JPH0275151A - Battery separator, its manufacturing method, and lithium battery using the battery separator - Google Patents
Battery separator, its manufacturing method, and lithium battery using the battery separatorInfo
- Publication number
- JPH0275151A JPH0275151A JP63226882A JP22688288A JPH0275151A JP H0275151 A JPH0275151 A JP H0275151A JP 63226882 A JP63226882 A JP 63226882A JP 22688288 A JP22688288 A JP 22688288A JP H0275151 A JPH0275151 A JP H0275151A
- Authority
- JP
- Japan
- Prior art keywords
- stretching
- film
- polypropylene
- battery
- polypropylene film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 14
- -1 polypropylene Polymers 0.000 claims abstract description 102
- 239000004743 Polypropylene Substances 0.000 claims abstract description 101
- 229920001155 polypropylene Polymers 0.000 claims abstract description 101
- 238000000034 method Methods 0.000 claims abstract description 45
- 239000011148 porous material Substances 0.000 claims abstract description 40
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- 238000009835 boiling Methods 0.000 claims description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 4
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 4
- 238000007710 freezing Methods 0.000 claims description 4
- 230000008014 freezing Effects 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 abstract description 10
- 239000003792 electrolyte Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 238000005520 cutting process Methods 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 238000011084 recovery Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 13
- 238000009998 heat setting Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000011244 liquid electrolyte Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011245 gel electrolyte Substances 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical class [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- NYPFJVOIAWPAAV-UHFFFAOYSA-N sulfanylideneniobium Chemical compound [Nb]=S NYPFJVOIAWPAAV-UHFFFAOYSA-N 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Separators (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、改良された多孔質ポリプロピレンフィルムを
用いてなる電池用セパレータとその製造方法及びそれを
用いたリチウム電池に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a battery separator using an improved porous polypropylene film, a method for manufacturing the separator, and a lithium battery using the separator.
[従来の技術]
電池のセパレータとしては、一般に合成樹脂不織布やガ
ラス#i維不織布などが用いられている。[Prior Art] As battery separators, synthetic resin nonwoven fabrics, glass #i fiber nonwoven fabrics, and the like are generally used.
近年、電子機器のポータフル化、小型化、軽量化、薄型
化、カート化などが急速に進展しで、その電源としての
電池においても、高エネルギー密度化、薄型化などが求
められている。そのための方法ノーつトシで、電池要素
の中のセパレータの改良が行なわれている。すなわち、
活物質量の増大や内部抵抗の低減による電池性能の向上
や電池薄型化の要求に答えるため、多孔質フィルムを電
池セパレータに用いる方法か報告されている。例えば、
特開昭62−222562号公報、特開昭63−126
159号公報などでは、セパレータとしで、微孔性ポリ
プロピレンフィルムを用いで、液体電解質や半固体電解
質を含浸させる方法か開示されている。BACKGROUND ART In recent years, electronic devices have rapidly become portable, smaller, lighter, thinner, and cart-like, and the batteries used as their power sources are also required to have higher energy density and be thinner. To this end, improvements have been made to separators in battery elements. That is,
In order to meet the demands for improving battery performance and making batteries thinner by increasing the amount of active material and reducing internal resistance, methods of using porous films as battery separators have been reported. for example,
JP-A-62-222562, JP-A-63-126
No. 159 and the like discloses a method in which a microporous polypropylene film is used as a separator and impregnated with a liquid electrolyte or a semi-solid electrolyte.
[発明か解決しようとする課題]
しかしながら、これらの例て用いられている微孔性ポリ
プロピレンフィルムは、その空隙率が高々45%程度の
ものである。これらの従来からの多孔質ポリプロピレン
フィルムの製造法は、例えば、特公昭46−40119
号公報、特公昭50−2176号公報、特公昭55−3
2531号公報などに開示されている。上記の公報に開
示されている多孔質熱可塑性樹脂フィルムおよびその製
造方法は、そのほとんどか、成形したポリプロピレンフ
ィルムを先ず熱処理した後、室温付近あるいは使用する
熱可塑性樹脂の二次転移温度以−1−の温度て延伸処理
して空孔を発生させて多孔質体とし、更には、より高温
で再度延伸し形成された空孔を次いで再度熱処理を行な
い熱固定する方法なその骨子とするものである。しかし
ながら、上記方法て得られる多孔質ポリプロピレンフィ
ルムは、空隙率か低いため電解質を充分に保持できず、
また、イオン伝導か可能な領域が小さいため、内部抵抗
か高くなり、これをセパレータに用いた電池は、性能が
低いという問題があった。[Problems to be Solved by the Invention] However, the microporous polypropylene films used in these examples have a porosity of about 45% at most. These conventional methods for producing porous polypropylene films are disclosed, for example, in Japanese Patent Publication No. 46-40119.
Publication No. 50-2176, Special Publication No. 55-3
It is disclosed in Publication No. 2531 and the like. In most of the porous thermoplastic resin films and their manufacturing methods disclosed in the above-mentioned publications, a molded polypropylene film is first heat-treated, and then the film is heated at around room temperature or at a temperature higher than the secondary transition temperature of the thermoplastic resin used. The basic method is to stretch at a temperature of - to generate pores to form a porous body, and then to stretch again at a higher temperature and heat-set the formed pores again. be. However, the porous polypropylene film obtained by the above method cannot sufficiently retain electrolyte due to its low porosity.
In addition, since the area where ion conduction is possible is small, the internal resistance is high, and batteries using this as a separator have a problem of low performance.
また、従来の多孔質ポリプロピレンフィルムの製造法で
上記の空隙率を高めようとすると、形成される透孔か不
均一となり、電池セパレータに用いると電極活物質中の
微粉末かセパレータを通過して対極と接触して電池性能
を損なう恐れかあった。In addition, when trying to increase the above-mentioned porosity using the conventional manufacturing method of porous polypropylene film, the pores formed become uneven, and when used for battery separators, fine powder in the electrode active material passes through the separator. There was a risk that it would come into contact with the counter electrode and impair battery performance.
従っで、本発明の目的は、空隙率を高くしても均一な孔
径分布をもつ改良された多孔質ポリプロピレンフィルム
を用いる、優れた特性を示す電池セパレータと、それを
用いたリチウム電池を提供することにある。Therefore, an object of the present invention is to provide a battery separator that exhibits excellent properties using an improved porous polypropylene film that has a uniform pore size distribution even when the porosity is increased, and a lithium battery using the same. There is a particular thing.
[課題を解決するための手段]
即ち、本発明によれば、ポリプロピレンを延伸して得ら
れる多数の微細孔を有する多孔質ポリプロピレンフィル
ムからなる電池用セパレータであって・
該多孔質ポリプロピレンフィルムは、該フィルムの延伸
方向と直角に略所定の間隔て走り且つ該フィルムの延伸
方向と直角な断面に対して略平行に形成される未延伸板
状平面群と、その板状平面間で該フィルムの延伸方向に
略平行且つ略所定間隔に走り且つ板状平面間につながる
延伸配向した比較的細いフィブリル群とによって形成さ
れ、該板状平面間につながる細いフィブリル間の間隙か
略二次元的に広がる略均一な形状を呈する多数の微細孔
を形成してなり、
前記微細孔は大部分が貫通孔を形成するとともに略均一
な孔径な有し、前記フィルムの空隙率が45%以上であ
ることを特徴とする電池用セパレータ、および
この電池用セパレータを用いたリチウム電池、か提供さ
れる。[Means for Solving the Problems] That is, according to the present invention, there is provided a battery separator comprising a porous polypropylene film having a large number of micropores obtained by stretching polypropylene, the porous polypropylene film comprising: A group of unstretched plate-like planes that run at approximately predetermined intervals perpendicular to the stretching direction of the film and are formed approximately parallel to a cross section perpendicular to the stretching direction of the film, and It is formed by a group of relatively thin fibrils that are stretched and oriented to run approximately parallel to the stretching direction and at approximately predetermined intervals and that are connected between the plate-like planes, and the gaps between the thin fibrils that are connected between the plate-like planes expand approximately two-dimensionally. A large number of micropores having a substantially uniform shape are formed, most of the micropores are through holes and have a substantially uniform diameter, and the porosity of the film is 45% or more. A battery separator having the above characteristics and a lithium battery using the battery separator are provided.
また、上記電池用セパレータの製造方法としては、ポリ
プロピレンの延伸工程を、窒素、酸素、アルゴン、一酸
化炭素、メタンおよびエタンからなる群より選ばれた媒
体中で、且つその延伸温度か、−70℃以下の温度であ
っで、該媒体の凝固点から該媒体の情意より50℃高い
温度以下の低温の範囲にて行なう方法(第一の方法)、
あるいは、ポリプロピレンの延伸工程を、予め室温で行
なうことなく110℃乃至155℃の高温の温度範囲で
、延伸歪速度io%/分未満で行なう方法(第二の方法
)、が提供される。The method for manufacturing the battery separator includes stretching polypropylene in a medium selected from the group consisting of nitrogen, oxygen, argon, carbon monoxide, methane, and ethane, and at a stretching temperature of -70°C. ℃ or lower, and a low temperature range from the freezing point of the medium to a temperature 50℃ higher than the temperature of the medium (first method);
Alternatively, there is provided a method (second method) in which the polypropylene stretching step is carried out at a high temperature range of 110° C. to 155° C. at a drawing strain rate of less than io%/min without performing it at room temperature in advance.
なお、本発明のリチウム電池の構成例を示すと以下の通
りである。なお、構成材料の例をあげるかこれらに限定
されるものではない。Note that an example of the structure of the lithium battery of the present invention is as follows. Note that the constituent materials are not limited to these examples.
電解質隔膜としては、前記の多孔質ポリプロピレンフィ
ルムに液体電解質あるいはゲル状電解質を含浸させたも
のを用いる。As the electrolyte diaphragm, the above porous polypropylene film impregnated with a liquid electrolyte or a gel electrolyte is used.
液体電解質は、非水系溶媒にリチウムイオン塩を溶解し
たものを用いる。The liquid electrolyte used is one in which a lithium ion salt is dissolved in a non-aqueous solvent.
非水溶媒の例としては、プロピレンカーボネート、γ−
ブチロラクトン、ジメトキシエタン、ジオキソラン、テ
トラヒドロフラン、ジメチルスルホキシド、エチレンカ
ーボネート、アセトニトリル、スルホラン、低分子量液
状ポリエチレンオキシドやその末端アルキルエーテル化
体、などが挙げられる。これらは混合して用いてもよい
。Examples of non-aqueous solvents include propylene carbonate, γ-
Examples include butyrolactone, dimethoxyethane, dioxolane, tetrahydrofuran, dimethyl sulfoxide, ethylene carbonate, acetonitrile, sulfolane, low molecular weight liquid polyethylene oxide, and terminal alkyl etherified products thereof. These may be used in combination.
本発明においで、リチウムイオン塩の例としては、L
iC104、LiB(C,H5)4.1言CF35O:
l、1.1PF6などかある。これらは、混合して用い
てもよい。In the present invention, examples of lithium ion salts include L
iC104, LiB (C, H5) 4.1 words CF35O:
There are l, 1.1PF6, etc. These may be used in combination.
ゲル状電解質は、上記の液体電解質に高分子材料を混合
してゲル化したものである。高分子材料の例としては、
ポリエチレンオキシド、ポリメタアクリレート、アクリ
ロイル変性ポリエチレンオキシドの重合物、ポリビニリ
デンフルオライド、ポリビニルメチルエーテル、ポリア
クリロニトリル、あるいはこれらの共重合体などがあげ
られる。The gel electrolyte is obtained by mixing the above-mentioned liquid electrolyte with a polymer material and forming a gel. Examples of polymeric materials include:
Examples include polyethylene oxide, polymethacrylate, polymers of acryloyl-modified polyethylene oxide, polyvinylidene fluoride, polyvinyl methyl ether, polyacrylonitrile, and copolymers thereof.
本発明における負極活物質としては、リチウムや、リチ
ウム合金、例えばリチウムとアルミニウム、水銀、亜鉛
などとの合金かあげられる。Examples of the negative electrode active material in the present invention include lithium and lithium alloys, such as alloys of lithium and aluminum, mercury, zinc, and the like.
また、正極活物質としては、例えば、二酸化マンガン、
三酸化モリブデン、五酸化バナジウム、チタン、あるい
はニオブの硫化物、クロム酸化物、酸化銅かあげられ、
これらの活物質にさらに導電剤として黒鉛、さらに必要
ならばバインダー、例えばポリテトラフルオロエチレン
を混合して加圧成形して正極板として用いられる。In addition, as the positive electrode active material, for example, manganese dioxide,
Examples include molybdenum trioxide, vanadium pentoxide, titanium, or niobium sulfide, chromium oxide, copper oxide,
These active materials are further mixed with graphite as a conductive agent and, if necessary, a binder such as polytetrafluoroethylene, and then press-molded and used as a positive electrode plate.
本発明のセパレータは、ポリプロピレンフィルムより作
製されおり、耐薬品性に優れているため、例えばアルカ
リ乾電池、リチウム電池など巾広く適用てきる。また、
用いられる電池の形状にあわせで、種々の形状に裁断さ
れる。電池の正極と負極の間に、電解液、ゲル状電解質
、固体高分子電解質などを含浸あるいは複合化された状
態で挟み、両極間の短絡防止と、イオン伝導の機能を実
現する。The separator of the present invention is made of polypropylene film and has excellent chemical resistance, so it can be widely applied to, for example, alkaline dry batteries and lithium batteries. Also,
It is cut into various shapes depending on the shape of the battery used. An electrolytic solution, gel electrolyte, solid polymer electrolyte, etc. is impregnated or combined and sandwiched between the positive and negative electrodes of a battery to prevent short circuits between the two electrodes and to provide ionic conduction functions.
本発明における多孔質ポリプロピレンフィルムは、従来
のものに比べ、高い空隙率と均一な形状および孔径な有
し、しかも貫通孔か多いため、セパレータとしての」二
記の機能か優れている。The porous polypropylene film of the present invention has a higher porosity, more uniform shape and pore diameter, and has more through holes than conventional films, so it has excellent functions as a separator.
フィルムの空隙率が45%未満の場合、イオン透過性か
低下して内部抵抗が増大する。また、空隙率が高くしよ
うとすると、従来の製造方法では、孔径が不均一となる
か、本発明の多孔質ポリプロピレンフィルムにおいては
孔径の均一性が保持されており、優れたセパレータとし
ての機能を示す。When the porosity of the film is less than 45%, ion permeability decreases and internal resistance increases. In addition, when attempting to increase the porosity, conventional manufacturing methods result in nonuniform pore diameters, whereas the porous polypropylene film of the present invention maintains uniformity in pore diameters and functions as an excellent separator. show.
以下に、本発明における多孔質ポリプロピレンフィルム
の製造方法を説明する。The method for producing a porous polypropylene film in the present invention will be explained below.
本発明の製造方法ては、その多孔質化の条件か従来法と
は全く異なるため、使用するポリプロピレンには特に制
限はなく、プロピレンの単独重合体およびポリプロピレ
ンと他の千ツマ−あるいはオリゴマーとのブロック共重
合体、プロピレンと他のモノマーあるいはオリゴマーと
のランダム共重合体(本発明においで、特に限定を加え
ることなくポリプロピレンと記載した場合には、そのポ
リプロピレンとの表現はこれらのものを総称する意味で
ある)などを使用することがてきる。」−配信のモノマ
ーあるいはオリゴマーとして使用てきるものは、共重合
化か可能てあれば制限はないか、たとえばエチレンある
いはエチレンから誘導されるオリゴマーなどを挙げるこ
とができる。Since the production method of the present invention is completely different from the conventional method in terms of the conditions for making it porous, there are no particular restrictions on the polypropylene used, and propylene homopolymers and polypropylene with other polymers or oligomers are used. Block copolymers, random copolymers of propylene and other monomers or oligomers (in the present invention, when described as polypropylene without any particular limitation, the expression polypropylene is a general term for these copolymers) ) can be used. What can be used as monomers or oligomers for delivery is not limited as long as copolymerization is possible, and examples include ethylene or oligomers derived from ethylene.
その他、可塑剤、着色剤、難燃化剤、充填材などの添加
剤(材)を含むポリプロピレンも使用することかできる
。In addition, polypropylene containing additives (materials) such as plasticizers, colorants, flame retardants, and fillers can also be used.
まず前記のようなポリプロピレン樹脂を公知のフィルム
製造法に従って成形し、未延伸ポリプロピレンフィルム
とする。利用することができるフィルム製造法の例とし
ては、インフレーションフィルム成形法、Tダイフィル
ム成形法などを挙げることがてきる。このような成形法
における成形条件は公知技術より適宜選択することがて
きる。First, the polypropylene resin as described above is molded according to a known film manufacturing method to obtain an unstretched polypropylene film. Examples of film manufacturing methods that can be used include a blown film molding method, a T-die film molding method, and the like. Molding conditions in such a molding method can be appropriately selected from known techniques.
たとえば、フィルム成形温度は、使用するポリプロピレ
ンを吐出することができる温度以上であっで、ポリプロ
ピレンの熱分解温度以下の範囲内の温度て行なうことが
できる。通常では170〜300℃1好ましくは190
〜270℃である。For example, the film forming temperature can be within a range above the temperature at which the polypropylene used can be discharged and below the thermal decomposition temperature of the polypropylene. Normally 170-300℃1 Preferably 190℃
~270°C.
また、成形して得られる未延伸ポリプロピレンフィルム
の弾性回復率(あるいはドラフト比)についても特に限
定はない。しかしながら、弾性回復率(あるいはドラフ
ト比)がゼロ(%)乃至極端に低い未延伸ポリプロピレ
ンフィルム、すなわち結晶配向性か極度に低い未延伸ポ
リプロピレンフィルムを用いた場合には、本発明の延伸
工程に付しても、得られる多孔性フィルムに満足てきる
特性を与えにくい場合もある。従っで、得られる多孔質
ポリプロピレンフィルムの空隙率および微細透孔の平均
透孔径等の特性を考慮して未延伸フィルムの成形条件を
設定することか好ましい。Moreover, there is no particular limitation on the elastic recovery rate (or draft ratio) of the unstretched polypropylene film obtained by molding. However, when using an unstretched polypropylene film with an elastic recovery rate (or draft ratio) of zero (%) or extremely low, that is, an unstretched polypropylene film with extremely low crystal orientation, the stretching process of the present invention cannot be applied. However, it may be difficult to provide the resulting porous film with satisfactory properties. Therefore, it is preferable to set the forming conditions for the unstretched film in consideration of the characteristics such as the porosity and the average diameter of the fine pores of the porous polypropylene film to be obtained.
上述したように未延伸ポリプロピレンフィルムの弾性回
復率に特に制限はないが、」二記理由により次式で表さ
れる未延伸ポリプロピレンフィルムの25℃1相対湿度
65%における50%伸長の際の弾性回復率は、20%
以上であることが好ましく、また、通常の成形装置を使
用した場合の生産性なども併せて考慮すると30〜95
%の範囲であることが特に好ましい。As mentioned above, there is no particular limit to the elastic recovery rate of an unstretched polypropylene film, but for the reasons stated in section 2, the elasticity of an unstretched polypropylene film at 50% elongation at 25° C. and 65% relative humidity is expressed by the following formula. Recovery rate is 20%
It is preferably 30 to 95, and considering the productivity when using normal molding equipment.
Particularly preferred is a range of %.
弾性回復率(%)=[伸長時の長さ一伸長後の長さ]÷
[伸長時の長さ一原
フィルムの長さ]xloo
また、上記の要件および生産性等の要因を考慮するとし
で、本発明において使用する未延伸ポリプロピレンフィ
ルムのドラフト比(未延伸熱可塑性樹脂フィルムの引取
り速度とダイスからの吐出速度との比:引取り速度/吐
出速度)は、lO〜6000の範囲にあることか望まし
い。Elastic recovery rate (%) = [length at elongation - length after elongation] ÷
[Length when stretched - Length of original film] It is desirable that the ratio between the take-up speed and the discharge speed from the die (take-up speed/discharge speed) is in the range of lO to 6000.
未延伸ポリプロピレンフィルムは、延伸工程に付する前
に熱処理してもよい。この延伸前の熱処理を行なうこと
により、未延伸ポリプロピレンフィルムの結晶性を高め
ることがてきるため、延伸により得られる多孔質ポリプ
ロピレンフィルムの特性はさらに向上する。The unstretched polypropylene film may be heat treated before being subjected to the stretching process. By performing this heat treatment before stretching, the crystallinity of the unstretched polypropylene film can be improved, so that the properties of the porous polypropylene film obtained by stretching are further improved.
上記の熱処理は、未延伸ポリプロピレンフィルムを、た
とえば100〜155℃に加熱した空気中で3秒以上加
熱する方法により実施される。The above heat treatment is carried out by heating the unstretched polypropylene film in air heated to, for example, 100 to 155°C for 3 seconds or more.
本発明の延伸工程は、次のいずれかの方法で行なわれる
。The stretching step of the present invention is carried out by one of the following methods.
■延伸工程を、窒素、酸素、アルゴン、一酸化炭素、メ
タンおよびエタンからなる群より選ばれた媒体中で、か
つその延伸温度か、−70℃以下の温度てあっで、該媒
体の凝固点から該媒体の沸点より50℃高い温度以下の
低温の範囲にて行なうか、
あるいは、
■延伸工程を、あらかじめ室温て行なうことなく110
℃乃至155℃の高温の範囲で、延伸歪速度10%/分
未満て行なう。(2) The stretching process is carried out in a medium selected from the group consisting of nitrogen, oxygen, argon, carbon monoxide, methane and ethane, and at a temperature below -70°C, from the freezing point of the medium. The stretching process is carried out at a low temperature of 50°C higher than the boiling point of the medium, or
The stretching is carried out at a high temperature range of 155°C to 155°C and at a stretching strain rate of less than 10%/min.
まず■の方法について説明する。First, method (■) will be explained.
この■の極低温延伸工程は、上述した媒体を単独で、あ
るいは混合して使用することかできる。In this cryogenic stretching step (2), the above-mentioned media can be used alone or in combination.
上記媒体を使用する場合の好ましい延伸温度の例を示す
と、窒素を用いた場合には、−209℃〜−146℃の
範囲、酸素を用いた場合には、−218℃〜−132℃
の範囲、アルゴンを用いた場合には、−1899C〜−
140℃の範囲、一酸化炭素を用いた場合には、−20
5℃〜−141℃の範囲、メタンを用いた場合には、−
182℃〜−111℃の範囲、エタンを用いた場合には
一183℃〜−70℃の範囲である。延伸温度か一70
℃より高いと、たとえば、弾性回復率の低い未延伸フィ
ルムを使用した場合に、延伸により有効な透孔の形成率
が低くなる。Examples of preferable stretching temperatures when using the above medium are -209°C to -146°C when nitrogen is used, and -218°C to -132°C when oxygen is used.
range, -1899C to - when using argon
In the range of 140℃, -20 when using carbon monoxide
In the range of 5℃ to -141℃, when using methane, -
The range is from 182°C to -111°C, and when ethane is used, it is from -183°C to -70°C. Stretching temperature: -70
When the temperature is higher than 0.degree. C., for example, when an unstretched film with a low elastic recovery rate is used, the effective rate of formation of pores by stretching becomes low.
なお、■の方法において沸点より50℃高い温度以下と
は、沸点よりも正確に50℃高い温度より低い温度範囲
を意味するものてはなく、沸点よりほぼ50℃高い温度
以下との意味である。In addition, in the method (2), the term 50°C higher than the boiling point or less does not mean a temperature range that is exactly 50°C higher than the boiling point or lower, but a temperature that is approximately 50°C higher than the boiling point or lower. .
このような極低温下では前記媒体は、液状、液・ガス状
またはガス状を呈しており、この延伸工程は、媒体か上
記のいずれの状態であっても実施することができる。Under such extremely low temperatures, the medium is in a liquid, liquid/gas, or gaseous state, and this stretching step can be carried out regardless of whether the medium is in any of the above states.
上記の延伸は、前記媒体を用いて極低温下で延伸すると
クレージング作用が現われる為に生ずるものと推定され
る。前記以外の通常の媒体中ては、ポリプロピレンフィ
ルムは極低温下てガラス状態となり、伸びか現われるこ
となく切断されてクレージング作用は生じない。It is presumed that the above-mentioned stretching occurs because a crazing effect appears when the medium is stretched at extremely low temperatures. In ordinary media other than those mentioned above, polypropylene films become glassy at extremely low temperatures and are cut without elongation and no crazing action occurs.
極低温延伸温度は、−706C以下の温度であっで、使
用する媒体の凝固点から、沸点より50℃高い温度以下
の範囲て実施することができるが、一般に、延伸はその
低温液体の沸点付近の温度にて行なうことことが、製造
管理上、および得られる多孔質ポリプロピレンフィルム
の特性を一定にする上でも有利である。The cryogenic stretching temperature is -706C or lower, and can be carried out in the range from the freezing point of the medium used to 50℃ higher than the boiling point, but in general, stretching is carried out at a temperature near the boiling point of the low-temperature liquid. It is advantageous to carry out the process at a certain temperature in terms of manufacturing control and making the properties of the resulting porous polypropylene film constant.
上記の極低温延伸工程における延伸倍率は、−般に未延
伸ポリプロピレンフィルムに対して1〜200%の範囲
の値である。ただし好ましい延伸倍率は10〜150%
の範囲の値である。これらの範囲内の延伸倍率では、延
伸倍率か増加すると透孔数が増加する傾向かあり、この
傾向を利用しで、得られる多孔質ポリプロピレンフィル
ムの平均透孔径や空隙率を目的に合わせて調整すること
も可能である。The stretching ratio in the above-mentioned cryogenic stretching step is generally a value in the range of 1 to 200% relative to the unstretched polypropylene film. However, the preferred stretching ratio is 10 to 150%.
is a value in the range of . At stretching ratios within these ranges, the number of pores tends to increase as the stretching ratio increases, and by taking advantage of this tendency, the average pore diameter and porosity of the resulting porous polypropylene film can be adjusted to suit the purpose. It is also possible to do so.
上述した極低温延伸工程は、所望の平均透孔径および空
隙率が得られるまで二回以上繰返し実施することができ
る。The cryogenic stretching process described above can be repeated two or more times until the desired average pore diameter and porosity are obtained.
上記の特定媒体中、極低温における冷却下での延伸工程
を利用したポリプロピレンフィルムの多孔質化は、従来
の室温付近での延伸工程による場合とは異なり、たとえ
ば、25℃における50%の歪からの弾性回復率が40
%に満たないポリプロピレンフィルムにも有効に作用し
、透孔か均一であり、かつ空隙率の高い優れた多孔質ポ
リプロピレンフィルムとすることかできる。Unlike the conventional stretching process near room temperature, making polypropylene film porous by using the stretching process under cooling at extremely low temperatures in the specific medium mentioned above is different from the conventional stretching process at around room temperature. The elastic recovery rate of
It works effectively even on polypropylene films of less than 30%, and can produce excellent porous polypropylene films with uniform pores and high porosity.
」二記特定媒体中、極低温での延伸工程を経て多孔質化
されたポリプロピレンフィルムは、次いで、熱固定処理
にかけられることが好ましい。この熱固定処理は、形成
された微細透孔な保持するための熱固定を主なる目的と
するものである。この熱固定処理は、極低温ての延伸状
態を保持したまま多孔質化したポリプロピレンフィルム
を、通常は110〜165℃1好ましくは130〜15
5℃に加熱した空気中て3秒以上加熱する方法などによ
り実施される。It is preferable that the polypropylene film made porous through the stretching process at an extremely low temperature in the specified medium described in 2 above is then subjected to a heat setting treatment. The main purpose of this heat setting treatment is to heat set the fine pores that have been formed. This heat setting treatment is performed to make the polypropylene film porous while maintaining its stretched state at extremely low temperatures, usually at 110 to 165 degrees Celsius, preferably at 130 to 15 degrees Celsius.
This is carried out by heating for 3 seconds or more in air heated to 5°C.
なお、加熱温度か、記載した温度の上限より著しく高い
と、形成された微細空孔が閉鎖することもあり、また、
温度が下限より著しく低いか、あるいは加熱時間が3秒
より短いと熱固定が不充分となりやすく、後に、形成さ
れた透孔が閉鎖することがあり、また使用に際しての温
度変化により熱収縮を起し易くなる。上述した極低温延
伸と熱固定処理は、所望の平均透孔径および空隙率が得
られるまで繰返し実施することがてきる。すなわち、フ
ィルムの温度を室温までもどし、繰返し極低温延伸(お
よび熱固定処理)を含む工程に付すことができる。極低
温延伸を繰返して行なうことにより形成される透孔の数
を多くすることがてき、また平均透孔径を大きくするこ
とができる。In addition, if the heating temperature is significantly higher than the upper limit of the listed temperature, the formed micropores may close, and
If the temperature is significantly lower than the lower limit or the heating time is shorter than 3 seconds, heat fixation tends to be insufficient, the formed through holes may close later, and heat shrinkage may occur due to temperature changes during use. It becomes easier to do. The cryogenic stretching and heat setting treatments described above can be repeated until a desired average pore diameter and porosity are obtained. That is, the temperature of the film can be returned to room temperature and subjected to a process including repeated cryogenic stretching (and heat setting treatment). By repeating cryogenic stretching, the number of through holes formed can be increased, and the average through hole diameter can be increased.
上記のようにして調製された多孔質ポリプロピレンフィ
ルムは形成された平均透孔径が大きく、また空隙率も高
く良好な特性を示すが、さらに上記の多孔質熱可塑性樹
脂フィルムを熱延伸工程にかけることにより、さらにそ
の特性は向上する。The porous polypropylene film prepared as described above has a large average pore diameter and a high porosity and exhibits good properties. This further improves its characteristics.
上記極低温での延伸工程を少なくとも一回経て多孔質化
されたポリプロピレンフィルムの熱延伸工程は次のよう
にして実施される。この熱延伸工程は、主として極低温
で形成された微細透孔を透孔径を拡張することを目的と
して行なわれるものである。この熱延伸工程は、多孔質
化したポリプロピレンフィルムを、80〜160℃5好
ましくは110〜155℃に加熱した空気中なとて延伸
することにより実施される。なお加熱温度が上記の温度
の上限より高い場合には、形成された微細空孔か閉鎖す
ることもあり、また、温度が下限より低い場合には延伸
による透孔径の拡張か不充分となることかある。The hot stretching process of the polypropylene film, which has been rendered porous through at least one stretching process at a cryogenic temperature, is carried out as follows. This hot stretching process is carried out mainly for the purpose of expanding the diameter of the fine holes formed at extremely low temperatures. This hot stretching step is carried out by stretching the porous polypropylene film in air heated to 80 to 160°C, preferably 110 to 155°C. If the heating temperature is higher than the upper limit of the above temperature, the formed micropores may close, and if the temperature is lower than the lower limit, the pore diameter may not be expanded sufficiently by stretching. There is.
この熱延伸工程における延伸倍率は、極低温延伸工程に
伺される以前のフィルム長さ(初期長さ)に対して通常
は10〜700%、好ましくは50〜550%である。The stretching ratio in this hot stretching step is usually 10 to 700%, preferably 50 to 550% of the film length (initial length) before the cryogenic stretching step.
延伸倍率か10%より低いと透孔の拡張が不充分となる
ことかあり、また700%より高いとフィルムか切断さ
れることかある。If the stretching ratio is lower than 10%, the expansion of the pores may be insufficient, and if it is higher than 700%, the film may be cut.
なお、この熱延伸工程は、上述した極低温延伸工程と交
互に実施するか、または少なくとも一回の極低温延伸工
程を終了した後に実施する。Note that this hot stretching step is performed alternately with the above-mentioned cryogenic stretching step, or after completing at least one cryogenic stretching step.
次に本発明における■の延伸方法を説明する。Next, the stretching method (2) in the present invention will be explained.
この場合の延伸工程は、110乃至155℃の温度範囲
、好ましくは110〜145℃の温度範囲において延伸
歪速度10%/分未満で行なう。The stretching step in this case is carried out at a temperature range of 110 to 155°C, preferably 110 to 145°C, at a stretching strain rate of less than 10%/min.
110℃未満の温度て延伸を行なうと、透孔径が小さい
ものしか得られなかったり、延伸倍率が小さいところで
フィルムか切断し、空隙率の小さいものしか得られない
ことか起こる。If stretching is carried out at a temperature below 110°C, only a film with a small pore diameter can be obtained, or the film may be cut at a small stretching ratio, resulting in a film with a small porosity.
また155℃を超えた温度で延伸を行なうと、フィルム
の厚み、又は幅が細くなったり、ポリプロピレンが融解
又は部分融解し、透孔ができなかったり、透孔が小さい
ものしか得られないことが起こる。Furthermore, if stretching is carried out at a temperature exceeding 155°C, the thickness or width of the film may become thinner, the polypropylene may melt or partially melt, and pores may not be formed or only small pores may be obtained. happen.
一方、延伸歪速度が10%/分以上であると、透孔か小
さいものしか得られない場合や、透孔か全く生じないこ
とが起こる。On the other hand, if the stretching strain rate is 10%/min or more, only small pores or no pores may be obtained.
延伸歪速度か10%/分未満であると、透孔の平均孔径
、空隙率は、延伸倍率に順して大きくなる。When the stretching strain rate is less than 10%/min, the average pore diameter and porosity of the through holes increase in accordance with the stretching ratio.
延伸倍率は、目的とする多孔質ポリプロピレンフィルム
の使用目的に応じた透孔の平均孔径に体応して変えるこ
とができる。延伸倍率は未延伸ポリプロピレンフィルム
の初期長さに対して100〜700%、好ましくは15
0〜600%である。延伸倍率か700%より高いと、
フィルムが切断することがある。The stretching ratio can be changed depending on the average pore diameter of the pores depending on the intended use of the porous polypropylene film. The stretching ratio is 100 to 700%, preferably 15% to the initial length of the unstretched polypropylene film.
It is 0-600%. If the stretching ratio is higher than 700%,
The film may be cut.
」−記の延伸工程を経て多孔質化されたポリプロピレン
フィルムは、次いて熱処理にかけられることが好ましい
。この熱処理は、形成された微細透孔を保持するための
熱固定を主なる目的とするものである。この熱処理は、
延伸状態を保持したまま多孔質化したポリプロピレンフ
ィルムを、110〜155℃1好ましくは130〜15
5℃に加熱した空気中で3秒置−L加熱する方法などに
より実施される。なお加熱温度が、155℃より高いと
、形成された微細空孔か閉鎖することもあり、また、温
度が110℃より低いか、あるいは加熱時間が3秒より
短いと熱固定が不充分となりやすく、後に透孔が閉鎖し
、また使用に際しての温度変化により熱収縮を起し易く
なる。It is preferable that the polypropylene film made porous through the stretching process described above is then subjected to heat treatment. The main purpose of this heat treatment is heat fixation to maintain the formed fine pores. This heat treatment
The polypropylene film made porous while maintaining the stretched state is heated to 110 to 155°C, preferably 130 to 15°C.
This is carried out by heating in air heated to 5° C. for 3 seconds. If the heating temperature is higher than 155°C, the formed micropores may close, and if the temperature is lower than 110°C or the heating time is shorter than 3 seconds, heat fixation tends to be insufficient. The through holes close later, and thermal shrinkage is more likely to occur due to temperature changes during use.
上記■および■の方法て形成される多孔質ポリプロピレ
ンフィルムは、走査電子顕微鏡にて観察すると、フィル
ムの延伸方向と直角に略所定の間隔で走り且つ該フィル
ムの延伸方向と直角な断面に対して略平行に形成される
未延伸板状平面群と、その板状平面間で該フィルムの延
伸方向に略平行且つ略所定間隔に走り且つ板状平面間に
つながる延伸配向した比較的細いフィブリル間とによっ
て形成され、該板状平面間につながる細いフィブリル間
の間隙か略二次元的に広がる略均一な形状を呈する多数
の微細孔を形成しており、しかも微細孔は大部分か貫通
孔を形成するとともに略均一な孔径な有しているもので
、このような特性を有するフィルムを電池用セパレータ
として用いることは、電池性能上極めて好ましいもので
ある。When observed with a scanning electron microscope, the porous polypropylene film formed by methods (1) and (2) above shows that the porous polypropylene film runs at approximately predetermined intervals perpendicular to the stretching direction of the film, and that A group of unstretched plate-like planes formed substantially parallel to each other, and a stretch-oriented relatively thin fibril space that runs approximately parallel to the stretching direction of the film and at approximately predetermined intervals between the plate-like planes, and is connected between the plate-like planes. The gaps between the thin fibrils connected between the plate-like planes form a large number of micropores with a substantially uniform shape that spread out almost two-dimensionally, and most of the micropores form through holes. In addition, it has a substantially uniform pore diameter, and it is extremely preferable to use a film having such characteristics as a battery separator in terms of battery performance.
[実施例1
次に、本発明の実施例および比較例を示して説明するが
、本発明はこれらの実施例に限られるものではない。[Example 1] Next, an example of the present invention and a comparative example will be shown and explained, but the present invention is not limited to these examples.
なお、以下の実施例および比較例て示した透水率は、A
STM−F317に規定された方法に準じで、得られた
多孔質フィルムをアルコールと界面活性剤に浸漬するこ
とにより親木化処理し、この親水化処理された多孔質フ
ィルムを所定のホルダーに装着し、このフィルムの一方
の側にフィルムの厚さ方向に対して圧力を付与しで、フ
ィルムの加圧側から他の側に透過した単位時間当りの水
量を測定して求めた。In addition, the water permeability shown in the following examples and comparative examples is A
According to the method specified in STM-F317, the obtained porous film is treated to make it hydrophilic by immersing it in alcohol and a surfactant, and this hydrophilized porous film is attached to a specified holder. Then, pressure was applied to one side of the film in the thickness direction of the film, and the amount of water that permeated from the pressurized side of the film to the other side per unit time was measured.
(実施例1)
直径50 m m、スリットギャップ0.7mmのイン
フレーション成形ダイを備えたインフレーション成形機
にかけ、未延伸ポリプロピレンフィルムを成形した。成
形操作は、ポリプロピレンを樹脂吐出温度210℃で、
ブロー比か0.7になるようにバルブ内に空気を吹き込
みながら吐出させ、タイス−1−5c mの位置で吐出
されたフィルムの外壁面に室温の空気を吹き付は冷却し
、そしてダイス七1.8mの位置でニップロールにより
引取り速度36m/分で引取る方法により行ない、目的
の未延伸ポリプロピレンフィルムを得た。(Example 1) An unstretched polypropylene film was molded using an inflation molding machine equipped with an inflation molding die having a diameter of 50 mm and a slit gap of 0.7 mm. In the molding operation, polypropylene was heated at a resin discharge temperature of 210°C.
The film was discharged while blowing air into the valve so that the blow ratio was 0.7, and room temperature air was blown onto the outer wall surface of the discharged film at a position of 1-5 cm from the die to cool it. The desired unstretched polypropylene film was obtained by taking off at a take-off speed of 36 m/min using nip rolls at a position of 1.8 m.
尚、使用したポリプロピレンおよび成形条件は下記の通
っである。The polypropylene used and molding conditions are as follows.
ポリプロピレンUBE−PP−YIOIJ (宇部興産
■製)MFI=1g/10分
樹脂吐出温度 210℃
引取り速度 36m/分
ブロー比 0.70
得られた未延伸フィルムの厚さは10 #Lmてあった
。また、このフィルムの50%伸長からの弾性回復率は
80%であった。Polypropylene UBE-PP-YIOIJ (manufactured by Ube Industries) MFI = 1 g/10 min Resin discharge temperature 210°C Take-up speed 36 m/min Blow ratio 0.70 The thickness of the obtained unstretched film was 10 #Lm . Moreover, the elastic recovery rate of this film from 50% elongation was 80%.
得られたフィルムを無張力下に145℃で10分間熱処
理を行なった。得られたフィルムの弾性回復率は87%
に向上した。The obtained film was heat-treated at 145° C. for 10 minutes without tension. The elastic recovery rate of the obtained film was 87%.
improved.
この未延伸フィルムを液体窒素(−196℃)中で初期
長さに対して10%の延伸を行ない、この延伸状態を保
ったまま145℃の加熱空気槽中て10分間熱固定を行
なった。熱固定終了後、液体窒素中で延伸された長さに
対して180%の延伸を行ない、この延伸状態を保った
まま145℃の加熱空気槽中で10分間熱固定を行ない
、多孔質ポリプロピレンフィルムを製造した。This unstretched film was stretched by 10% of its initial length in liquid nitrogen (-196°C), and while maintaining this stretched state, it was heat-set in a heated air tank at 145°C for 10 minutes. After heat setting, the stretched length is stretched to 180% in liquid nitrogen, and while maintaining this stretched state, heat set is performed for 10 minutes in a heated air tank at 145°C to form a porous polypropylene film. was manufactured.
得られた多孔質ポリプロピレンフィルムなASTM
F316−80に規定された方法に準じで、エタノール
を用いてハーフドライ法(以下、同様)で測定した平均
透孔径は0.13pmであった。また、水銀圧入法〔測
定は、カルロエーバ(CARI、0ERBA)社(イタ
リア)製のポロシメトロシリーズ(PORO3IMET
RO5ERIES)1500を使用して行なった。)て
測定した空隙率は54.60%であった。また、透水率
は23.18見/m2・分・気圧てあった。The resulting porous polypropylene film was tested using ASTM
The average pore diameter measured by a half-dry method (hereinafter the same) using ethanol in accordance with the method specified in F316-80 was 0.13 pm. In addition, mercury intrusion method [measurement was performed using PORO3IMET series manufactured by CARI, 0ERBA (Italy)]
The test was carried out using RO5ERIES) 1500. ) The porosity measured was 54.60%. In addition, the water permeability was 23.18 m2·min·atmospheric pressure.
この多孔質ポリプロピレンフィルムの表面および断面を
走査電子顕微鏡により観察したところ、フィルムの延伸
方向と略直角に略所定の間隔で走り且つ該フィルムの延
伸方向と直角な断面に対して略平行に形成される未延伸
板状平面群と、その板状平面間で該フィルムの延伸方向
に略平行且っ略所定間隔に走り且つ板状平面間につなが
る延伸配向した比較的細いフィブリル群とによって形成
され、該板状平面間につながる細いフィブリル間の間隙
が略二次元的に広がる略均一な形状を呈する多数の微細
孔を形成しており、孔径も全体にわたってほぼ均一であ
った。また、このフィルム断面を観察したところ、形成
された孔の大部分が一方の表面から他の表面まで貫通し
た透孔であることか確認された。When the surface and cross-section of this porous polypropylene film were observed using a scanning electron microscope, it was found that the polypropylene film ran approximately perpendicularly to the stretching direction of the film at approximately predetermined intervals and was formed approximately parallel to the cross-section perpendicular to the stretching direction of the film. formed by a group of unstretched plate-like planes, and a group of relatively thin fibrils stretched and oriented, running substantially parallel to the stretching direction of the film and at approximately predetermined intervals between the plate-like planes, and connected between the plate-like planes, The gaps between the thin fibrils connected between the plate-like planes formed a large number of micropores exhibiting a substantially uniform shape that expanded substantially two-dimensionally, and the pore diameters were also substantially uniform throughout. Furthermore, when the cross section of this film was observed, it was confirmed that most of the holes formed were through holes that penetrated from one surface to the other surface.
このフィルムを用いで、導電率を測定した結果を表1に
示す。Table 1 shows the results of measuring electrical conductivity using this film.
(比較例1)
実施例1と同様の装置を使用して未延伸ポリプロピレン
フィルムを成形した。尚、使用したポリプロピレンおよ
び成形条件は下記の通りである。(Comparative Example 1) An unstretched polypropylene film was molded using the same apparatus as in Example 1. The polypropylene used and the molding conditions are as follows.
ポリプロピレンUBE−PP−YIOIJ (宇部興産
鱈製)MFI=1g/10分
樹脂吐出温度 210℃
引取り速度 36m/分
ブロー比 0.70
得られた未延伸フィルムの厚さは10 JLmであった
。また、このフィルムの50%伸長からの弾性回復率は
80%であった。Polypropylene UBE-PP-YIOIJ (manufactured by Ube Industries Co., Ltd.) MFI = 1 g/10 min Resin discharge temperature 210°C Take-up speed 36 m/min Blow ratio 0.70 The thickness of the obtained unstretched film was 10 JLm. Moreover, the elastic recovery rate of this film from 50% elongation was 80%.
得られたフィルムを無張力下に145℃で10分間熱処
理を行なった。得られたフィルムの弾性回復率は87%
に向上した。The obtained film was heat-treated at 145° C. for 10 minutes without tension. The elastic recovery rate of the obtained film was 87%.
improved.
このフィルムに、液体窒素中ての延伸を空気中(25℃
)ての延伸に代えた以外は実施例1と同様に延伸および
熱固定を行ない、多孔質ポリプロピレンフィルムを製造
した。This film was stretched in liquid nitrogen (at 25°C).
) A porous polypropylene film was produced by carrying out the stretching and heat setting in the same manner as in Example 1, except that the stretching was replaced by stretching.
得られた多孔質ポリプロピレンフィルムをハーフトライ
法て測定した平均透孔径は0.077zm、水銀圧入法
で測定した空隙率は41.50%てあった。また、透水
率は6.66文/m2・分・気圧であった。The average pore diameter of the resulting porous polypropylene film measured by the half-try method was 0.077 zm, and the porosity measured by the mercury intrusion method was 41.50%. In addition, the water permeability was 6.66 g/m2·min·atmospheric pressure.
使用した未延伸ポリプロピレンは、実施例1で使用した
ものと同一のものであるにもかかわらず、得られた多孔
質フィルムの平均透孔径、空隙率および透水率共に実施
例1て得られた多孔質ポリプロピレンフィルムより低い
値を示した。さらに、得られた多孔質ポリプロピレンフ
ィルムの表面および断面を走査電子顕微鏡により観察し
たところ、フィルム表面に孔か形成されていたか、フィ
ルム断面を観察したところ、一方の表面から他の表面ま
で貫通した透孔は実施例1で得られたフィルムと比較し
て少なかった。これを用いて導電率を測定した結果を表
1に示す。Although the unstretched polypropylene used was the same as that used in Example 1, the average pore diameter, porosity, and water permeability of the obtained porous film were the same as those obtained in Example 1. The value was lower than that of quality polypropylene film. Furthermore, when the surface and cross section of the obtained porous polypropylene film were observed using a scanning electron microscope, it was found that holes were formed on the film surface. There were fewer pores compared to the film obtained in Example 1. Table 1 shows the results of measuring conductivity using this.
(実施例2)
実施例1と同様の装置を使用して未延伸ポリプロピレン
フィルムを成形した。尚、使用したポリプロピレンおよ
び成形条件は下記の通りである。(Example 2) An unstretched polypropylene film was molded using the same apparatus as in Example 1. The polypropylene used and the molding conditions are as follows.
ポリプロピレンUBE−PP−J130G (宇部興産
■製)MFI=30g/10分
樹脂吐出温度 170℃
引取り速度 36m/分
ブロー比 0.70
得られた未延伸フィルムの厚さは20ILmであった。Polypropylene UBE-PP-J130G (manufactured by Ube Industries, Ltd.) MFI = 30 g/10 min Resin discharge temperature 170°C Take-up speed 36 m/min Blow ratio 0.70 The thickness of the obtained unstretched film was 20 ILm.
また、このフィルムの50%伸長からの弾性回復率は3
0%であった。In addition, the elastic recovery rate of this film from 50% elongation is 3
It was 0%.
得られたフィルムを無張力下に145℃て10分間熱処
理を行なった。得られたフィルムの弾性回復率は72%
に向上した。The obtained film was heat-treated at 145° C. for 10 minutes without tension. The elastic recovery rate of the obtained film was 72%.
improved.
このフィルムを用い実施例1と同様に操作して液体窒素
中での延伸および熱固定を行なった。This film was stretched in liquid nitrogen and heat-set in the same manner as in Example 1.
このフィルムを145℃の加熱空気槽中で液体窒素中で
延伸された長さに対して330%の延伸を行ない、この
延伸状態を保ったまま145℃の加熱空気槽中て10分
間熱固定を行ない多孔質ポリプロピレンフィルムを製造
した。This film was stretched in a heated air tank at 145°C to 330% of the length stretched in liquid nitrogen, and while maintaining this stretched state, it was heat-set in a heated air tank at 145°C for 10 minutes. A porous polypropylene film was produced.
得られた多孔質ポリプロピレンフィルムをハーフトライ
法にて測定した平均透孔径はO,’yo、。The average pore diameter of the resulting porous polypropylene film measured by the half-try method was O,'yo.
m、水銀ポロシメータて測定した空隙率は65゜30%
であった。また、透水率は59.001/m2・分・気
圧てあった。m, the porosity measured with a mercury porosimeter is 65°30%
Met. In addition, the water permeability was 59.001/m2·min·atmosphere.
この多孔質ポリプロピレンフィルムの表面および断面を
走査電子顕微鏡により観察したところ、フィルム表面に
ほぼ均一に孔か形成されており、孔径も全体にわたって
ほぼ均一であった。また、このフィルム断面を観察した
ところ、形成された孔の大部分が一方の表面から他の表
面まで貫通した透孔であることか確認された。このフィ
ルムを用いて導電率を測定した結果を表1に示す。When the surface and cross section of this porous polypropylene film were observed using a scanning electron microscope, it was found that pores were formed almost uniformly on the film surface, and the pore diameters were also almost uniform throughout. Furthermore, when the cross section of this film was observed, it was confirmed that most of the holes formed were through holes that penetrated from one surface to the other surface. Table 1 shows the results of measuring electrical conductivity using this film.
(実施例3)
ポリプロピレン(商品名: UBE−PP−F 109
K、宇部興産(株)製、MFI=9g/10分)を、直
径50n++a、スリットギャップ0.7I1mのイン
フレーション成形ダイを備えたインフレーション成形機
にかけ、未延伸ポリプロピレンフィルムを成形した。成
形操作は、ポリプロピレンを樹脂吐出温度200℃で、
ブロー比か0.7になるようにバルブ内に空気を吹き込
みながら吐出させ、ダイス上5c■の位置で吐出された
フィルムの外壁面に室温の空気を吹きつけ冷却し、そし
てダイス上1.81の位置てニップロールにより引取り
速度35m/分で引取る方法により行ない、目的の未延
伸ポリプロピレンフィルムを成形した。(Example 3) Polypropylene (product name: UBE-PP-F 109
K, manufactured by Ube Industries, Ltd., MFI = 9 g/10 minutes) was applied to an inflation molding machine equipped with an inflation molding die with a diameter of 50 n++a and a slit gap of 0.7 I1 m to form an unstretched polypropylene film. In the molding operation, polypropylene was heated at a resin discharge temperature of 200°C.
The film was discharged while blowing air into the valve so that the blow ratio was 0.7, and room temperature air was blown onto the outer wall surface of the discharged film at a position of 5c above the die to cool it, and the blow ratio was 1.81 above the die. The desired unstretched polypropylene film was formed by taking off the film at a taking-off speed of 35 m/min using nip rolls.
得られた未延伸フィルムの厚さは、20gmてあった。The thickness of the obtained unstretched film was 20 gm.
また、このフィルムの50%伸長からの弾性回復率は3
8%てあった。In addition, the elastic recovery rate of this film from 50% elongation is 3
It was 8%.
この未延伸フィルムを、温度145℃で、歪速度8.3
3X/分、初期長さに対して300χの延伸を行い、こ
の延伸状態を保ったまま145℃の加熱空気槽中て10
分間熱固定を行い多孔質ポリプロピレンフィルムを製造
した。This unstretched film was heated at a temperature of 145°C and at a strain rate of 8.3.
Stretched 3X/min to 300χ with respect to the initial length, and while maintaining this stretched state, stretched for 10 minutes in a heated air tank at 145°C.
A porous polypropylene film was produced by heat setting for a minute.
実施例1と同一の方法で測定したこのフィルムの平均透
孔径は0.4g、m、空隙率は67%であった。このフ
ィルムを用い、導電率を測定した結果を表1に示す。The average pore diameter of this film measured by the same method as in Example 1 was 0.4 g, m, and the porosity was 67%. Table 1 shows the results of measuring the electrical conductivity using this film.
表 1 導電率の測定
空隙率(χ) 導電率 (S/am)実施例 1
54.6 5.]、Ox 1O−3Iノ265J
5.]]6x]0−
3ノ367.05.21x1.0−’
比較例 1 4]、5 2.48X 10−3
多孔質ポリプロピレンフイルムに、液体電解質(1モル
濃度の過塩素酸リチウムを溶解したプロピレンカーボネ
ートとジメトキシエタンとの等容積混合溶液)を含浸さ
せ導電率計により導電率を測定した。Table 1 Measurement of conductivity Porosity (χ) Conductivity (S/am) Example 1
54.6 5. ], Ox 1O-3Iノ265J
5. ]]6x]0-3ノ367.05.21x1.0-' Comparative example 1 4], 5 2.48X 10-3
A porous polypropylene film was impregnated with a liquid electrolyte (equal volume mixed solution of propylene carbonate and dimethoxyethane in which 1 molar concentration of lithium perchlorate was dissolved), and the conductivity was measured using a conductivity meter.
(実施例4)
負極として直径16■、厚み0.75■の金属リチウム
円板、正極として二酸化マンガン68mg、アセチレン
ブラック8.511gと、バインターとしてテフロン粉
(ダイキン−製ルフロンL−5)8.5]1gとを混合
し、7 、5 ton/am2の圧力て加圧成形し、3
00℃で加熱処理して直径13m+m、厚み1.3mm
の正極板を用意した。(Example 4) A metal lithium disk with a diameter of 16 cm and a thickness of 0.75 cm was used as a negative electrode, 68 mg of manganese dioxide and 8.511 g of acetylene black were used as a positive electrode, and Teflon powder (Luflon L-5 manufactured by Daikin Co., Ltd.) was used as a binder.8. 5] 1 g, pressure molded at a pressure of 7.5 tons/am2,
Heat treated at 00℃, diameter 13m+m, thickness 1.3mm
A positive electrode plate was prepared.
多孔質ポリプロピレンフィルムは、実施例1て作製した
ものを使用した。The porous polypropylene film produced in Example 1 was used.
このフィルムに電解質として1モル濃度の過塩素酸リチ
ウムを溶解したプロピレンカーボネートとジメトキシエ
タンとの等容積混合溶媒に溶解したものを含浸させ、前
記の正極と負極の間に挟んで電池を作成した。This film was impregnated with an electrolyte containing 1 molar lithium perchlorate dissolved in an equal volume mixed solvent of propylene carbonate and dimethoxyethane, and sandwiched between the positive electrode and negative electrode to create a battery.
電池性能試験としで、2.8にΩの定抵抗放電試験を行
い、2.0ボルトカツトて16mAhの電池容量を得た
。As a battery performance test, a constant resistance discharge test of 2.8 Ω was conducted, and a battery capacity of 16 mAh was obtained by cutting off 2.0 volts.
(比較例2)
前記比較例1によって作製したフィルムを用いで、実施
例4と同様にしてリチウム電池を作成した。実施例4と
同様に電池性能試験を行なった結果、放電容量は52
m A hてあった。(Comparative Example 2) Using the film produced in Comparative Example 1, a lithium battery was produced in the same manner as in Example 4. As a result of conducting a battery performance test in the same manner as in Example 4, the discharge capacity was 52
There was a h.
(実施例5)
前記実施例2によって作製したフィルムを用いで、実施
例4と同様にしてリチウム電池を作成した。実施例4と
同様に電池性能試験を行なった結果、放電容量は16
m A hてあった。(Example 5) Using the film produced in Example 2, a lithium battery was produced in the same manner as in Example 4. As a result of conducting a battery performance test in the same manner as in Example 4, the discharge capacity was 16
There was a h.
(実施例6)
前記実施例3によって作製したフィルムを用いで、実施
例4と同様にしてリチウム電池を作成した。実施例4と
同様に電池性能試験を行なった結果、放電容量は17m
Ahであった。(Example 6) Using the film produced in Example 3, a lithium battery was produced in the same manner as in Example 4. As a result of conducting the battery performance test in the same manner as in Example 4, the discharge capacity was 17 m.
It was Ah.
[発明の効果]
以上説明したように、本発明の電池用セパレータによれ
ば、大部分か貫通孔を形成するとともに略均一な孔径な
有し、しかも空隙率が45%以上である特殊な形態を有
した微細孔を持った多孔質ポリプロピレンフィルムを使
用したので、イオン伝導性などの特性に優れたものを提
供することかできる。従っで、この電池用セパレータを
用いたリチウム電池は電池性能の優れたものを得ること
ができる。[Effects of the Invention] As explained above, the battery separator of the present invention has a special form in which most of the through holes are formed, the pores are approximately uniform in diameter, and the porosity is 45% or more. By using a porous polypropylene film having micropores, it is possible to provide a film with excellent properties such as ionic conductivity. Therefore, a lithium battery using this battery separator can have excellent battery performance.
Claims (4)
を有する多孔質ポリプロピレンフィルムからなる電池用
セパレータであって、 該多孔質ポリプロピレンフィルムは、該フィルムの延伸
方向と直角に略所定の間隔で走り且つ該フィルムの延伸
方向と直角な断面に対して略平行に形成される未延伸板
状平面群と、その板状平面間で該フィルムの延伸方向に
略平行且つ略所定間隔に走り且つ板状平面間につながる
延伸配向した比較的細いフィブリル群とによって形成さ
れ、該板状平面間につながる細いフィブリル間の間隙が
略二次元的に広がる略均一な形状を呈する多数の微細孔
を形成してなり、 前記微細孔は大部分が貫通孔を形成するとともに略均一
な孔径を有し、前記フィルムの空隙率が45%以上であ
ることを特徴とする電池用セパレータ。(1) A battery separator made of a porous polypropylene film having a large number of micropores obtained by stretching polypropylene, the porous polypropylene film running at approximately predetermined intervals at right angles to the stretching direction of the film. and a group of unstretched plate-like planes formed substantially parallel to a cross section perpendicular to the stretching direction of the film; A large number of fine pores are formed by a group of stretched and oriented relatively thin fibrils that connect between the planes, and the gaps between the thin fibrils that connect between the plate-like planes expand approximately two-dimensionally and exhibit a substantially uniform shape. A separator for a battery, wherein most of the micropores form through holes and have a substantially uniform diameter, and the film has a porosity of 45% or more.
を有する多孔質ポリプロピレンフィルムからなる電池用
セパレータの製造方法において、ポリプロピレンの延伸
工程を、窒素、酸素、アルゴン、一酸化炭素、メタンお
よびエタンからなる群より選ばれた媒体中で、且つその
延伸温度が、−70℃以下の温度であって、該媒体の凝
固点から該媒体の沸点より50℃高い温度以下の低温の
範囲にて行なうことを特徴とする多孔質ポリプロピレン
フィルムからなる電池用セパレータの製造方法。(2) In the method for manufacturing a battery separator made of a porous polypropylene film having a large number of micropores obtained by stretching polypropylene, the polypropylene stretching step is performed using nitrogen, oxygen, argon, carbon monoxide, methane, and ethane. The stretching is carried out in a medium selected from the group consisting of: -70°C or lower, and at a low temperature ranging from the freezing point of the medium to a temperature 50°C higher than the boiling point of the medium. A method for producing a battery separator made of a porous polypropylene film.
を有する多孔質ポリプロピレンフィルムからなる電池用
セパレータの製造方法において、ポリプロピレンの延伸
工程を、予め室温で行なうことなく110℃乃至155
℃の高温の温度範囲で、延伸歪速度10%/分未満で行
なうことを特徴とする多孔質ポリプロピレンフィルムか
らなる電池用セパレータの製造方法。(3) In a method for producing a battery separator made of a porous polypropylene film having a large number of micropores obtained by stretching polypropylene, the stretching step of polypropylene is not performed at room temperature in advance, but at temperatures between 110°C and 155°C.
1. A method for producing a battery separator made of a porous polypropylene film, characterized in that the method is carried out in a high temperature range of °C at a stretching strain rate of less than 10%/min.
を特徴とするリチウム電池。(4) A lithium battery characterized by using the battery separator according to claim 1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63226882A JPH0758613B2 (en) | 1988-09-10 | 1988-09-10 | Battery separator, method of manufacturing the same, and lithium battery using the battery separator |
US07/404,382 US4994335A (en) | 1988-09-10 | 1989-09-08 | Microporous film, battery separator employing the same, and method of producing them |
US07/620,805 US5173235A (en) | 1988-09-10 | 1990-12-03 | Method of producing microporous film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63226882A JPH0758613B2 (en) | 1988-09-10 | 1988-09-10 | Battery separator, method of manufacturing the same, and lithium battery using the battery separator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0275151A true JPH0275151A (en) | 1990-03-14 |
JPH0758613B2 JPH0758613B2 (en) | 1995-06-21 |
Family
ID=16852056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63226882A Expired - Fee Related JPH0758613B2 (en) | 1988-09-10 | 1988-09-10 | Battery separator, method of manufacturing the same, and lithium battery using the battery separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0758613B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5385777A (en) * | 1992-03-30 | 1995-01-31 | Nitto Denko Corporation | Porous film, process for producing the same, and use of the same |
JP2008540794A (en) * | 2005-05-16 | 2008-11-20 | エスケー ホルディングス カンパニー リミテッド | High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same |
CN115149205A (en) * | 2022-06-23 | 2022-10-04 | 中材锂膜(宁乡)有限公司 | Wet method lithium battery diaphragm preparation method and system based on film blowing process |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3558764A (en) * | 1966-09-06 | 1971-01-26 | Celanese Corp | Process for preparing microporous film |
US3679538A (en) * | 1970-10-28 | 1972-07-25 | Celanese Corp | Novel open-celled microporous film |
US4563317A (en) * | 1983-12-28 | 1986-01-07 | Ube Industries, Ltd. | Process of producing porous thermoplastic resin article |
JPS63108041A (en) * | 1986-06-12 | 1988-05-12 | Tokuyama Soda Co Ltd | Microporous film and its manufacturing method |
JPH01157513A (en) * | 1987-09-04 | 1989-06-20 | Toray Ind Inc | Separator for electrolytic capacitor |
-
1988
- 1988-09-10 JP JP63226882A patent/JPH0758613B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3558764A (en) * | 1966-09-06 | 1971-01-26 | Celanese Corp | Process for preparing microporous film |
US3679538A (en) * | 1970-10-28 | 1972-07-25 | Celanese Corp | Novel open-celled microporous film |
US4563317A (en) * | 1983-12-28 | 1986-01-07 | Ube Industries, Ltd. | Process of producing porous thermoplastic resin article |
JPS63108041A (en) * | 1986-06-12 | 1988-05-12 | Tokuyama Soda Co Ltd | Microporous film and its manufacturing method |
JPH01157513A (en) * | 1987-09-04 | 1989-06-20 | Toray Ind Inc | Separator for electrolytic capacitor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5385777A (en) * | 1992-03-30 | 1995-01-31 | Nitto Denko Corporation | Porous film, process for producing the same, and use of the same |
JP2008540794A (en) * | 2005-05-16 | 2008-11-20 | エスケー ホルディングス カンパニー リミテッド | High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same |
JP4889733B2 (en) * | 2005-05-16 | 2012-03-07 | エスケー イノベーション シーオー., エルティーディー. | High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same |
CN115149205A (en) * | 2022-06-23 | 2022-10-04 | 中材锂膜(宁乡)有限公司 | Wet method lithium battery diaphragm preparation method and system based on film blowing process |
Also Published As
Publication number | Publication date |
---|---|
JPH0758613B2 (en) | 1995-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4994335A (en) | Microporous film, battery separator employing the same, and method of producing them | |
US5173235A (en) | Method of producing microporous film | |
JP5202826B2 (en) | Polyethylene microporous membrane, method for producing the same, and battery separator | |
JP5596768B2 (en) | Polyethylene microporous membrane and battery separator | |
US10249863B2 (en) | Microporous material and a method of making same | |
JP5453272B2 (en) | Microporous membranes and methods of making and using such membranes | |
TWI428171B (en) | Microporous polyolefin film, its preparation method, battery separator and battery | |
JP5196752B2 (en) | Polyethylene microporous membrane, method for producing the same, and battery separator | |
TWI418582B (en) | Microporous polyolefin membrane, its production method, battery separator and battery | |
JP5572334B2 (en) | Polyolefin microporous membrane | |
JP4470248B2 (en) | Battery separator | |
JP6295641B2 (en) | Microporous membrane and separator using the same | |
WO2011152201A1 (en) | Polyolefin microporous membrane, separator for battery, and battery | |
CN103068892A (en) | Propylene resin micropore film, battery separator, battery and method of manufacturing propylene resin micropore film | |
JP4230584B2 (en) | Polyethylene microporous membrane | |
JP4033546B2 (en) | Method for producing separator for lithium ion secondary battery | |
JP2012048987A (en) | Polyolefin microporous film, nonaqueous secondary battery separator, and nonaqueous secondary battery | |
JP2011204587A (en) | Separator for nonaqueous secondary battery, nonaqueous secondary battery, and method of manufacturing separator for nonaqueous secondary battery | |
JPH0696753A (en) | Polyolefine micro-cellular porous film | |
JPH0275151A (en) | Battery separator, its manufacturing method, and lithium battery using the battery separator | |
JP2019102126A (en) | Battery separator and non-aqueous electrolyte secondary battery | |
JPH06223802A (en) | Cylindrical electric part separator | |
JP6641339B2 (en) | Synthetic resin microporous film, separator for power storage device and power storage device | |
WO2018147395A1 (en) | Synthetic resin microporous film, method for producing same, separator for power storage device, and power storage device | |
US20220320681A1 (en) | Nonaqueous electrolyte secondary battery separator, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |