[go: up one dir, main page]

JPH0278222A - Formation of fine electrode - Google Patents

Formation of fine electrode

Info

Publication number
JPH0278222A
JPH0278222A JP23034488A JP23034488A JPH0278222A JP H0278222 A JPH0278222 A JP H0278222A JP 23034488 A JP23034488 A JP 23034488A JP 23034488 A JP23034488 A JP 23034488A JP H0278222 A JPH0278222 A JP H0278222A
Authority
JP
Japan
Prior art keywords
resist
film
layer
electron beam
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23034488A
Other languages
Japanese (ja)
Inventor
Kazuhiko Onda
和彦 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23034488A priority Critical patent/JPH0278222A/en
Publication of JPH0278222A publication Critical patent/JPH0278222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Electron Beam Exposure (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To control a width of a recessed part using an insulating film without causing a charging-up phenomenon by a method wherein a metal film is formed on the insulating film, a resist layer is formed on this metal film and an opening is formed by irradiation with an electron beam. CONSTITUTION:An insulating film layer 2 is formed on a wafer substrate 1. Then, a metal film 3 is formed on the layer 2. In succession, a resist 4 for electron beam use is coated. This layer structure is drawn directly by using an electron beam. The irradiated electron beam penetrates the inside of the resist 4 and reaches the film 3 while the resist 4 is being exposed to light. An electron which has reached the film 3 flows out to the outside of the substrate 1 from a ground needle coming into contact with the film 3; it is possible to avoid a charging-up of the resist 4. After that, the film 3 and the film 2 which have been exposed by using the resist 4 as a mask are etched; a recessed part 5 is formed. Then, a metal is evaporated and lifted off; a gate 6 is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は荷電粒子線露光を用いた微細パターン形成に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to fine pattern formation using charged particle beam exposure.

(従来の技術) 半導体装置に於いて一般に微細パターンを形成する際に
、現在最も容易に用いられる技術は電子ビーム露光を用
いたレジストのバターニングである。すなわち基板上に
電子ビーム用レジスト層を形成し、そのレジストに対し
て微少寸法に絞られた電子ビームを直接描画することで
感光パターンを形成し、現像する方法である。この方法
によりレジストパターンだけならば現状では1/4μm
級の微細パターンは得ることが可能となった。このレジ
ストをマスクとして様々な後工程を行うことにより半導
体装置に於ける様々な電極構造を形成することが出来る
(Prior Art) When generally forming fine patterns in semiconductor devices, the most easily used technique at present is resist patterning using electron beam exposure. That is, this is a method in which a resist layer for electron beams is formed on a substrate, and a photosensitive pattern is formed by directly writing an electron beam narrowed to minute dimensions on the resist layer, and then developed. With this method, if only a resist pattern is used, the current size is 1/4 μm.
It has now become possible to obtain fine patterns of the same size. By performing various post-processes using this resist as a mask, various electrode structures in semiconductor devices can be formed.

電子ビーム露光機は大きく2種類に分けられる。Electron beam exposure machines can be broadly divided into two types.

ひとつは電子ビームを微細なスポット状に絞り込み、そ
のスポットでパターンを描画していく[ポイントビーム
型露光機」と、露光するパターンに合わせて適宜シャッ
ターにより電子ビームを適当な大きさの矩形パターンに
整形し描画していく[可変ビーム型露光機]である。前
者は1/4pm以下級の微細パターンの形成に適してお
り、後者は露光スピードが稼げるので高スループツトが
期待できる。
One is the point beam exposure machine, which narrows down the electron beam into a fine spot and draws a pattern using that spot, and the other uses a shutter to make the electron beam into a rectangular pattern of an appropriate size according to the pattern to be exposed. It is a [variable beam type exposure machine] that shapes and draws. The former is suitable for forming fine patterns of 1/4 pm or less, and the latter can increase exposure speed, so high throughput can be expected.

化合物半導体に於いては、微細ゲートの形成が高周波特
性に如実に反映するものであり、特にこの電子ビーム露
光を用いた方法は重要と言える。
In compound semiconductors, the formation of fine gates clearly reflects the high frequency characteristics, and this method using electron beam exposure is particularly important.

最も容易とも言えるのがレジストリフトオフ法であろう
。つまりパターニングされたレジストをマスクとしてゲ
ート金属を蒸着リフトオフすることで電極を形成する方
法である。条件さえ設定してしまえば高歩留りが期待で
き、なお且つ半導体基板にダメージを与えることなく均
一性良く微細電極を形成することが期待できるからであ
る。現在一部ではポイントビーム型電子ビーム露光装置
を用いたレジストリフトオフ法により微細ゲートの形成
がなされている(P、C,Chao et al;19
87 in IEDMTech、 Dig、、PP41
0他)。このレジストリフトオフ法が用いられるデバイ
ス構造は、一般にはソース抵抗の低減及びゲートルオー
ミック間の耐圧を稼ぐことを意図してウェハキャップ層
を高濃度層としたリセス構造の採用が広く行われている
The easiest method is probably the resist lift-off method. In other words, this is a method of forming electrodes by vapor depositing and lifting off gate metal using a patterned resist as a mask. This is because once the conditions are set, a high yield can be expected, and furthermore, it can be expected that fine electrodes can be formed with good uniformity without damaging the semiconductor substrate. Currently, fine gates are partially formed by a resist lift-off method using a point-beam electron beam exposure system (P, C, Chao et al; 1999).
87 in IEDMTech, Dig,, PP41
0 others). Device structures using this resist lift-off method generally employ a recessed structure in which the wafer cap layer is a highly doped layer with the intention of reducing source resistance and increasing gate-to-ohmic breakdown voltage.

(発明が解決しようとする問題点) “従来の技術″で述べたレジストリフトオフ法でゲート
を形成する場合、用いるレジスト、あるいは露光条件に
寄ってはゲート金属とりセスエッヂが近接してしまう結
果となる。これは基板構造に寄ってはソース抵抗の低減
に役立つが、基板エッチとゲート金属による寄生容量が
無視できず素子特性に影響を及ぼす結果となる。特に1
/4pm以下級のゲートを形成する際にはこの問題が顕
著となる。
(Problem to be Solved by the Invention) When forming a gate using the resist lift-off method described in "Prior Art", depending on the resist used or the exposure conditions, the gate metal and the process edge may become close to each other. . Although this is useful for reducing the source resistance depending on the substrate structure, the parasitic capacitance due to the substrate etch and gate metal cannot be ignored and has an effect on the device characteristics. Especially 1
This problem becomes noticeable when forming a gate with a diameter of /4 pm or less.

そこでこの問題を避けるためレジストと基板の間に酸化
膜を形成しレジスト開口後酸化膜のサイドエツチングを
行うことにより基板の露出面を太きくし、リセス幅を広
げる工夫がなされる。
Therefore, in order to avoid this problem, an oxide film is formed between the resist and the substrate, and after the resist is opened, the oxide film is side-etched to thicken the exposed surface of the substrate and widen the recess width.

電子ビーム露光を用いてこの方法を用いる際に注意しな
ければならないのは、ビーム電子によるチャージアップ
の問題である。具体的には電子ビームのふらつきによる
露光精度劣化、レジストと絶縁膜間の接着性の悪化、等
である。後者はリセス幅の制御が不可能となることを意
味する。露光の際にはこの問題を避けるため針をウェハ
に接触させアースに落とすことが一般には行われている
が、表面が絶縁膜に覆われている場合にはアースに落ち
ず、このチャージアップ現象が生じ易い。又、可変ビー
ム型電子ビーム露光装置の場合は特に大電流を基板に照
射することになるのでこの問題は深刻である。本発明は
上記問題を解決し、チャージアップ現象を起こすことな
くリセス幅を制御でき、より良好な微細電極を形成する
方法を提供するものである。
When using this method using electron beam exposure, attention must be paid to the problem of charge-up due to beam electrons. Specifically, the exposure accuracy deteriorates due to fluctuation of the electron beam, and the adhesion between the resist and the insulating film deteriorates. The latter means that the recess width cannot be controlled. To avoid this problem during exposure, the needle is generally brought into contact with the wafer and grounded, but if the surface is covered with an insulating film, the needle does not touch the ground and this charge-up phenomenon occurs. is likely to occur. Further, in the case of a variable beam type electron beam exposure apparatus, this problem is particularly serious because the substrate is irradiated with a particularly large current. The present invention solves the above problems and provides a method for forming finer electrodes in which the recess width can be controlled without causing a charge-up phenomenon.

(問題を解決する手段) 本方法は基板上に絶縁膜層を形成する工程と、該絶縁膜
層上に金属膜を形成する工程と、該金属膜上にレジスト
層を形成する工程と、該レジスト層に電子ビームを照射
、現像することにより開口パターンを形成する工程と、
前記レジスト層をマスクとして該開口パターン部の露出
した部分の前記金属膜及び前記絶縁膜層を順次エツチン
グし、露出した部分の前記基板面を適当な深さにまでエ
ツチングすることでリセス構造を形成する工程と、前記
開口部パターンを含む基板上に金属を被着する工程と、
前記レジスト層を剥離すると同時に該レジスト層上の金
属を除去する工程とを含むことを特徴とする。
(Means for solving the problem) This method includes a step of forming an insulating film layer on a substrate, a step of forming a metal film on the insulating film layer, a step of forming a resist layer on the metal film, and a step of forming a resist layer on the metal film. forming an opening pattern by irradiating the resist layer with an electron beam and developing it;
Using the resist layer as a mask, the exposed portions of the metal film and the insulating film layer of the opening pattern are sequentially etched, and the exposed portions of the substrate surface are etched to an appropriate depth to form a recess structure. a step of depositing metal on the substrate including the opening pattern;
The method is characterized in that it includes a step of peeling off the resist layer and removing metal on the resist layer at the same time.

(作用) 電子ビーム露光に対する被処理体である基板上に絶縁層
を成長させるのはリセス幅を所望の大きさに制御するた
めであるが、その上にレジスト層を形成し電子ビームを
照射すると表面絶縁層がチャージアップを起こし電子ビ
ームのふらつき及びレジストの剥離が生じ易い。そこで
該絶縁膜層上に更に薄い金属膜を形成することでこの問
題を解消させる。すなわちこの金属膜により照射させる
電子を基板外に逃がしチャージアップ現象を避けられる
。このようにしてチャージアップを起こすことなく絶縁
膜を用いたリセス幅の制御が可能となるのである。
(Function) The purpose of growing an insulating layer on the substrate, which is the object to be processed by electron beam exposure, is to control the recess width to a desired size. However, if a resist layer is formed on top of the insulating layer and irradiated with the electron beam, Charge-up occurs in the surface insulating layer, which tends to cause fluctuations in the electron beam and peeling of the resist. Therefore, this problem can be solved by forming an even thinner metal film on the insulating film layer. In other words, the metal film allows the irradiated electrons to escape to the outside of the substrate, thereby avoiding the charge-up phenomenon. In this way, the recess width can be controlled using the insulating film without causing charge-up.

(実施例) 以下に図面を参照して本発明の実施例を詳細に説明する
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

本発明による電子ビーム露光前の層構造を第1図(a)
に示す。ウェハ基板1例えば表面層が3×1018cm
−2にドープされたGaAsであるような基板上に、例
えばSiO2の様な絶縁膜層2を適当な厚み例えば10
00人で成長する。次に該絶縁膜層2上に金属膜3例え
ばTiを適当な厚み例えば200人の厚みで蒸着形成す
る。続いて電子ビーム用レジスト4例えばPMMAをあ
る厚み例えばIpmの厚みで塗布、ベーキングにより形
成する。以上の層構造に対して電子ビーム露光装置によ
り電子ビーム画描を行う。
Figure 1(a) shows the layer structure before electron beam exposure according to the present invention.
Shown below. Wafer substrate 1 For example, the surface layer is 3 x 1018 cm
On a substrate, such as GaAs doped with -2, an insulating film layer 2, e.g.
Grow with 00 people. Next, a metal film 3, such as Ti, is deposited on the insulating film layer 2 to a suitable thickness, for example, 200 mm. Subsequently, an electron beam resist 4, such as PMMA, is applied to a certain thickness, for example, Ipm, and is formed by baking. Electron beam drawing is performed on the above layered structure using an electron beam exposure device.

レジスト層表面に照射された電子ビームはレジスト・4
を感光させながらレジスト4内を突き抜は前記金属膜3
に達する。金属膜3に達した電子は金属膜3に接触して
いるアース針よりウェハ外部に流れ出、レジスト4のチ
ャージアップは避けられる。その後現像、ベーキングを
行うことにより第1図(b)に示すような開口パターン
を形成できる。この開口パターンの大きさが最終的に形
成するゲート長を決定する。開口パターンを形成した後
、レジスト4をマスクとして露出した前記金属膜3及び
絶縁膜2をエツチングする。ここで、前記絶縁膜2とし
て酸化膜または窒化膜を用い、前記金属膜3として例え
ばTiの様なものを用いる場合はバッフアート弗酸によ
り絶縁膜2及び金属膜3を同時にエツチングできるとい
う長所をもつ。金属膜3及び絶縁膜2をエツチングした
後、その絶縁膜2をマスクとして露出した部分の基板1
をエツチングすることにより第1図(e)に示すように
リセス5を形成する。絶縁膜2のサイドエツチング量を
制御することにより、リセス幅の大小を制御することが
出来る。次いでゲート金属としてTi/Pt/Au、あ
るいはTυA1等のような金属の蒸着を行い、リフトオ
フすることにより第1図(d)に示すようなゲート6を
得ることが出来る。
The electron beam irradiated on the surface of the resist layer
The metal film 3 is punched through the resist 4 while being exposed to light.
reach. The electrons that have reached the metal film 3 flow out of the wafer through the ground needle in contact with the metal film 3, and charging up of the resist 4 can be avoided. Thereafter, by performing development and baking, an opening pattern as shown in FIG. 1(b) can be formed. The size of this opening pattern determines the final gate length. After forming the opening pattern, the exposed metal film 3 and insulating film 2 are etched using the resist 4 as a mask. Here, when an oxide film or a nitride film is used as the insulating film 2 and a material such as Ti is used as the metal film 3, there is an advantage that the insulating film 2 and the metal film 3 can be etched simultaneously with buffered hydrofluoric acid. Motsu. After etching the metal film 3 and the insulating film 2, the exposed parts of the substrate 1 are etched using the insulating film 2 as a mask.
By etching, a recess 5 is formed as shown in FIG. 1(e). By controlling the amount of side etching of the insulating film 2, the size of the recess width can be controlled. Next, a gate metal such as Ti/Pt/Au or TυA1 is deposited and lifted off to obtain a gate 6 as shown in FIG. 1(d).

尚、本発明の実施例は特定の材料、特定の値を用いて説
明したがこれは理解を容易にするためのものであり、例
えば前記絶縁膜層として必ずしも酸化膜を用いる必要は
なくリセス幅を制御するに足るものであれば良く、例え
ば窒化膜のようなものであっても発明の効果に対しては
なんら支障を及ぼさない。又、前記金属膜についても同
様であるが、実施例に用いたTiのようにバッフアート
弗酸にも容易に溶解する様な金属を用いた場合には、酸
化膜及び窒化膜を前記絶縁膜層として用いた場合に同時
にエツチングが可能であるという長所がある。又、エツ
チングの際にも例えばCF4系等のガスを用いたドライ
エツチング法を用いても構わない。
Although the embodiments of the present invention have been explained using specific materials and specific values, this is for ease of understanding; for example, it is not always necessary to use an oxide film as the insulating film layer, and the recess width Any material may be used as long as it is sufficient to control the temperature, and even a nitride film, for example, will not interfere with the effects of the invention. The same applies to the metal film, but if a metal that is easily dissolved in buffered hydrofluoric acid, such as Ti used in the example, is used, the oxide film and nitride film may be used as the insulating film. It has the advantage that when used as a layer, it can be etched at the same time. Also, during etching, a dry etching method using a CF4 gas or the like may be used.

(発明の効果) 本発明により、絶縁膜層上の金属膜が、照射された電子
を基板外に逃がすことになるので、例えは可変矩形ビー
ム型の電子ビーム露光装置を用いて大電流を基板に照射
した場合でも、例えばビームのふらつきやレジストと絶
縁膜の接着性の劣化などのようなチオ−シアツブの問題
は避けることが出来る。従って絶縁膜を用いたリセス幅
の制御がチャージアップの問題を気にせずに行うことが
可能となり電子ビーム描画時の条件設定が容易となる。
(Effects of the Invention) According to the present invention, the metal film on the insulating film layer allows the irradiated electrons to escape to the outside of the substrate. Even when the irradiation is performed at a high temperature, problems of thio-oxidation, such as beam fluctuation and deterioration of adhesion between the resist and the insulating film, can be avoided. Therefore, it is possible to control the recess width using an insulating film without worrying about the charge-up problem, and it becomes easy to set conditions during electron beam lithography.

【図面の簡単な説明】[Brief explanation of the drawing]

第1(a)〜(d)図は本発明を説明するための概念図
である。 1・・・基板 2・・・絶縁膜 3・・・金属膜 4・・・レジスト 5・・・リセス 6・・・ゲート
FIGS. 1(a) to 1(d) are conceptual diagrams for explaining the present invention. 1...Substrate 2...Insulating film 3...Metal film 4...Resist 5...Recess 6...Gate

Claims (1)

【特許請求の範囲】[Claims] 基板上に絶縁膜層を形成する工程と前記絶縁膜層上に金
属膜を形成する工程と、前記金属膜上にレジスト層を形
成する工程と前記レジスト層に電子ビームを照射、現像
することで開口パターンを形成する工程と、前記レジス
ト層をマスクとして該開口パターン部の露出した部分の
前記金属膜及び前記絶縁膜層を順次エッチングし、露出
した部分の前記基板面を所定の深さにまでエッチングす
ることでリセス構造を形成する工程と、前記開口パター
ン部を含む基板上に金属を被着する工程と、前記レジス
ト層を剥離すると同時に該レジスト層上の金属を除去す
る工程とを含むことを特徴とする微細電極の形成方法。
A step of forming an insulating film layer on a substrate, a step of forming a metal film on the insulating film layer, a step of forming a resist layer on the metal film, and irradiating the resist layer with an electron beam and developing it. forming an opening pattern; using the resist layer as a mask, sequentially etching the metal film and the insulating film layer in the exposed portion of the opening pattern, and etching the exposed portion of the substrate surface to a predetermined depth; A step of forming a recess structure by etching, a step of depositing metal on the substrate including the opening pattern portion, and a step of removing the metal on the resist layer at the same time as peeling off the resist layer. A method for forming a microelectrode characterized by:
JP23034488A 1988-09-13 1988-09-13 Formation of fine electrode Pending JPH0278222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23034488A JPH0278222A (en) 1988-09-13 1988-09-13 Formation of fine electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23034488A JPH0278222A (en) 1988-09-13 1988-09-13 Formation of fine electrode

Publications (1)

Publication Number Publication Date
JPH0278222A true JPH0278222A (en) 1990-03-19

Family

ID=16906380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23034488A Pending JPH0278222A (en) 1988-09-13 1988-09-13 Formation of fine electrode

Country Status (1)

Country Link
JP (1) JPH0278222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188977A (en) * 1990-12-21 1993-02-23 Siemens Aktiengesellschaft Method for manufacturing an electrically conductive tip composed of a doped semiconductor material
US5382544A (en) * 1992-05-25 1995-01-17 Matsushita Electric Industrial Co., Ltd. Manufacturing method of a semiconductor device utilizing thin metal film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188977A (en) * 1990-12-21 1993-02-23 Siemens Aktiengesellschaft Method for manufacturing an electrically conductive tip composed of a doped semiconductor material
US5382544A (en) * 1992-05-25 1995-01-17 Matsushita Electric Industrial Co., Ltd. Manufacturing method of a semiconductor device utilizing thin metal film

Similar Documents

Publication Publication Date Title
US4283483A (en) Process for forming semiconductor devices using electron-sensitive resist patterns with controlled line profiles
US4341850A (en) Mask structure for forming semiconductor devices, comprising electron-sensitive resist patterns with controlled line profiles
JPS6351550B2 (en)
JPH0278222A (en) Formation of fine electrode
JPH03295131A (en) Field emission device and its manufacturing method
JPH0159574B2 (en)
JPH03194829A (en) Micro vacuum triode and manufacture thereof
JP2714026B2 (en) Method for forming electrode for semiconductor device
JP3007095B2 (en) Method of forming fine pattern
CN112635553B (en) Manufacturing method of thin film transistor and display device
US20020009881A1 (en) Conductor member formation and pattern formation methods
JPH05247658A (en) Formation of metal oxide thin film
JP2900490B2 (en) Method for manufacturing MES field effect transistor
KR100312187B1 (en) Method for fabrication field emission devices with diamond
JPH05242797A (en) Manufacture of electron emission element
JPH05205615A (en) Manufacture of electric field emitting element
JPH01243476A (en) Formation of electrode
JP2811755B2 (en) Manufacturing method of micro vacuum triode
JP2676746B2 (en) Method of forming fine pattern
JPH0330337A (en) Formation of fine electrode
JPH03289142A (en) Manufacture of compound semiconductor device
KR960003495B1 (en) Manufacturing Method of Vacuum Device Using Thin Film Technology
JPS6182481A (en) Schottky gate field effect transistor and its manufacturing method
KR100205057B1 (en) FP manufacturing method that can control gap between gate and tip
JPH03147338A (en) Manufacture of semiconductor device