[go: up one dir, main page]

JPH0275882A - Compressing method for low molecular weight gas - Google Patents

Compressing method for low molecular weight gas

Info

Publication number
JPH0275882A
JPH0275882A JP63225737A JP22573788A JPH0275882A JP H0275882 A JPH0275882 A JP H0275882A JP 63225737 A JP63225737 A JP 63225737A JP 22573788 A JP22573788 A JP 22573788A JP H0275882 A JPH0275882 A JP H0275882A
Authority
JP
Japan
Prior art keywords
gas
freon
molecular weight
helium
low molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63225737A
Other languages
Japanese (ja)
Other versions
JPH0668432B2 (en
Inventor
Takayoshi Asaumi
浅海 隆義
Hideki Ebisu
戎 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63225737A priority Critical patent/JPH0668432B2/en
Publication of JPH0275882A publication Critical patent/JPH0275882A/en
Publication of JPH0668432B2 publication Critical patent/JPH0668432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/02Compressor intake arrangement, e.g. filtering or cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To condense to isolate high molecular weight gas and to obtain compressed low molecular weight gas having high purity by adding the high molecular weight gas to the low molecular weight gas thereby to raise mean gas density to easily centrifugally compress and cooling, after the centrifugal compression, mixture gas. CONSTITUTION:High molecular weight gas to be added has conditions of higher density and boiling point than those of gas to be pressurized. Mixture gas of helium and Freon is fed to a centrifugal compressor 2. Since the mixture gas becomes high density by the addition of the Freon, it is easily compressed to high pressure. It is preliminarily cooled by a water cooler 3, and most Freon is liquefied to be separated. Freon gas is liquefied to be separated by utilizing saturated temperature difference of both the gases thereby to obtain helium gas of high pressure and high purity. The Freon can be efficiently removed by the introduced gas by means of regenerative heat exchange, the mixture gas can be effectively cooled thereby to generate helium gas of high purity in high thermal efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素、ヘリウム等の低分子気体を圧縮するた
めの方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for compressing low molecular gases such as hydrogen and helium.

〔従来の技術〕[Conventional technology]

従来、液化等を目的とする気体の圧縮は、ねじ圧縮機や
往復圧縮機のような容積型圧縮機、または遠心圧縮機の
ようなターボ型圧縮機等により行われている。このうち
、上記容積型圧縮機は、その構造上容量が限られ、大量
の気体を処理するには多数の圧縮機を並列に配する等の
手段でしか対処できないため、コスト面で不利となり易
い。従って、大量の気体を処理するには一般に遠心圧縮
機が好ましいとされている。
Conventionally, compression of gas for the purpose of liquefaction or the like has been performed using a positive displacement compressor such as a screw compressor or a reciprocating compressor, or a turbo compressor such as a centrifugal compressor. Among these, the above-mentioned positive displacement compressors have a limited capacity due to their structure, and the only way to process a large amount of gas is by arranging a large number of compressors in parallel, which tends to be disadvantageous in terms of cost. . Therefore, centrifugal compressors are generally preferred for processing large amounts of gas.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記遠心圧縮機は、回転する羽根車に対し、その径方向
に気体を通して遠心力を与え、圧縮するものであるが、
被加圧ガスが水素やヘリウム等の低分子気体である場合
には、その気体密度が小さいために充分な遠心力が得ら
れにくく、高圧圧縮は困難である。従って従来、このよ
うな低分子気体を圧縮するには圧縮機を多段構造としな
ければならず、これによってコストが増大するとともに
、圧縮機の高速回転が必要になるためにベアリングの損
耗が促進される等の強度的な不都合が生じていた。
The centrifugal compressor compresses a rotating impeller by applying centrifugal force to it by passing gas in the radial direction of the impeller.
When the pressurized gas is a low-molecular gas such as hydrogen or helium, it is difficult to obtain sufficient centrifugal force due to its low gas density, making high-pressure compression difficult. Therefore, conventionally, in order to compress such low-molecular-weight gases, the compressor had to have a multi-stage structure, which increased costs and accelerated wear on the bearings because the compressor needed to rotate at high speed. There were serious problems such as

本発明は、このような事情に鑑み、水素、ヘリウム等の
低分子気体を、他の気体と同様に不都合なく遠心圧縮す
ることができる方法を提供することを目的とする。
In view of these circumstances, the present invention aims to provide a method that can centrifugally compress low-molecular gases such as hydrogen and helium without any inconvenience like other gases.

(課題を解決するための手段) 本発明は、低分子気体に該低分子気体よりも沸点の高い
高分子気体を添加混合して両者を遠心圧縮し、次いでこ
の混合気体を冷却して上記高分子気体を凝縮分離するも
のである。
(Means for Solving the Problems) The present invention provides for adding and mixing a low molecular gas with a high molecular gas having a boiling point higher than that of the low molecular gas, centrifugally compressing both, and then cooling this mixed gas to It condenses and separates molecular gases.

〔作 用) 上記も1成において、低分子気体に高分子気体が添加さ
れることにより、平均気体密度が高まって遠心圧縮が容
易に行われる。そして、この遠心圧縮後に混合気体を冷
却することにより、両気体の飽和温度差によって上記高
分子気体が凝縮分離され、圧縮された高純度の低分子気
体が得られる。
[Function] In the above case, the addition of a high molecular gas to a low molecular gas increases the average gas density and facilitates centrifugal compression. By cooling the mixed gas after this centrifugal compression, the polymer gas is condensed and separated due to the saturation temperature difference between the two gases, and a compressed high-purity low-molecular gas is obtained.

〔実施例〕〔Example〕

第1図および第2図(a)(b)は、本発明方法を実施
するための装置の一例として、ヘリウムの液化装置を示
したものである。この装置は、混合器1、遠心圧縮機2
、水冷却器3、保冷箱B等を備え、保冷箱B内には、切
換式熱交換器4a。
FIG. 1 and FIGS. 2(a) and 2(b) show a helium liquefaction device as an example of a device for carrying out the method of the present invention. This device consists of a mixer 1, a centrifugal compressor 2
, a water cooler 3, a cold box B, and the like, and inside the cold box B is a switching heat exchanger 4a.

4b、熱交換器5,8、膨張タービン6、ヘリウム液分
離器7、膨張弁9、フレオン液分離器10、切換装置1
1等が収納されている。
4b, heat exchangers 5 and 8, expansion turbine 6, helium liquid separator 7, expansion valve 9, Freon liquid separator 10, switching device 1
1st class is stored.

上記混合器1は、シャワー1aでヘリウムガス中にフレ
オン液を散布し、両者を混合するとともに、下部に溜る
フレオン液をヒータ1bで加熱することにより、フレオ
ンガスの分圧を一定に保つように構成されている。
The mixer 1 is configured to maintain a constant partial pressure of the Freon gas by spraying Freon liquid into helium gas using a shower 1a and mixing the two, and by heating the Freon liquid accumulated at the bottom with a heater 1b. has been done.

上記切換式熱交換器4a、4bには、切換弁12a、1
2bを介して交互に液体窒素が給送されるようになって
いる。これに対して切換装置11は、第2図(a>(b
)に示されるような4つの切換弁118〜11dを備え
、これらの弁が上記切換弁12a、12bの開閉と連係
して開閉切換されることにより、上記切換式熱交換器4
a、4bにおいて混合気体のりパージング熱交換(再生
式熱交換)が行われるようになっている(詳@復述)。
The switching type heat exchangers 4a, 4b include switching valves 12a, 1.
Liquid nitrogen is alternately fed through the tubes 2b. On the other hand, the switching device 11
), and these valves are opened and closed in conjunction with the opening and closing of the switching valves 12a and 12b, so that the switching heat exchanger 4
In a and 4b, mixed gas purging heat exchange (regenerative heat exchange) is performed (details @repetition).

また、上記水冷却器3と混合器1の間、およびフレオン
液分離器10と混合器10間には、それぞれ分離液の液
面レベルを一定に保つための流量調節弁13.14が設
けられている。
Furthermore, flow control valves 13 and 14 are provided between the water cooler 3 and the mixer 1, and between the Freon liquid separator 10 and the mixer 10, respectively, to keep the level of the separated liquid constant. ing.

次に、この装置によるヘリウムガスの圧縮液化の工程を
、第3図の流れ図を参照しながら説明する。
Next, the process of compressing and liquefying helium gas using this apparatus will be explained with reference to the flow chart of FIG.

まず、混合器1において、ヘリウムガスに対し高分子気
体(ここではフレオン;商品名)が一定の比率で添加混
合される(プロセスP1)。このような添加高分子ガス
としては、被加圧ガス(ここではヘリウムガス)よりも
高密度で、かつ沸点の高いことが条件であり、上記フレ
オン(フレオン113)等は好適である。
First, in the mixer 1, a polymer gas (here, Freon; trade name) is added to and mixed with helium gas at a constant ratio (process P1). Such an additive polymer gas must have a higher density and a higher boiling point than the pressurized gas (here, helium gas), and the above-mentioned Freon (Freon 113) and the like are suitable.

このようにヘリウムとフレオンが混合された気体は、遠
心圧縮機2に給送され、そのまま遠心圧縮される(ステ
ップ82 )。このとき、上記混合気体はフレオンの添
加で高密度となっているため、容易に高圧圧縮が行われ
る。
The gas in which helium and Freon are mixed in this way is fed to the centrifugal compressor 2 and centrifugally compressed as it is (step 82). At this time, since the mixed gas has a high density due to the addition of Freon, high-pressure compression is easily performed.

圧縮された混合気体は、水冷却器3で予備冷却され、こ
れによって大部分のフレオンが液化分離され7!(プロ
セスP3 )。この液化されたフレオンは流量調節弁1
3を介して上記混合器1に逆送される。
The compressed mixed gas is pre-cooled in a water cooler 3, whereby most of the freon is liquefied and separated 7! (Process P3). This liquefied Freon is transferred to the flow control valve 1
3 to the mixer 1.

予備冷却された残りの高圧気体は、保冷箱Bに収納され
た熱交換器5に給送され、この熱交換器5で戻りの低圧
ヘリウムガス(後述)と熱交換した後、切換装置11に
送られる。この切換装置11は、切換弁11a、11c
のみが開く状B(第2図(a))と、切換弁11b、1
1dのみが開く状B(同図(b))とに切換えられるよ
うになっている。
The remaining precooled high-pressure gas is fed to the heat exchanger 5 housed in the cold box B, and after exchanging heat with the returning low-pressure helium gas (described later) in the heat exchanger 5, it is sent to the switching device 11. Sent. This switching device 11 includes switching valves 11a and 11c.
Shape B (Fig. 2(a)) where only the switching valves 11b and 1 are open (FIG. 2(a))
It is designed so that it can be switched to the state B (FIG. 2(b)) in which only 1d is open.

まず、同図(a)の状態について説明すると、同図実線
21aに示されるように、混合気体は熱交換器5から切
換弁11aを通って切換式熱交換器4aに入り、その中
で凝固しているフレオンと熱交換される。これによって
、混合気体中のフレオンガスが液化分離されるとともに
、上記フレオンが融解してフレオン液となる。この液は
フレオン液分離器10に回収され、流量調節弁14を介
して上記混合器1に逆送される。
First, to explain the state shown in FIG. 5A, as shown by the solid line 21a in the figure, the mixed gas enters the switching heat exchanger 4a from the heat exchanger 5 through the switching valve 11a, and solidifies therein. heat is exchanged with freon. As a result, the Freon gas in the mixed gas is liquefied and separated, and the Freon is melted to become a Freon liquid. This liquid is collected in the Freon liquid separator 10 and sent back to the mixer 1 via the flow control valve 14.

一方、この状態では切換弁12bが開かれ、切換式熱交
換器4bにのみ液体窒素が給送されるようになっており
(−点鎖1122a参照)、上記混合気体はこの切換式
熱交換器4b内で上記液体窒素および戻りの低温ヘリウ
ムガスと熱交換し、さらに温度降下してその中のフレオ
ンガスが切換式熱交換器4b内の伝熱面上に凍結する。
On the other hand, in this state, the switching valve 12b is opened and liquid nitrogen is supplied only to the switching heat exchanger 4b (see - point chain 1122a), and the mixed gas is transferred to the switching heat exchanger 4b. In the switching heat exchanger 4b, heat is exchanged with the liquid nitrogen and the returned low-temperature helium gas, and the temperature is further lowered, and the Freon gas therein is frozen on the heat transfer surface in the switching heat exchanger 4b.

上記工程により、添加されたフレオンガスはほぼ完全に
凝縮分離除去され、混合気体は高純度の被加圧ヘリウム
ガスとなる(プロセスP4 )。このガスは膨張タービ
ン6および膨張弁9を通ってさらに低温となり、一部が
ヘリウム液分離器7で液化される(プロセスP5 )。
Through the above steps, the added Freon gas is almost completely condensed and separated, and the mixed gas becomes a pressurized helium gas of high purity (Process P4). This gas passes through the expansion turbine 6 and the expansion valve 9 and is further reduced to a lower temperature, and a portion is liquefied in the helium liquid separator 7 (process P5).

残りのヘリウムガスは、熱交換器8を通って切換式熱交
換器4bに給送され、この切換式熱交換器4bに給送さ
れる上記混合気体と熱交換し、さらに熱交換器5内で熱
交換され温度上昇した状態で上記混合器1に逆送される
(破線23a参照)。
The remaining helium gas passes through the heat exchanger 8 and is fed to the switching heat exchanger 4b, where it exchanges heat with the above-mentioned mixed gas fed to the switching heat exchanger 4b. The mixture undergoes heat exchange and is returned to the mixer 1 in a state where the temperature has increased (see broken line 23a).

一方、この第2図(a)の状態から同図(b)の状態に
切換えられると、同図実線21bに示されるように、混
合気体は熱交換器5から切換弁11bを通って切換式熱
交換器4bに給送され、この切換式熱交換器4b内にお
いて上記第2図(a)の状態で凝固したフレオンと熱交
換してフレオンを融解させる。さらに、この混合気体は
切換式熱交換器4aに給送され、切換弁12aがら供給
される液体窒素(−点鎖線22b)および戻りのヘリウ
ムガスとの熱交換によりフレオンガスが凍結分離される
。そして、上記と同様の工程で一部のヘリウムが液化さ
れた後、切換式熱交換器4aおよび熱交換器5を通って
混合器1に逆送される(破線23b)。
On the other hand, when the state shown in FIG. 2(a) is switched to the state shown in FIG. It is fed to the heat exchanger 4b, and in this switching type heat exchanger 4b, it exchanges heat with the Freon solidified in the state shown in FIG. 2(a) to melt the Freon. Further, this mixed gas is fed to the switching type heat exchanger 4a, and Freon gas is frozen and separated by heat exchange with liquid nitrogen (-dotted chain line 22b) supplied from the switching valve 12a and returned helium gas. After some helium is liquefied in the same process as above, it is sent back to the mixer 1 through the switching heat exchanger 4a and the heat exchanger 5 (broken line 23b).

以上のように、この圧縮方法は、低分子のヘリ、ラムガ
スに高分子のフレオンガスを添加することにより、全体
の平均密度を上げて遠心分離を容易にし、かつ、その後
に両気体の飽和温度差を利用してフレオンガスを液化分
離するものであり、これによって高圧、高純度のヘリウ
ムガスを得ることができる。また、上記のような再生式
熱交換を行うことにより、導入ガスによってフレオンの
寒冷を効率良く除去できるとともに、同混合気体を有効
に冷却することができ、高い熱効率によって純度の高い
ヘリウムガスを生成することができる。
As described above, this compression method increases the overall average density by adding high-molecular Freon gas to low-molecular helium gas and ram gas to facilitate centrifugation, and then Freon gas is liquefied and separated using this method, allowing high-pressure, high-purity helium gas to be obtained. In addition, by performing regenerative heat exchange as described above, the cold of Freon can be efficiently removed by the introduced gas, and the mixed gas can be effectively cooled, producing highly pure helium gas with high thermal efficiency. can do.

第1表は、上記第2図(a>のA−D地点における気体
の温度、圧力、およびヘリウム純度を示したものである
が、この表から分かるように、切換式熱交換器4a、4
bを通過した地点(B地点)では、極めて高い純度(フ
レオン1 ppm以下)のヘリウムガスが得られている
Table 1 shows the temperature, pressure, and helium purity of the gas at points A-D in FIG.
At the point after passing b (point B), helium gas of extremely high purity (1 ppm or less of freon) is obtained.

なお、本発明方法は、上記ヘリウムの他例えば水素等、
低分子および低密度の気体の圧縮に優れた効果を発揮す
る。また、本発明方法では冷却手段を問わず、例えば上
記装置では水冷却器3によって混合気体の予備冷却を行
っているが、直接熱交換器によって混合気体を本冷却し
てもよい。
In addition, in addition to the above-mentioned helium, the method of the present invention also uses hydrogen, etc.
Demonstrates excellent compression of low-molecular and low-density gases. Further, in the method of the present invention, any cooling means is used; for example, in the above apparatus, the mixed gas is pre-cooled by the water cooler 3, but the mixed gas may be main cooled by a direct heat exchanger.

第1表 〔発明の効果〕 以上のように本発明は、低分子気体に高沸点の高分子気
体を添加して遠心圧縮し、この混合気体を冷却して上記
高分子気体を凝縮分離するようにしたものであるので、
大量の低分子気体を遠心圧縮機を用いて容易に高圧圧縮
することができるとともに、その添加後は両気体の飽和
温度差を利用した高分子気体の冷却分離により高純度の
被加圧低分子気体を得ることができる効果がある。
Table 1 [Effects of the Invention] As described above, the present invention adds a high-boiling-point polymer gas to a low-molecular gas, centrifugally compresses the mixture, cools the mixed gas, and condenses and separates the polymer gas. Since it is
A large amount of low-molecular gas can be easily compressed at high pressure using a centrifugal compressor, and after addition, the high-purity pressurized low-molecular gas is produced by cooling and separating the high-molecular gas using the saturation temperature difference between the two gases. It has the effect of allowing you to obtain gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を実施するためのヘリウム液化装
置の全体図、第2図(a)(b)は同装置において再生
式熱交換が行われる部分の構成図、第3図は本発明方法
によるヘリウム液化の工程を示す流れ図である。 1・・・混合器、2・・・遠心圧縮機、3・・・水冷却
器、4a、4b・・・切換式熱交換器。 特許出願人     株式会社 神戸製鋼所代 理 人
     弁理士  小谷 悦司第  2 (a) 逢 奪 頷 (b) 榎。 、今 虱 床
Figure 1 is an overall diagram of a helium liquefaction equipment for carrying out the method of the present invention, Figures 2 (a) and (b) are block diagrams of the part in which regenerative heat exchange is performed, and Figure 3 is a diagram of the present invention. 1 is a flowchart showing the steps of helium liquefaction according to the invention method. 1...Mixer, 2...Centrifugal compressor, 3...Water cooler, 4a, 4b...Switching heat exchanger. Patent Applicant Kobe Steel Co., Ltd. Agent Patent Attorney Etsushi Kotani No. 2 (a) Enoki Otani (b) Enoki. , now bed

Claims (1)

【特許請求の範囲】[Claims] 1、低分子気体に該低分子気体よりも沸点の高い高分子
気体を添加混合して両者を遠心圧縮し、次いでこの混合
気体を冷却して上記高分子気体を凝縮分離することを特
徴とする低分子気体の圧縮方法。
1. It is characterized by adding and mixing a high molecular gas with a boiling point higher than that of the low molecular gas to a low molecular gas, centrifugally compressing both, and then cooling this mixed gas to condense and separate the high molecular gas. A method for compressing low molecular gases.
JP63225737A 1988-09-08 1988-09-08 Low molecular gas compression method Expired - Lifetime JPH0668432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225737A JPH0668432B2 (en) 1988-09-08 1988-09-08 Low molecular gas compression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225737A JPH0668432B2 (en) 1988-09-08 1988-09-08 Low molecular gas compression method

Publications (2)

Publication Number Publication Date
JPH0275882A true JPH0275882A (en) 1990-03-15
JPH0668432B2 JPH0668432B2 (en) 1994-08-31

Family

ID=16834043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225737A Expired - Lifetime JPH0668432B2 (en) 1988-09-08 1988-09-08 Low molecular gas compression method

Country Status (1)

Country Link
JP (1) JPH0668432B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014086A1 (en) 2019-07-24 2021-01-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Compression and separation device and compression process
FR3108390A1 (en) * 2020-03-23 2021-09-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Hydrogen refrigeration installation and process
US11453950B1 (en) 2021-03-15 2022-09-27 Air Products And Chemicals, Inc. Method and apparatus for dosing hydrogen in a centrifugal compression system
US11773873B2 (en) 2021-03-15 2023-10-03 Air Products And Chemicals, Inc. Process and apparatus for compressing hydrogen gas in a centrifugal compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992167A (en) * 1975-04-02 1976-11-16 Union Carbide Corporation Low temperature refrigeration process for helium or hydrogen mixtures using mixed refrigerant
JPS5825954A (en) * 1981-08-10 1983-02-16 出光興産株式会社 Three-layer laminated structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992167A (en) * 1975-04-02 1976-11-16 Union Carbide Corporation Low temperature refrigeration process for helium or hydrogen mixtures using mixed refrigerant
JPS5825954A (en) * 1981-08-10 1983-02-16 出光興産株式会社 Three-layer laminated structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014086A1 (en) 2019-07-24 2021-01-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Compression and separation device and compression process
FR3099151A1 (en) * 2019-07-24 2021-01-29 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude COMPRESSION AND SEPARATION APPARATUS AND COMPRESSION METHOD
CN114207370A (en) * 2019-07-24 2022-03-18 乔治洛德方法研究和开发液化空气有限公司 Compression and separation apparatus and compression method
CN114207370B (en) * 2019-07-24 2023-10-27 乔治洛德方法研究和开发液化空气有限公司 Compression and separation apparatus and compression method
US12123418B2 (en) 2019-07-24 2024-10-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Compression and separation device and compression process
FR3108390A1 (en) * 2020-03-23 2021-09-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Hydrogen refrigeration installation and process
WO2021190892A1 (en) * 2020-03-23 2021-09-30 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Facility and method for hydrogen refrigeration
US11453950B1 (en) 2021-03-15 2022-09-27 Air Products And Chemicals, Inc. Method and apparatus for dosing hydrogen in a centrifugal compression system
US11773873B2 (en) 2021-03-15 2023-10-03 Air Products And Chemicals, Inc. Process and apparatus for compressing hydrogen gas in a centrifugal compressor

Also Published As

Publication number Publication date
JPH0668432B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
EP3368630B1 (en) Low-temperature mixed--refrigerant for hydrogen precooling in large scale
US3992167A (en) Low temperature refrigeration process for helium or hydrogen mixtures using mixed refrigerant
US4169361A (en) Method of and apparatus for the generation of cold
CA1298775C (en) Hydrogen liquefaction using a dense fluid expander and neon as a pre-coolant refrigerant
EP3368631B1 (en) Method using hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
EP3163236A1 (en) Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
US4346563A (en) Super critical helium refrigeration process and apparatus
CN111692836A (en) Hydrogen liquefaction apparatus using cold energy of liquefied natural gas
Alekseev Hydrogen liquefaction
JPS59122868A (en) Cascade-turbo helium refrigerating liquefier utilizing neon gas
EP3163235A1 (en) Novel cascade process for cooling and liquefying hydrogen in large-scale
JPH0275882A (en) Compressing method for low molecular weight gas
CN114963688B (en) Hydrogen liquefaction system adopting low-temperature turbine compression cycle
US5347819A (en) Method and apparatus for manufacturing superfluidity helium
Quack et al. Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen
JP2021515169A (en) Cooling system
JPH079346B2 (en) Helium liquefier
JPS63271085A (en) Method for producing liquid air using LNG refrigeration and expander cycle
US4179897A (en) Isentropic expansion of gases via a pelton wheel
US4828591A (en) Method and apparatus for the liquefaction of natural gas
JP2574815B2 (en) Cryogenic refrigeration equipment
JP2513711B2 (en) Neon refrigeration cycle
Terbot A New Helium Refrigerator for Superconducting Cable Systems
Wanner et al. Concept and operation of a 4.4 ton/d liquid hydrogen facility
US20230392859A1 (en) Cryogenic Gas Cooling System and Method