[go: up one dir, main page]

JPH027547B2 - - Google Patents

Info

Publication number
JPH027547B2
JPH027547B2 JP58028072A JP2807283A JPH027547B2 JP H027547 B2 JPH027547 B2 JP H027547B2 JP 58028072 A JP58028072 A JP 58028072A JP 2807283 A JP2807283 A JP 2807283A JP H027547 B2 JPH027547 B2 JP H027547B2
Authority
JP
Japan
Prior art keywords
photoconductive layer
sensor
image
electrode
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58028072A
Other languages
Japanese (ja)
Other versions
JPS59153375A (en
Inventor
Masataka Ito
Shoshichi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58028072A priority Critical patent/JPS59153375A/en
Priority to US06/581,131 priority patent/US4559564A/en
Priority to DE3406268A priority patent/DE3406268C2/en
Publication of JPS59153375A publication Critical patent/JPS59153375A/en
Publication of JPH027547B2 publication Critical patent/JPH027547B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00249Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a photographic apparatus, e.g. a photographic printer or a projector
    • H04N1/00257Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a photographic apparatus, e.g. a photographic printer or a projector with an electro-developing recording medium, e.g. generating image signals by reading such a medium in a still camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02805Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a two-dimensional array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/10Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
    • H04N1/1013Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with sub-scanning by translatory movement of at least a part of the main-scanning components
    • H04N1/1017Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with sub-scanning by translatory movement of at least a part of the main-scanning components the main-scanning components remaining positionally invariant with respect to one another in the sub-scanning direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/10Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
    • H04N1/1013Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with sub-scanning by translatory movement of at least a part of the main-scanning components
    • H04N1/1039Movement of the main scanning components
    • H04N1/1043Movement of the main scanning components of a sensor array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/10Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
    • H04N1/1013Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with sub-scanning by translatory movement of at least a part of the main-scanning components
    • H04N1/1039Movement of the main scanning components
    • H04N1/1048Movement of the main scanning components of a lens or lens arrangement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00249Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a photographic apparatus, e.g. a photographic printer or a projector

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Image Input (AREA)
  • Facsimile Heads (AREA)

Description

【発明の詳細な説明】 〈技術分野〉 本発明は画像読取装置に係り、特に2次元にわ
たつてセンサエレメントを配置した2次元画像読
取装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an image reading device, and particularly to a two-dimensional image reading device in which sensor elements are arranged two-dimensionally.

〈従来技術〉 フアクシミリ等の画像を読出す装置として現在
までにMOS型イメージセンサ、CCDセンサ、密
着型イメージセンサ等が提案されている。MOS
型イメージセンサは、入射光像を光電変換素子で
電気信号に変換し、MOSトランジスタを順次切
り換え走査して読出す装置で、またCCDセンサ
は光によつて光電変換部に生じた電荷を電荷結合
素子(CCD)を用いて転送する装置である。
<Prior Art> To date, MOS type image sensors, CCD sensors, contact type image sensors, etc. have been proposed as devices for reading out images of facsimiles and the like. M.O.S.
A type image sensor is a device that converts an incident light image into an electric signal using a photoelectric conversion element, and reads it out by sequentially switching MOS transistors to scan it.A CCD sensor converts an incident light image into an electric signal using a photoelectric conversion element, and reads it out by sequentially switching MOS transistors to scan it.A CCD sensor converts an incident light image into an electric signal using a photoelectric conversion element. This is a device that uses a device (CCD) to transfer data.

このMOS型イメージセンサ或いはCCDセンサ
は共に単結晶半導体を基板にしてこれにICの技
術を用い作成する。従つて大面積のセンサを製造
することは、性能的にもコスト的にも不利にな
り、一般には光学レンズを用い、原稿をセンサ上
に縮小結像させ使用している。しかし、この方法
では光学レンズを用いるため光路長が長くなり装
置の小型化が困難になる。
Both the MOS type image sensor and the CCD sensor are fabricated using IC technology using a single crystal semiconductor as a substrate. Therefore, manufacturing a sensor with a large area is disadvantageous in terms of performance and cost, and an optical lens is generally used to form a reduced image of the document on the sensor. However, since this method uses an optical lens, the optical path length becomes long, making it difficult to miniaturize the device.

上記のような縮小結像型のイメージセンサに対
し装置を小型化する目的で原稿と同じ大きさの光
電変換素子を用いオプテイカルフアイバで、原稿
と等倍の像を光電変換素子上に結像させる密着型
イメージセンサが考案されている。密着型イメー
ジセンサは通常原稿と同じ大きさの光電変換素子
が必要で、そのためには広い面積にわたつて均一
な光導電膜の形成が要求される。
In order to miniaturize the device for the above-mentioned reduction image forming type image sensor, a photoelectric conversion element of the same size as the original is used and an optical fiber is used to form an image of the same size as the original onto the photoelectric conversion element. A close-contact image sensor has been devised. A contact image sensor usually requires a photoelectric conversion element of the same size as the original, which requires the formation of a uniform photoconductive film over a wide area.

現在密着型イメージセンサとしてはCdS光導電
層を島状に分割した1次元密着型イメージセンサ
が提案されている。しかしこのイメージセンサは
CdS光導電層を分割することから構造が複雑で製
造プロセスの点からも問題が残る。更に読取速度
は光導電層の光応答速度によつて制限される。特
にCdS等の光導電層は光応答速度に問題があり、
1次元イメージセンサによつて2次元の画像情報
を読取ろうとすれば、1次元センサを繰返し使用
しなければならないためかなりの制限を受ける。
また、光電変換部とスイツチング素子をMOS型
センサ或いはCCDセンサのようにIC技術を用い
て一体化させることが困難であり駆動回路のコス
トが割高になるという欠点もある。MOS型セン
サ、CCDセンサはすでに実用化されているが密
着型センサは上記のような理由によりまだ実用化
に到つていない。
Currently, a one-dimensional contact image sensor in which a CdS photoconductive layer is divided into islands has been proposed as a contact image sensor. However, this image sensor
Since the CdS photoconductive layer is divided, the structure is complicated and problems remain in terms of the manufacturing process. Furthermore, the reading speed is limited by the photoresponse speed of the photoconductive layer. In particular, photoconductive layers such as CdS have problems with photoresponse speed.
If an attempt is made to read two-dimensional image information using a one-dimensional image sensor, the one-dimensional sensor must be used repeatedly, which imposes considerable limitations.
Another drawback is that it is difficult to integrate the photoelectric conversion section and the switching element using IC technology, as in the case of a MOS type sensor or a CCD sensor, and the cost of the drive circuit becomes relatively high. Although MOS type sensors and CCD sensors have already been put into practical use, contact type sensors have not yet reached practical use due to the reasons mentioned above.

更にアモルフアスシリコン等を利用して連続し
た帯状の光導電体を用いた密着型センサも提案さ
れているが、このような1次元センサを用いて2
次元画像を読取ろうとすれば、センサを繰返して
使用しなければならず、そのために同じセンサ部
分をある周期で電圧印加し、信号の読取りを行な
うため、“明”“暗”の照度変化に対する電流
の増加減少、即ち立ち下がり特性が直接信号に影
響を及ぼす。そのために上記1次元センサでは1
ラインを走査する時間を応答速度より大きくとる
必要があり、2次元原稿の読取時間が長くなつて
2次元イメージセンサとして実用化するには問題
があつた。
Furthermore, a close-contact sensor using a continuous band-shaped photoconductor made of amorphous silicon or the like has been proposed, but it is possible to use such a one-dimensional sensor to
If you want to read a dimensional image, you have to use the sensor repeatedly, and for that purpose, voltage is applied to the same sensor part at a certain period and the signal is read, so the current changes as the illuminance changes between "bright" and "dark". The increase or decrease of , that is, the falling characteristic, directly affects the signal. Therefore, in the above one-dimensional sensor, 1
The time required to scan a line must be longer than the response speed, which increases the time required to read a two-dimensional document, which poses a problem for practical use as a two-dimensional image sensor.

〈発明の目的〉 本発明は上記従来のイメージセンサがもつ問題
点に鑑みてなされたもので、2次元に光導電層を
配した新規な画像読取装置によつて、光導電層の
光応答特性に拘わらず高速読取りを行うことがで
きる装置を提供するもので、密着型イメージセン
サとしてだけではなく通常の光学系を用いた2次
元イメージセンサとしても利用することができる
読取装置である。
<Objective of the Invention> The present invention has been made in view of the above-mentioned problems of the conventional image sensor. The present invention provides a device that can perform high-speed reading regardless of the situation, and is a reading device that can be used not only as a contact type image sensor but also as a two-dimensional image sensor using a normal optical system.

〈実施例〉 第1図は本発明による一実施例の画像読取装置
におけるセンサ1の構造を示す斜視図である。セ
ンサ1は少なくとも読取るべき2次元画像面と同
程度の面積をもつたガラス等の絶縁板を基板2と
し、該基板2の一方の表面にAl等を蒸着して形
成したストライプ状X電極3が一定ピツチで平行
に設けられている。各X電極3の幅及びピツチは
センサ1の解像度に影響を与える。上記X電極3
は走査回路4に接続され、順次選択されて読取り
のための電圧が印加される。X電極3が形成され
た基板上には重ねて光導電層5が作成されてい
る。該光導電層5は樹脂中に主としてCdSからな
る光導電体粉末を混合分散させてなり、基板2上
を被つて2次元読取り平面のほぼ全域に均質な膜
厚で形成されている。CdS光導電層の抵抗は帯電
を保持できる程度に高く108Ωcm以上の値を持た
せる。また膜厚は帯電電圧(暗時で500V〜
600V)によつて絶縁破壊が起らない程度の厚さ
(20〜50μ)に設計し、コロナ放電によつて特性
が変化しないように考慮された感光体を用いる。
一般的に複写機等に用いられる感光体に用い得る
光導電層を用いる。上記平面状に形成された光導
電層5に対向させてコロナ放電器6が配置されて
いる。該コロナ放電器6のコロナワイヤ7は高圧
発生回路に接続されて光導電層5表面に電荷を帯
電させるが、上記X電極3が延びているX方向と
直交するY方向に張られ、またコロナワイヤ7を
被つているシールド板8には上記光導電層5の表
面に画像を露光するためのスリツト9が開けられ
ている。
<Embodiment> FIG. 1 is a perspective view showing the structure of a sensor 1 in an image reading device according to an embodiment of the present invention. The sensor 1 has a substrate 2 made of an insulating plate such as glass having an area at least as large as the two-dimensional image plane to be read, and a striped X electrode 3 formed by vapor-depositing Al or the like on one surface of the substrate 2. They are arranged parallel to each other at a constant pitch. The width and pitch of each X electrode 3 affects the resolution of the sensor 1. The above X electrode 3
are connected to the scanning circuit 4, and are sequentially selected and a voltage for reading is applied. A photoconductive layer 5 is formed over the substrate on which the X electrode 3 is formed. The photoconductive layer 5 is made by mixing and dispersing photoconductive powder mainly composed of CdS in a resin, and is formed to cover the substrate 2 and have a uniform thickness over almost the entire two-dimensional reading plane. The resistance of the CdS photoconductive layer is set to a value of 10 8 Ωcm or more, which is high enough to maintain charge. In addition, the film thickness is determined by the charging voltage (500 V ~ in the dark)
The photoreceptor is designed to have a thickness (20 to 50μ) that does not cause dielectric breakdown when exposed to a voltage of 600 V), and is designed so that its characteristics do not change due to corona discharge.
A photoconductive layer that can be used in photoreceptors commonly used in copying machines and the like is used. A corona discharger 6 is placed opposite the photoconductive layer 5 formed into a planar shape. The corona wire 7 of the corona discharger 6 is connected to a high voltage generating circuit to charge the surface of the photoconductive layer 5, and is stretched in the Y direction perpendicular to the X direction in which the X electrode 3 extends, and A shield plate 8 covering the wire 7 has a slit 9 for exposing the surface of the photoconductive layer 5 to an image.

第2図はコロナ放電器6を備えたセンサ1を用
いた読取装置を示す模式図で、上記センサ1に加
えてコロナ放電器6のスリツト9に画像情報を導
くための光学系10が配置されている。該光学系
10はスリツト9に対向するフアイバーオプテイ
ツクレンズ11及び該レンズ11に原稿12の反
射光を入射させるための反射板を備えた光源13
によつて構成されている。静止させて配置される
センサ1及び原稿12に対して上記光学系10及
びコロナ放電器6はX方向に所定の速度で移動し
て原稿12の2次元平面を走査する。
FIG. 2 is a schematic diagram showing a reading device using a sensor 1 equipped with a corona discharger 6. In addition to the sensor 1, an optical system 10 for guiding image information to the slit 9 of the corona discharger 6 is arranged. ing. The optical system 10 includes a fiber optic lens 11 facing the slit 9 and a light source 13 including a reflector for making reflected light from the original 12 incident on the lens 11.
It is composed of. The optical system 10 and the corona discharger 6 move at a predetermined speed in the X direction to scan the two-dimensional plane of the original 12 with respect to the sensor 1 and the original 12 which are stationary.

ここで光学系10及びコロナ放電器6の移動と
上記X電極3の走査とによつて光導電層5の面が
全域にわたつて走査されるが、この走査を可能に
するため回路4によるX電極3の走査速度は光学
系10及びコロナ放電器6の移動速度のM倍
(M:X電極本数)以上に設計される。
Here, the surface of the photoconductive layer 5 is scanned over the entire area by the movement of the optical system 10 and the corona discharger 6 and the scanning of the X electrode 3. To enable this scanning, the X The scanning speed of the electrodes 3 is designed to be at least M times the moving speed of the optical system 10 and the corona discharger 6 (M: X number of electrodes).

上記構造からなる読取装置において、画像読取
り動作は、光学系10を通して原稿12の画像を
コロナ放電器6のスリツト9からセンサ1面に入
射し、画像露光する。この画像露光と同時にコロ
ナワイヤ7に高圧を印加して光導電層5の表面に
電荷を与える。光導電層5にコロナ放電器6で電
荷を与えながら、或いは光導電層5の表面に与え
られた電荷が著しい減衰をみない間に走査回路4
を用いてX電極群を少なくとも一巡するように順
次切換えて電圧を印加する。光導電層5に光が照
射されておれば、光強度に対応した導電性が生じ
て表面に帯電した電荷が光照射点下のX電極3で
検出でき、入射画像の明暗に対応する光導電層の
光出力電流を読出し、スリツト露光された1ライ
ン分の画像信号を形成する。このとき露光と同時
にコロナ放電を行うことにより電流をより大きく
取り出すことができ、出力された信号の明暗比は
大きくなる。また予めコロナ放電により光導電層
表面を帯電させた後、画像露光を行つても上記同
時の場合に比べてS/N比は低下するが、充分明
暗を区別し得ることができる。Y方向1ライン分
の読取り後コロナ放電器6と光学系10をX方向
に移動させ、コロナ放電が与えられた光導電層表
面に次ラインの原稿画像を照射して前述の動作と
同様の動作によつて出力端子に光出力電流を取り
出し、画像の読取り信号とする。
In the reading device having the above structure, the image reading operation is performed by making the image of the original 12 enter the sensor 1 surface through the slit 9 of the corona discharger 6 through the optical system 10 and exposing the image. Simultaneously with this image exposure, a high voltage is applied to the corona wire 7 to apply charges to the surface of the photoconductive layer 5. The scanning circuit 4 is activated while the photoconductive layer 5 is being charged with a corona discharger 6 or while the charge applied to the surface of the photoconductive layer 5 does not significantly attenuate.
A voltage is applied to the X electrode group by sequentially switching the X electrode group so as to make at least one round. If the photoconductive layer 5 is irradiated with light, conductivity corresponding to the light intensity is generated, and the charges charged on the surface can be detected by the X electrode 3 below the light irradiation point, resulting in photoconductivity corresponding to the brightness and darkness of the incident image. The optical output current of the layer is read out to form an image signal for one line exposed to the slit. At this time, by performing corona discharge at the same time as exposure, a larger current can be extracted, and the brightness ratio of the output signal increases. Further, even if the surface of the photoconductive layer is charged in advance by corona discharge and then imagewise exposed, the S/N ratio will be lower than in the case of simultaneous exposure, but brightness and darkness can be sufficiently distinguished. After reading one line in the Y direction, the corona discharger 6 and the optical system 10 are moved in the X direction, and the next line of document image is irradiated onto the surface of the photoconductive layer to which corona discharge has been applied, and the same operation as described above is performed. The optical output current is taken out to the output terminal by the output terminal and used as an image reading signal.

A4サイズの原稿を読取る装置として8本/mm
のX電極を備えた2次元センサ(320mm×230mm、
電極数8本/mm、1840本)を作成した。該2次元
センサを、X電極を4MHzの周波数で走査し、光
学系を300mm/secの速さで移動させ、また60μφ
径のコロナワイヤに−6KVの電圧を印加してコ
ロナ放電させたところ、原稿を約1秒(約
0.5msec/ライン)の時間に十分なS/N比をも
つて読取ることができた。これと同一材料の光導
電層を用いた1次元センサの場合、上記本発明を
適用した読取装置と同程度のS/N比或いは分解
能を得るためには最低10msec/ラインの時間を
要し、A4サイズの原稿を読取るには約30秒の時
間が必要になる。
8 lines/mm as a device for reading A4 size documents
Two-dimensional sensor (320mm x 230mm,
8 electrodes/mm, 1840 electrodes) were created. The two-dimensional sensor was scanned with the X electrode at a frequency of 4MHz, the optical system moved at a speed of 300mm/sec, and
When a voltage of -6KV was applied to a corona wire with a diameter of
It was possible to read with a sufficient S/N ratio in a time of 0.5 msec/line). In the case of a one-dimensional sensor using a photoconductive layer made of the same material, a time of at least 10 msec/line is required to obtain the same S/N ratio or resolution as the reading device to which the present invention is applied. It takes about 30 seconds to scan an A4 size document.

光導電層としては上記実施例の他アモルフアス
Si、有機半導体等の光導電体を用いても実施する
ことができ、またアモルフアスSe光導電層の場
合は、+7KV程度のコロナ印加電圧にて動作させ
ることにより光学系を移動させる代りに原稿及び
センサを連動させてY方向に移動させても全く同
様に実施できる。
In addition to the above examples, amorphous amorphous can be used as the photoconductive layer.
It can also be carried out using a photoconductor such as Si or an organic semiconductor. In addition, in the case of an amorphous Se photoconductive layer, instead of moving the optical system, the original and Even if the sensors are moved in conjunction with each other in the Y direction, it can be carried out in exactly the same way.

〈効果〉 以上のように本発明によれば、2次元の光導電
層に簡単な電極構造を付加したセンサを用いて2
次元画像を読取ることができ、装置の構造が非常
に簡単になり、またオプテイカルフアイバーレン
ズ等を利用した密着型としても構成することがで
き、読取装置の小型化軽量化を図ることができ
る。またセンサ部は2次元に形成され、画像を読
取る光電変換部の位置を順次移動させることで光
応答特性の影響を小さくしているため、光応答性
に拘わらず高速読取り動作にも対応することがで
き各種電子機器の端末として利用することができ
る。
<Effects> As described above, according to the present invention, two-dimensional
It is possible to read dimensional images, the structure of the device is very simple, and it can also be configured as a close-contact type using an optical fiber lens or the like, making it possible to reduce the size and weight of the reading device. In addition, the sensor section is formed two-dimensionally, and the influence of the photoresponse characteristics is reduced by sequentially moving the position of the photoelectric conversion section that reads the image, so it can support high-speed reading operations regardless of the photoresponsiveness. It can be used as a terminal for various electronic devices.

更に光導電層の一方の面にコロナ放電によつて
帯電を与えると共に、同時に露光及び信号読み出
しを行なうようになしているため、光導電層の両
面に電極を形成する必要がなく、また信号を読み
出すための光照射を行う必要もない。
Furthermore, one surface of the photoconductive layer is charged by corona discharge, and exposure and signal reading are performed at the same time, so there is no need to form electrodes on both sides of the photoconductive layer, and it is also possible to read out signals. There is no need to irradiate light for reading.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例のセンサ部を示
す斜視図、第2図は同実施例の全体の概要を示す
側面図である。 1:センサ、3:X電極、4:走査回路、5:
光導電層、6:コロナ放電器、9:スリツト、1
0:光学系、12:原稿。
FIG. 1 is a perspective view showing a sensor section of an embodiment according to the present invention, and FIG. 2 is a side view showing an overview of the entire embodiment. 1: Sensor, 3: X electrode, 4: Scanning circuit, 5:
Photoconductive layer, 6: Corona discharger, 9: Slit, 1
0: optical system, 12: manuscript.

Claims (1)

【特許請求の範囲】 1 絶縁基板と、 該絶縁基板上に複数本の導体が互いに平行に形
成された電極と、 該電極面を被つて一体的に形成された光導電層
と、 該光導電層に電荷を帯電させるためのコロナワ
イヤの方向が上記電極の平行な方向と直交する露
光用スリツトを備えたコロナ放電器と、 上記光導電層に上記露光用スリツトを介して画
像を導く光学系と、 上記電極を順次切換えて走査する回路と、 上記コロナ放電器及び光学系を上記光導電層に
対して上記電極の平行な方向に沿つて相対移動さ
せる機構とを備え、 上記光導電層に施す画像露光と同時にコロナ放
電を行なうと共に、上記走査回路により上記電極
を順次切換えて読み取り信号を導出せしめるよう
に成したことを特徴とする2次元画像読取装置。
[Claims] 1. An insulating substrate, an electrode on which a plurality of conductors are formed in parallel to each other, a photoconductive layer integrally formed to cover the electrode surface, and the photoconductive layer. a corona discharger equipped with an exposure slit in which the direction of a corona wire for charging the layer is perpendicular to the parallel direction of the electrode; and an optical system that guides an image to the photoconductive layer through the exposure slit. and a circuit that sequentially switches and scans the electrodes, and a mechanism that moves the corona discharger and the optical system relative to the photoconductive layer along a direction parallel to the electrodes, A two-dimensional image reading device characterized in that corona discharge is performed at the same time as image exposure is performed, and the scanning circuit sequentially switches the electrodes to derive a read signal.
JP58028072A 1983-02-21 1983-02-21 Two-dimensional image reader Granted JPS59153375A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58028072A JPS59153375A (en) 1983-02-21 1983-02-21 Two-dimensional image reader
US06/581,131 US4559564A (en) 1983-02-21 1984-02-17 Two-dimensional image reader
DE3406268A DE3406268C2 (en) 1983-02-21 1984-02-21 Image reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028072A JPS59153375A (en) 1983-02-21 1983-02-21 Two-dimensional image reader

Publications (2)

Publication Number Publication Date
JPS59153375A JPS59153375A (en) 1984-09-01
JPH027547B2 true JPH027547B2 (en) 1990-02-19

Family

ID=12238563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028072A Granted JPS59153375A (en) 1983-02-21 1983-02-21 Two-dimensional image reader

Country Status (1)

Country Link
JP (1) JPS59153375A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169497B2 (en) * 2003-05-15 2007-01-30 The Gillette Company Electrochemical cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221713A (en) * 1975-08-12 1977-02-18 Nippon Telegr & Teleph Corp <Ntt> Electro-static 2-dimensional photo-electronic conversion
JPS5941346B2 (en) * 1977-03-28 1984-10-06 富士ゼロツクス株式会社 2D photoelectric conversion device

Also Published As

Publication number Publication date
JPS59153375A (en) 1984-09-01

Similar Documents

Publication Publication Date Title
EP0117957A2 (en) Solid-state device having a plurality of optical functions
GB2154368A (en) Image reading unit using two-dimensional sensor array
US4271435A (en) Scanning type readout device
JPH0120592B2 (en)
EP0119742B1 (en) Two-dimensional image readout device
US4559564A (en) Two-dimensional image reader
JPS6313348B2 (en)
US4298669A (en) Electrophotographic process and apparatus
JPH0379910B2 (en)
JPH027547B2 (en)
US4757343A (en) Electrostatic image output apparatus
JPH029499B2 (en)
JPH0380385B2 (en)
Ozawa et al. Amorphous silicon linear image sensor
JPS59218075A (en) Two-dimensional picture reader
US4485410A (en) Graphic reading
EP0585673B1 (en) Image reading device
US3137857A (en) Solid state light to electrostatic charge image transducer
JPS59226557A (en) Two-dimensional picture reading device
JPS63225250A (en) Electrostatic latent image forming device
EP0257747A3 (en) Photoelectric array for scanning large-area non-planar image-bearing surfaces
KR930006963B1 (en) Copying apparatus using photoconductor image sensor
JPS5941346B2 (en) 2D photoelectric conversion device
JPH0728017B2 (en) Image reader
JPS58187974A (en) Method and apparatus for executing exposure of detecting plate