JPH0276304A - Crystal oscillation circuit - Google Patents
Crystal oscillation circuitInfo
- Publication number
- JPH0276304A JPH0276304A JP63227460A JP22746088A JPH0276304A JP H0276304 A JPH0276304 A JP H0276304A JP 63227460 A JP63227460 A JP 63227460A JP 22746088 A JP22746088 A JP 22746088A JP H0276304 A JPH0276304 A JP H0276304A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- diode
- changed
- output
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 26
- 230000010355 oscillation Effects 0.000 title claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 239000003990 capacitor Substances 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000003321 amplification Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は水晶発振回路に関し、特にその発振周波数の
温度係数の補正に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a crystal oscillation circuit, and particularly to correction of the temperature coefficient of its oscillation frequency.
[従来の技術]
第2図は従来の回路を示す接続図で、図において5はイ
ンバータ、6は抵抗、7は水晶発振子、8.9はそれぞ
れキャパシタである。インバータ5は増幅作用を有し、
その出力端子から入力端子への反結合によって発振する
。この発振周波数は水晶発振子7の固有の共振周波数に
ほぼ等しく、上記共振周波数の温度係数がそのまま発振
周波数の温度係数となる。[Prior Art] FIG. 2 is a connection diagram showing a conventional circuit, in which 5 is an inverter, 6 is a resistor, 7 is a crystal oscillator, and 8 and 9 are capacitors. The inverter 5 has an amplification effect,
Oscillation occurs due to anti-coupling from its output terminal to its input terminal. This oscillation frequency is approximately equal to the unique resonant frequency of the crystal oscillator 7, and the temperature coefficient of the resonant frequency directly becomes the temperature coefficient of the oscillation frequency.
第3図は水晶発振回路の発振周波数fの周波数偏差Δf
/fと周囲温度℃との関係を示す図で、異なる曲線は異
なる水晶発振子の特性を示している。Figure 3 shows the frequency deviation Δf of the oscillation frequency f of the crystal oscillation circuit.
FIG. 3 is a diagram showing the relationship between /f and ambient temperature° C., with different curves indicating characteristics of different crystal oscillators.
[発明が解決しようとする課題]
以上のように、従来の回路では、発振周波数が温度によ
って変化するという問題があった。[Problems to be Solved by the Invention] As described above, the conventional circuit has a problem in that the oscillation frequency changes depending on the temperature.
この発明は従来の回路の上述の問題点を解決し、発振周
波数の温度係数を出来るだけ小さくした水晶発振回路を
得ることを目的とする。The object of the present invention is to solve the above-mentioned problems of the conventional circuit and to obtain a crystal oscillation circuit in which the temperature coefficient of the oscillation frequency is made as small as possible.
[課題を解決するための手段]
この発明では水晶発振子に並列に負荷されるキャパシタ
の容量を温度に従って変化して、水晶発振回路の温度係
数を補償した。第4図は負荷容量と発振周波数偏差Δf
/fの関係を示す図で、異なる曲線は異なる水晶発振子
に対する特性を示す。[Means for Solving the Problems] In the present invention, the temperature coefficient of the crystal oscillation circuit is compensated for by changing the capacitance of a capacitor loaded in parallel with the crystal oscillator according to the temperature. Figure 4 shows load capacity and oscillation frequency deviation Δf
2 is a diagram showing the relationship between /f, and different curves show characteristics for different crystal oscillators.
温度によってΔf/fが変化したと同量の変化を反対方
向に与えるように負荷キャパシタの容量を変化すればよ
い。この場合の温度の測定は、この発明では定電流が流
れるダイオードの順方向電圧降下によって測定した。The capacitance of the load capacitor may be changed so as to give the same amount of change in the opposite direction as the change in Δf/f due to temperature. In this invention, the temperature in this case is measured by the forward voltage drop of a diode through which a constant current flows.
[作用]
使用する水晶発振子の周波数温度特性と、その負荷容量
周波数特性とを予め測定しておいて、使用温度範囲内で
は発振周波数の温度特性を補償できるように負荷キャパ
シタの切り換えを行った。[Function] Measure the frequency-temperature characteristics of the crystal oscillator to be used and its load capacitance-frequency characteristics in advance, and change the load capacitor so that the temperature characteristics of the oscillation frequency can be compensated within the operating temperature range. .
[実施例]
以下、この発明の実施例を図面を用いて説明する。第1
図はこの発明の一実施例を示す接続図で、第1図におい
て第2図と同一符号は同一または相当部分を示し、1は
ダイオード、2は定電流回路、3はアナログディジタル
変換器(以下A/Dと略記する)、COI、CO2,C
on、C1l、C12、C1nはそれぞれキャパシタ、
SOL、S02、Son、Sll、S12.Slnはそ
れぞれスイッチング素子である。[Examples] Examples of the present invention will be described below with reference to the drawings. 1st
The figure is a connection diagram showing one embodiment of the present invention. In Figure 1, the same symbols as in Figure 2 indicate the same or corresponding parts, 1 is a diode, 2 is a constant current circuit, and 3 is an analog-to-digital converter (hereinafter referred to as (abbreviated as A/D), COI, CO2, C
on, C1l, C12, and C1n are capacitors, respectively.
SOL, S02, Son, Sll, S12. Each Sln is a switching element.
ダイオード1は水晶発振子7の近傍に置かれ、その周囲
温度が同一であるとして、水晶発振子7の温度をダイオ
ード1により測定する。すなわち、ダイオード1の順方
向抵抗はその温度により変化するので、定電流回路2か
らダイオード1に一定の電流を流、し、その順方向の電
圧降下をA/D Bに入力してこれをディジタル信号に
変換すれば、A/D3の出力のディジタル数は温度の関
数を表す。従って使用するダイオードを定めるとA/D
3の出力からそのときの温度を決定することが出来る。The diode 1 is placed near the crystal oscillator 7, and the temperature of the crystal oscillator 7 is measured by the diode 1 assuming that the ambient temperature is the same. In other words, since the forward resistance of diode 1 changes depending on its temperature, a constant current is passed through diode 1 from constant current circuit 2, and the forward voltage drop is input to A/D B and converted into a digital signal. When converted to a signal, the digital number at the output of A/D 3 represents a function of temperature. Therefore, when determining the diode to be used, A/D
The temperature at that time can be determined from the output of step 3.
一方、使用する水晶発振子7を決定すると第3図及び第
4図の中のどの曲線に従ってΔf/fが変化するかが分
かる。A/D3の出力に対応するΔf/fの変化に対し
−Δf/fの変化を与えるには負荷キャパシタをどれだ
け変化すればよいかは、第3図及び第4図から決定する
ことができ、その変化を与えるためにはスイッチング素
子S01〜Sinのどれを開閉制御すればよいかがわか
るので、A/D3の出力である変換回路4の入力と変換
回路4の出力の制御信号との間にどのような対応をつけ
ればよいかが決定される。この決定に従って、変換回路
4の内部接続を行えばよい。On the other hand, when the crystal oscillator 7 to be used is determined, it is known which curve in FIGS. 3 and 4 the Δf/f changes. The amount by which the load capacitor should be changed in order to give a change of -Δf/f to the change in Δf/f corresponding to the output of A/D3 can be determined from FIGS. 3 and 4. Since it is known which of the switching elements S01 to Sin should be controlled to open or close in order to give that change, there is It is decided what kind of response should be taken. The internal connections of the conversion circuit 4 may be made according to this determination.
使用する水晶発振子7を変えたときは、第3図、第4図
に示す特性が変化するので、この変化に従って変換回路
4の内部接続を変更すればよい。When the crystal oscillator 7 used is changed, the characteristics shown in FIGS. 3 and 4 change, so the internal connections of the conversion circuit 4 may be changed in accordance with this change.
変換回路4の内部接続を実験的に決定するには、たとえ
ば次のような順序で行えばよい。すなわち、変換回路4
の入力と出力との接続をすべてオフ状態にしたまま、周
囲温度を変化するとA/D3の出力が変化し、水晶発振
回路の発振周波数が変化するが、この周波数変化を最小
にするようにスイッチング素子801〜Sinの開閉状
態を変化する。この変化した開閉状態とそのときのA/
D 3の出力信号とを変換回路4の内部接続で関係付け
ればよい。In order to experimentally determine the internal connections of the conversion circuit 4, it may be carried out, for example, in the following order. That is, the conversion circuit 4
If the ambient temperature changes while all connections between the input and output of the A/D3 are off, the output of the A/D3 will change and the oscillation frequency of the crystal oscillator circuit will change, but switching is performed to minimize this frequency change. The open/close states of elements 801 to Sin are changed. This changed opening/closing state and the A/
It is only necessary to associate the output signal of D3 with the internal connection of the conversion circuit 4.
このようにして、温度変化に関係なく発振周波数をほぼ
一定に保つことができる。In this way, the oscillation frequency can be kept approximately constant regardless of temperature changes.
[発明の効果]
以上のようにこの発明によれば、周囲温度の変化に対し
て水晶発振回路の発振周波数をほぼ一定に保つことが出
来る。[Effects of the Invention] As described above, according to the present invention, the oscillation frequency of the crystal oscillation circuit can be kept almost constant despite changes in ambient temperature.
第1図はこの発明の一実施例を示す接続図、第2図は従
来の回路を示す接続図、第3図は水晶発振回路の発振周
波数の周波数偏差と周囲温度との関係を示す図、第4図
は発振周波数の周波数偏差と負荷容量との関係を示す図
。
1・・・ダイオード、2・・・定電流回路、3・・・A
/D、4・・・変換回路、5・・・インバータ、6・・
・抵抗、7・・・水晶発振子、C01、CO2,COm
、C11,C12,C1n・・・キャパシタ、SQL、
SO2,SOm、S11、S12.Sin・・・スイッ
チング素子。
なお、図中同一符号は同一または相当部分を示す。FIG. 1 is a connection diagram showing an embodiment of the present invention, FIG. 2 is a connection diagram showing a conventional circuit, and FIG. 3 is a diagram showing the relationship between the frequency deviation of the oscillation frequency of a crystal oscillation circuit and the ambient temperature. FIG. 4 is a diagram showing the relationship between frequency deviation of oscillation frequency and load capacity. 1... Diode, 2... Constant current circuit, 3... A
/D, 4... Conversion circuit, 5... Inverter, 6...
・Resistance, 7...Crystal oscillator, C01, CO2, COm
, C11, C12, C1n...capacitor, SQL,
SO2, SOm, S11, S12. Sin...Switching element. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
信号に変換するアナログディジタル変換器、 このアナログディジタル変換器の出力を入力し、これに
対応する制御信号を出力する変換回路、水晶振動子と抵
抗との並列回路をインバータの入力端子とその出力端子
との間に接続して構成した発振回路、 上記インバータの入力端子及び出力端子と接地電位との
間にそれぞれ挿入される複数個のキャパシタ、 この複数個のキャパシタと上記接地電位との間にそれぞ
れ接続される複数個のスイッチング素子、この複数個の
スイッチング素子の開閉を上記変換回路から出力する上
記制御信号に従って制御する手段、 を備えた水晶発振回路。[Claims] A constant current circuit that flows a predetermined constant current in the forward direction through the diode, an analog-digital converter that inputs the voltage between the electrodes of the diode and converts it into a digital signal, and an output of the analog-digital converter. an oscillation circuit configured by connecting a parallel circuit of a crystal oscillator and a resistor between the input terminal of the inverter and its output terminal, and an input terminal of the above-mentioned inverter. and a plurality of capacitors each inserted between the output terminal and the ground potential, a plurality of switching elements each connected between the plurality of capacitors and the ground potential, and opening/closing of the plurality of switching elements. A crystal oscillation circuit comprising: means for controlling according to the control signal output from the conversion circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63227460A JPH0276304A (en) | 1988-09-13 | 1988-09-13 | Crystal oscillation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63227460A JPH0276304A (en) | 1988-09-13 | 1988-09-13 | Crystal oscillation circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0276304A true JPH0276304A (en) | 1990-03-15 |
Family
ID=16861222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63227460A Pending JPH0276304A (en) | 1988-09-13 | 1988-09-13 | Crystal oscillation circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0276304A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH052435U (en) * | 1991-06-21 | 1993-01-14 | シチズン時計株式会社 | Temperature compensated crystal oscillator |
US5446420A (en) * | 1993-08-25 | 1995-08-29 | Motorola, Inc. | Method and apparatus for reducing jitter and improving testability of an oscillator |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5174556A (en) * | 1974-12-24 | 1976-06-28 | Seiko Instr & Electronics | Suishodenshidokeini okeru kankyusochi |
JPS5550192A (en) * | 1978-10-07 | 1980-04-11 | Citizen Watch Co Ltd | Electronic timepiece with temperature compensating function |
JPS5786082A (en) * | 1980-11-18 | 1982-05-28 | Seiko Epson Corp | Oscillation circuit for electronic watch |
-
1988
- 1988-09-13 JP JP63227460A patent/JPH0276304A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5174556A (en) * | 1974-12-24 | 1976-06-28 | Seiko Instr & Electronics | Suishodenshidokeini okeru kankyusochi |
JPS5550192A (en) * | 1978-10-07 | 1980-04-11 | Citizen Watch Co Ltd | Electronic timepiece with temperature compensating function |
JPS5786082A (en) * | 1980-11-18 | 1982-05-28 | Seiko Epson Corp | Oscillation circuit for electronic watch |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH052435U (en) * | 1991-06-21 | 1993-01-14 | シチズン時計株式会社 | Temperature compensated crystal oscillator |
US5446420A (en) * | 1993-08-25 | 1995-08-29 | Motorola, Inc. | Method and apparatus for reducing jitter and improving testability of an oscillator |
US5511126A (en) * | 1993-08-25 | 1996-04-23 | Motorola, Inc. | Method and apparatus for reducing jitter and improving testability of an oscillator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5473289A (en) | Temperature compensated crystal oscillator | |
JPH11220327A (en) | Temperature compensation circuit for oscillator | |
JPH10145139A (en) | Crystal oscillation device and adjustment method thereof | |
JPH0276304A (en) | Crystal oscillation circuit | |
JP2713214B2 (en) | Temperature compensation device for crystal oscillation circuit | |
JPH08161414A (en) | Circuit with total transfer function | |
JPS60220605A (en) | Piezoelectric oscillator for asynchronous mode operation | |
JPH06276020A (en) | Temperature compensated crystal oscillator | |
JP2002135051A (en) | Piezoelectric oscillator | |
JP2568571B2 (en) | Band rejection frequency control device | |
JP3673406B2 (en) | Digitally controlled oscillator | |
RU1781813C (en) | Device for temperature stabilization of capacitance of varactor diode | |
JP3911722B2 (en) | Analog / digital input / output switch circuit | |
JPS63260303A (en) | Digital temperature compensated crystal oscillator | |
JP3299055B2 (en) | Piezoelectric oscillation circuit | |
JPS5843282Y2 (en) | Ondohoshiyoosuishiyoohatsushinki | |
JPH02151751A (en) | electronic thermohygrometer | |
JPH03216525A (en) | Temperature sensor | |
JPS62102609A (en) | Oscillation circuit | |
JP3005897B2 (en) | Temperature generator for temperature compensation of crystal oscillator | |
JP2584991B2 (en) | Digitally controlled temperature compensated crystal oscillator | |
JPH0537528Y2 (en) | ||
JPH05183337A (en) | Digitally controlled temperature compensation crystal oscillator | |
JPH01265707A (en) | Digital control temperature compensation type piezoelectric oscillator | |
JPH0652222U (en) | Temperature compensation circuit |