩和手段として
のシールドであり、この間隙へ通ずる多数の小孔15a
が配設されている。該実施例においては、シールド15
と金属筐体1の底部内面との間に形成される間隙はシー
ルド15の遮蔽効果により電界緩和領域となっており、
シールド15の末端または小孔15aからこの間隙に入
った金属粒子10は第2の誘電体コーティング層11の
帯電抑制と低電界により再浮とを防止され捕捉される。Reference numeral 15 denotes a shield as an electric field mitigation means provided along a gap between the conductor 2 and the bottom inner surface of the metal casing 1, with a gap between the conductor 2 and the bottom inner surface of the metal casing 1, and a large number of small holes 15a communicating with this gap.
is installed. In this embodiment, the shield 15
The gap formed between the metal housing 1 and the bottom inner surface of the metal housing 1 becomes an electric field relaxation area due to the shielding effect of the shield 15.
The metal particles 10 entering this gap from the end of the shield 15 or the small hole 15a are prevented from re-floating and captured by the charge suppression of the second dielectric coating layer 11 and the low electric field.
なお、この第5の実施例において、第2の誘電体コーテ
ィング層11をシールド15により覆われた部分にのみ
設けてもよい。In this fifth embodiment, the second dielectric coating layer 11 may be provided only in the portion covered by the shield 15.
第12図及び第13図はこの発明に係るガス絶縁容器の
第6の実施例を示す縦断面図及び横断面図である。図中
、第8図及び第9図に示した第4の実施例と同一の番号
を付した部材は同一とする。16は突出部13の底面に
沿って導体2との間に設けられた電界緩和手段としての
シールドであり、突出部13へ通ずる多数の小孔16a
が配設されている。12 and 13 are a longitudinal sectional view and a transverse sectional view showing a sixth embodiment of the gas insulating container according to the present invention. In the figure, the members with the same numbers as those in the fourth embodiment shown in FIGS. 8 and 9 are the same. 16 is a shield provided along the bottom surface of the protrusion 13 between it and the conductor 2 as an electric field mitigation means, and has a large number of small holes 16a leading to the protrusion 13.
is installed.
突出部13は導体2から離れていることと、シールド1
6の遮蔽効果による電界緩和領域となっており、突出部
13へ入った金属粒子10はシールド16と第2の誘電
体コーティング層11の帯電抑制により、より確実に捕
捉される。The protrusion 13 is separated from the conductor 2 and the shield 1
The metal particles 10 that have entered the protrusion 13 are more reliably captured by the shield 16 and the second dielectric coating layer 11 that suppress charging.
さらに、第1の誘電体コーティング層12に高抵抗率材
料の誘電体例えばElectret(F Iuorin
ated”−ethylene−propylene−
copolymer :体積抵抗率>10”Ω−cm)
等を用い、第2の誘電体コーティング層に低誘電率材料
の誘電体例えばFEP(比誘電率=zO)等を用いれば
、上記金属粒子10の飛翔抑制効果は一層顕著である。Further, the first dielectric coating layer 12 is coated with a dielectric material of high resistivity, such as Electret (F Iuorin).
ated”-ethylene-propylene-
copolymer: volume resistivity>10”Ω-cm)
If a dielectric material having a low dielectric constant, such as FEP (relative dielectric constant=zO), is used for the second dielectric coating layer, the effect of suppressing the flight of the metal particles 10 will be even more remarkable.
また、第2の誘電体コーティング層11の材料として第
1の誘電体コーティング層12と同一材料の誘電体を用
いても、従来例と比べて誘1毬体コーティング層の膜厚
を増加させることになり同様の効果を得ることができる
。Furthermore, even if the second dielectric coating layer 11 is made of the same dielectric material as the first dielectric coating layer 12, the thickness of the dielectric coating layer can be increased compared to the conventional example. You can get the same effect.
以上のように、この発明の請求項1によれば金属筐体の
内表面上の第1の誘電体コーティング層上にさらに第2
の誘電体コーティング層を設けているので、金属筐体内
部の金属粒子の帯電そのものが抑制されるので、金属筐
体内表面の電界強度が高くても金属粒子は飛翔しにくく
なる。その結果として、絶縁スペーサ等への金属粒子の
付着が抑制され、絶縁スペーサ等の耐電圧性の低下を防
止することができるという効果を有する。As described above, according to claim 1 of the present invention, the second dielectric coating layer is further coated on the first dielectric coating layer on the inner surface of the metal casing.
Since the dielectric coating layer is provided, the charging itself of the metal particles inside the metal casing is suppressed, so that even if the electric field strength on the surface inside the metal casing is high, the metal particles are difficult to fly. As a result, the adhesion of metal particles to the insulating spacers and the like is suppressed, and a decrease in voltage resistance of the insulating spacers and the like can be prevented.
また、この発明の請求項2によれば、金属筐体部に設け
られた第1の誘電体コーティング層及び第2の誘電体コ
ーティング層と、金属筐体の底部内面に形成される電界
緩和領域とにより、電界緩和領域へ入った金属粒子を低
電界と誘電体コーティング層により帯電抑制により、再
浮上を防止し捕捉するという効果を有する。According to claim 2 of the present invention, the first dielectric coating layer and the second dielectric coating layer provided on the metal casing, and the electric field relaxation region formed on the bottom inner surface of the metal casing. This has the effect of preventing re-levitation and trapping metal particles that have entered the electric field relaxation region by suppressing charging by the low electric field and the dielectric coating layer.
@1図はこの発明に係るガス絶縁容器の第1の実施例を
示す縦断面図、第2図は同横断面図、第3図は第1の実
施例を三相−括型ガス絶縁開閉装置に応用した場合を示
す横断面図、第4図はこの発明に係るガス絶縁容器の第
2の実施例を示す縦断面図、第5図は同横断面図、第6
図は第2の実施例を三相−括型ガス絶縁開閉装置に応用
した場合を示す横断面図、第7図はこの発明に係るガス
絶縁容器の第3の実施例を示す縦断面図、第8図はこの
発明に係るガス絶縁容器の第4の実施例を示す縦断面図
、第9図は同横断面図、第10図はこの発明に係るガス
絶縁容器の第5の実施例を示す縦断面図、第11図は同
横断面図、第12図はこの発明に係るガス絶縁容器の第
6の実施例を示す縦断面図、第13図は同横断面図、第
14図は従来のガス絶縁容器を示す縦断面図、第15図
は同横断面図である。
図中、1は金属筐体、2は導体、3は絶縁スペーサ、6
は絶縁性ガス、10は金属粒子、11は第2の誘電体コ
ーティング1.12は第1の誘電体コーティング層、】
3は突出部、15.16はシールドである。
なお、各図中同一符号は同一または相当部分を示す。@ Figure 1 is a vertical cross-sectional view showing the first embodiment of the gas insulated container according to the present invention, Figure 2 is a cross-sectional view of the same, and Figure 3 is a three-phase box type gas insulated switchgear of the first embodiment. 4 is a vertical sectional view showing a second embodiment of the gas insulating container according to the present invention; FIG. 5 is a horizontal sectional view of the same; FIG.
The figure is a cross-sectional view showing the case where the second embodiment is applied to a three-phase bracket type gas insulated switchgear, and FIG. 7 is a vertical cross-sectional view showing the third embodiment of the gas insulated container according to the present invention. FIG. 8 is a longitudinal cross-sectional view showing a fourth embodiment of the gas insulating container according to the present invention, FIG. 9 is a cross-sectional view thereof, and FIG. 10 is a fifth embodiment of the gas insulating container according to the present invention. 11 is a cross-sectional view of the same, FIG. 12 is a vertical cross-sectional view showing a sixth embodiment of the gas insulating container according to the present invention, FIG. 13 is a cross-sectional view of the same, and FIG. FIG. 15 is a vertical cross-sectional view showing a conventional gas insulating container, and FIG. 15 is a cross-sectional view thereof. In the figure, 1 is a metal casing, 2 is a conductor, 3 is an insulating spacer, and 6
is an insulating gas, 10 is a metal particle, 11 is a second dielectric coating 1.12 is a first dielectric coating layer, ]
3 is a protrusion, and 15.16 is a shield. Note that the same reference numerals in each figure indicate the same or corresponding parts.
Claims (2)
れた導体を内包する金属筐体と、前記金属筐体の内面上
に設けられた第1の誘電体コーティング層と、 前記第1の誘電体コーティング層上に密着して設けられ
た第2の誘電体コーティング層と、前記金属筐体内部に
封止された絶縁性ガスと、を具備したガス絶縁容器。(1) A conductor to which a high voltage is applied, an insulating spacer insulating and supporting the conductor, a metal casing containing the insulating spacer and the conductor insulated and supported by the insulating spacer, and an inner surface of the metal casing. a first dielectric coating layer provided on the first dielectric coating layer; a second dielectric coating layer provided in close contact with the first dielectric coating layer; and an insulating layer sealed inside the metal casing. A gas insulated container equipped with gas.
する絶縁スペーサと、前記絶縁スペーサおよびこの絶縁
スペーサに絶縁支持された導体を内包する金属筐体と、
前記金属筐体の底部内面に電界緩和領域を形成する電界
緩和手段と、前記金属筐体の内面上に設けられた第1の
誘電体コーティング層と、前記第1の誘電体コーティン
グ層に密着して少なくとも前記電界緩和領域に設けられ
た第2の誘電体コーティング層と、前記金属筐体内部に
封止された絶縁性ガスと、を具備したガス絶縁容器。(2) a conductor to which a high voltage is applied, an insulating spacer that insulates and supports the conductor, and a metal casing that includes the insulating spacer and the conductor that is insulated and supported by the insulating spacer;
an electric field relaxation means forming an electric field relaxation region on the inner surface of the bottom of the metal casing; a first dielectric coating layer provided on the inner surface of the metal casing; and a first dielectric coating layer that is in close contact with the first dielectric coating layer. A gas insulating container comprising: a second dielectric coating layer provided at least in the electric field relaxation region; and an insulating gas sealed inside the metal casing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63276808A JPH0279711A (en) | 1988-06-23 | 1988-10-31 | Gas insulation vessel |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-155224 | 1988-06-23 | ||
JP15522488 | 1988-06-23 | ||
JP63276808A JPH0279711A (en) | 1988-06-23 | 1988-10-31 | Gas insulation vessel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0279711A true JPH0279711A (en) | 1990-03-20 |
Family
ID=26483284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63276808A Pending JPH0279711A (en) | 1988-06-23 | 1988-10-31 | Gas insulation vessel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0279711A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0583832A (en) * | 1991-09-20 | 1993-04-02 | Mitsubishi Electric Corp | Gas insulated electric apparatus |
JP2005340035A (en) * | 2004-05-28 | 2005-12-08 | Mitsubishi Electric Corp | Gas-insulated switchgear |
WO2010100818A1 (en) | 2009-03-06 | 2010-09-10 | 株式会社 東芝 | Hermetically-sealed insulated device |
WO2014097729A1 (en) * | 2012-12-21 | 2014-06-26 | 三菱電機株式会社 | Gas insulated electric equipment |
WO2014112123A1 (en) * | 2013-01-21 | 2014-07-24 | 三菱電機株式会社 | Gas-insulated switchgear |
WO2015136753A1 (en) * | 2014-03-12 | 2015-09-17 | 三菱電機株式会社 | Gas insulated switch device |
JP2016208670A (en) * | 2015-04-22 | 2016-12-08 | 株式会社東芝 | Enclosed switchgear |
WO2017098553A1 (en) * | 2015-12-07 | 2017-06-15 | 三菱電機株式会社 | Gas insulation apparatus |
US10965106B2 (en) * | 2016-02-17 | 2021-03-30 | Mitsubishi Electric Corporation | Gas-insulated electrical equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55155511A (en) * | 1979-05-21 | 1980-12-03 | Mitsubishi Electric Corp | Gas insulated electric device |
JPS6028421B2 (en) * | 1976-12-29 | 1985-07-04 | 富士通株式会社 | Optical transmission branching method |
-
1988
- 1988-10-31 JP JP63276808A patent/JPH0279711A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6028421B2 (en) * | 1976-12-29 | 1985-07-04 | 富士通株式会社 | Optical transmission branching method |
JPS55155511A (en) * | 1979-05-21 | 1980-12-03 | Mitsubishi Electric Corp | Gas insulated electric device |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0583832A (en) * | 1991-09-20 | 1993-04-02 | Mitsubishi Electric Corp | Gas insulated electric apparatus |
JP2005340035A (en) * | 2004-05-28 | 2005-12-08 | Mitsubishi Electric Corp | Gas-insulated switchgear |
WO2010100818A1 (en) | 2009-03-06 | 2010-09-10 | 株式会社 東芝 | Hermetically-sealed insulated device |
JP5859142B2 (en) * | 2012-12-21 | 2016-02-10 | 三菱電機株式会社 | Gas insulated electrical equipment |
WO2014097729A1 (en) * | 2012-12-21 | 2014-06-26 | 三菱電機株式会社 | Gas insulated electric equipment |
US9508507B2 (en) | 2012-12-21 | 2016-11-29 | Mitsubishi Electric Corporation | Gas insulated electrical equipment |
WO2014112123A1 (en) * | 2013-01-21 | 2014-07-24 | 三菱電機株式会社 | Gas-insulated switchgear |
JPWO2014112123A1 (en) * | 2013-01-21 | 2017-01-19 | 三菱電機株式会社 | Gas insulated switchgear |
WO2015136753A1 (en) * | 2014-03-12 | 2015-09-17 | 三菱電機株式会社 | Gas insulated switch device |
JP6072353B2 (en) * | 2014-03-12 | 2017-02-01 | 三菱電機株式会社 | Gas insulated switchgear |
US10043621B2 (en) | 2014-03-12 | 2018-08-07 | Mitsubishi Electric Corporation | Gas insulated switchgear |
JP2016208670A (en) * | 2015-04-22 | 2016-12-08 | 株式会社東芝 | Enclosed switchgear |
WO2017098553A1 (en) * | 2015-12-07 | 2017-06-15 | 三菱電機株式会社 | Gas insulation apparatus |
JPWO2017098553A1 (en) * | 2015-12-07 | 2017-12-07 | 三菱電機株式会社 | Gas insulation equipment |
US10965106B2 (en) * | 2016-02-17 | 2021-03-30 | Mitsubishi Electric Corporation | Gas-insulated electrical equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4584429A (en) | Electrical assembly including a metal enclosure and a high voltage bushing | |
EP2405550B1 (en) | Hermetically-sealed insulated device | |
KR20140075018A (en) | Methods and apparatus for preventing plasma un-confinement events in a plasma processing chamber | |
JPH0279711A (en) | Gas insulation vessel | |
EP3098919B1 (en) | Gas-insulated electric apparatus | |
EP0159664B1 (en) | Gas-insulated electric apparatus and method of assembly thereof | |
JPH0224086B2 (en) | ||
EP1115187B1 (en) | Three-electrode-discharge surge arrester | |
JPH027246B2 (en) | ||
JPS6023569B2 (en) | gas insulated electrical equipment | |
US9167731B2 (en) | High voltage shielding device and a system comprising the same | |
JPS6252527B2 (en) | ||
JP5127607B2 (en) | Gas insulation equipment | |
EP0718940B1 (en) | Gas insulated device, especially switchgear or bus line | |
JP2000166065A (en) | Gas-insulated switchgear | |
SU866581A1 (en) | Partition sectionalized insulator | |
JPH04207917A (en) | Gas insulated electric apparatus | |
JPH11262144A (en) | Gas insulated device | |
JPH02159707A (en) | Through type current transformer | |
JP2001224120A (en) | Gas-insulated bus | |
JPS6020713A (en) | Electrically insulating device | |
JPS6123644B2 (en) | ||
JPH02237413A (en) | Cryogenic current lead | |
JP3461452B2 (en) | High-voltage lead wire mounting structure | |
US3487255A (en) | Corona free spark gap |