[go: up one dir, main page]

JPH027510B2 - - Google Patents

Info

Publication number
JPH027510B2
JPH027510B2 JP56072514A JP7251481A JPH027510B2 JP H027510 B2 JPH027510 B2 JP H027510B2 JP 56072514 A JP56072514 A JP 56072514A JP 7251481 A JP7251481 A JP 7251481A JP H027510 B2 JPH027510 B2 JP H027510B2
Authority
JP
Japan
Prior art keywords
sample
etching
depth
light
measurement sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56072514A
Other languages
Japanese (ja)
Other versions
JPS57187851A (en
Inventor
Yasubumi Kameshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56072514A priority Critical patent/JPS57187851A/en
Publication of JPS57187851A publication Critical patent/JPS57187851A/en
Publication of JPH027510B2 publication Critical patent/JPH027510B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【発明の詳細な説明】 本発明は不純物濃度の深さ方向分布の測定にお
いて測定元素の質量分析と同時に被検査試料のエ
ツチング深さを計測し、表示する事のできる二次
イオン質量分析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a secondary ion mass spectrometer that can measure and display the etching depth of a sample to be inspected at the same time as the mass analysis of the measured element in measuring the depth distribution of impurity concentration. It is something.

一般に二次イオン質量分析装置はアルゴンや酸
素などの一次イオンを試料に照射し、被検査試料
から発生する二次イオンを質量分析し、元素の同
定一定量分析、あるいは面内深さ方向の分布測定
を行なうもので、その検出感度は表面分析機器の
中でも最つとも高く、また適用範囲が水素を含め
てすべての元素に可能であるという、すぐれた特
徴をもつ。特に、次イオンで被検査試料をエツチ
ングしながらその表面層から放出される二次イオ
ンを検出するため、深さ方向の組成分析に非常に
有力な分析機器であり、例えば半導体にイオン打
ち込みされた不純物の濃度プロフアイル、エピタ
キシヤル層の界面の評価などに有効に使われてい
る。
In general, secondary ion mass spectrometers irradiate a sample with primary ions such as argon or oxygen, and mass analyze the secondary ions generated from the sample to be inspected. It performs measurements, and its detection sensitivity is the highest among surface analysis instruments, and it has the excellent feature of being applicable to all elements, including hydrogen. In particular, it is a very effective analytical instrument for compositional analysis in the depth direction, as it detects secondary ions emitted from the surface layer while etching the sample to be inspected with secondary ions. It is effectively used for evaluating impurity concentration profiles and epitaxial layer interfaces.

深さ方向の分析においてはエツチング深さの測
定が必須であり、特に元素分析と同時に測定時の
深さを知る事が切望される。しかしながら従来の
二次イオン質量分析装置において、この要求に応
えられるものはない。通常、分析終了後に光学干
渉計や表面さ計(タリサーフ)などでエツチング
深さを測定し、エツチング時間からエツチングレ
ートを算出する。しかし、異つた物質の多層エピ
タキシヤル結晶や、半導体と金属あるいは酸化物
の界面の評価では各層のエツチングレートが当然
異なつているため、全体のエツチング深さを測定
しても各層のそれぞれの厚さを評価する事は不可
能であり、別途に斜め研摩などで各層の厚さを見
積つているのが現状である。この事は迅速な測定
結果を出す上に大きな障害となつている。
Measuring the etching depth is essential for analysis in the depth direction, and it is particularly desirable to know the depth at the time of measurement at the same time as elemental analysis. However, none of the conventional secondary ion mass spectrometers can meet this requirement. Usually, after the analysis is completed, the etching depth is measured using an optical interferometer or surface depth meter (Talysurf), and the etching rate is calculated from the etching time. However, when evaluating multilayer epitaxial crystals of different materials or interfaces between semiconductors and metals or oxides, the etching rate of each layer is naturally different, so even if the overall etching depth is measured, the thickness of each layer is Currently, it is impossible to evaluate the thickness of each layer, and the thickness of each layer is estimated separately by diagonal polishing. This is a major obstacle to obtaining rapid measurement results.

本発明は前述の如き欠点を改善したものであり
その目的は連続的に変化する被検査試料のエツチ
ング深さを二次イオン質量分析計の試料室内に設
けられた光学的干渉計により測定し、その信号を
外部記録計で表示し質量分析器により分析する表
面の深さをその場で測定する事にある。特に深さ
方向分析のモードに際し、各元素の検出カウント
数とともにエツチング深さが表示される。
The present invention has improved the above-mentioned drawbacks, and its purpose is to measure the continuously changing etching depth of a sample to be inspected using an optical interferometer installed in the sample chamber of a secondary ion mass spectrometer. The purpose is to measure the depth of the surface on the spot by displaying the signal with an external recorder and analyzing it with a mass spectrometer. Particularly in the depth direction analysis mode, the etching depth is displayed along with the detected count number of each element.

以下実施例に従つて詳細に説明する。 A detailed explanation will be given below based on examples.

第1図は本発明の実施例の光学的エツチング深
さ測定系である。1は一次イオン発生部であり、
デユオプラズマトロン、静電コンデンサレンズ、
静電デフレクターなどから成つており、通常の一
次イオン発生機構と同種のものである。2は被検
査試料である。デユオプラズマトロンで発生した
一次イオンはビーム径10シクロン程度に静電コン
デンサレンズで絞られ、更に静電デフレターで電
気的に走査されて、試料2に照射される。試料2
は任意の大きさの矩形にエツチングされる事にな
る。一次イオンビームは所定の角度で斜めに試料
2に入射され、発生する二次イオンはエツチング
面に対して垂直にとり出される。3は二次イオン
を引き出すために加速電界が印加された電極であ
り、10KV程度の加速電界により質量分析系4へ
と導かれる。質量分析系4は扇形電磁場、シンチ
レーシヨンカウンターなどよりなる通常の構成の
ものである。
FIG. 1 shows an optical etching depth measuring system according to an embodiment of the present invention. 1 is a primary ion generating section;
Duoplasmatron, electrostatic condenser lens,
It consists of an electrostatic deflector, etc., and is of the same type as a normal primary ion generation mechanism. 2 is a sample to be inspected. The primary ions generated by the Duoplasmatron are condensed to a beam diameter of about 10 cyclones by an electrostatic condenser lens, and then electrically scanned by an electrostatic deflator and irradiated onto the sample 2. Sample 2
will be etched into a rectangle of arbitrary size. The primary ion beam is obliquely incident on the sample 2 at a predetermined angle, and the generated secondary ions are taken out perpendicularly to the etching surface. Reference numeral 3 denotes an electrode to which an accelerating electric field is applied to extract secondary ions, which are guided to a mass spectrometry system 4 by an accelerating electric field of about 10 KV. The mass spectrometry system 4 has a conventional configuration including a fan-shaped electromagnetic field, a scintillation counter, and the like.

エツチング深さを計測するための光学系はマイ
ケルソン干渉計を利用する。光源は可干渉光を発
生し得る超小型のレーザーである半導体レーザー
を使用する。本装置の場合約7500Åの波長をもつ
GaAs/GaAlAsダブルヘテロレーザーを用いた。
半導体レーザーからのビームは回折の為広がつて
放射されるが、あらかじめ円形セルフオツクレン
ズで平行光線になる様に調整されたものを用いれ
ば困難は生じない。光源5は図に示す方向にレー
ザー光が引き出されるように配置されて電極3の
側壁に取り付けられる。半導体レーザー光源5は
CW動作で使用され、その電源はリード線6によ
つて外部から供給される。7は小型半透明鏡であ
り、光源5からのビームは半透明鏡7を介して二
方向に分けられ、一方は参照光13として試料室
右側壁8に設けられた反射鏡9で反射され、再び
半透明鏡7を通つて試料室左側壁10に固定され
たスリツト11を通つて同じく試料室左側壁10
に固定された光検出器12の受光面に収束する。
参照光13の通る光路は図において点線で示し
た。一方測距光14は半透明鏡7を直進し試料エ
ツチング面2で反射された後、再び半透明鏡7に
よつて反射されて試料室左側壁10に固定された
スリツト11を通つて光検出器12の受光面に収
束する。測距光14の通る光路は図において実線
で示した。従つて測距光14と参照光13の光路
差がレーザー光の波長の整数倍になる毎に明と暗
の干渉縞が光検出器12の受光面に生ずる事にな
る。ここでイオンエツチングで試料面2がけずら
れていくと測距光14に対する光路長が長くなる
事に対応して時々刻々変化する事になる。例えば
試料面2が光源波長の半分だけエツチングされた
とき、光路長は一波長分だけ変化するのでエツチ
ング開始前に明縞が観測されていたとすればエツ
チング経過とともに暗縞を経て再び明縞が観測さ
れる事になる。本装置の様にGaAs/GaAlAsダ
ブルヘテロレーザーを用いる場合は約3750Åエツ
チングされた時上記の変化が観測される。通常二
次イオン質量分析の対象とする試料ではこの程度
で充分に実用となる。なお、試料室右側壁8に設
けられた反射鏡9は位置可変になつており、外部
からの調整でエツチング開始前に最大明縞あるい
は最大暗縞が得られる様にする事ができる。光検
出器12は本装置の場合、小型化を目的とするた
め半導体フオトダイオード、例えばシリコンフオ
トダイオードを使用しておりリード線15によつ
て外部記録計16へと導かれ記録される。この場
合光応答速度は速いことが要求されないのでアバ
ランシエフオトダイオードを使用する必要はな
い。以上の光学的計測系の配置で重要な事はイオ
ンビーム系の妨害とならない事である。従つて光
学計測系の反射鏡9と光検出器12を結ぶ直線が
一次イオン発生部1試料面2引き出し電極3を結
ぶ面と平行にならない様に第1図に示した様な配
置を採用している。
The optical system for measuring the etching depth uses a Michelson interferometer. The light source uses a semiconductor laser, which is an ultra-compact laser that can generate coherent light. In the case of this device, the wavelength is approximately 7500Å.
A GaAs/GaAlAs double hetero laser was used.
The beam from a semiconductor laser is emitted after being spread out due to diffraction, but this problem does not occur if a circular self-occurring lens is used that has been adjusted in advance to become a parallel beam. The light source 5 is arranged and attached to the side wall of the electrode 3 so that the laser beam is extracted in the direction shown in the figure. The semiconductor laser light source 5 is
It is used in CW operation, and its power is supplied externally through a lead wire 6. 7 is a small semi-transparent mirror, and the beam from the light source 5 is divided into two directions via the semi-transparent mirror 7, one of which is reflected as a reference beam 13 by a reflecting mirror 9 provided on the right side wall 8 of the sample chamber; Pass through the semitransparent mirror 7 again, pass through the slit 11 fixed to the left side wall 10 of the sample chamber, and pass through the left side wall 10 of the sample chamber.
The light converges on the light receiving surface of the photodetector 12 fixed to.
The optical path through which the reference light 13 passes is indicated by a dotted line in the figure. On the other hand, the distance measuring light 14 travels straight through the semi-transparent mirror 7, is reflected by the sample etching surface 2, is reflected again by the semi-transparent mirror 7, passes through the slit 11 fixed to the left side wall 10 of the sample chamber, and is detected. It converges on the light receiving surface of the device 12. The optical path through which the ranging light 14 passes is shown by a solid line in the figure. Therefore, bright and dark interference fringes are generated on the light receiving surface of the photodetector 12 every time the optical path difference between the distance measuring light 14 and the reference light 13 becomes an integral multiple of the wavelength of the laser light. Here, as the sample surface 2 is scratched by ion etching, the optical path length for the distance measuring light 14 becomes longer and changes from time to time. For example, when the sample surface 2 is etched by half the wavelength of the light source, the optical path length changes by one wavelength, so if bright fringes were observed before the etching started, as the etching progresses, dark fringes are observed and then bright fringes are observed again. It will be done. When using a GaAs/GaAlAs double hetero laser as in this device, the above change is observed when etching is approximately 3750 Å. This level is sufficient for practical use in samples that are normally subjected to secondary ion mass spectrometry. Incidentally, the reflecting mirror 9 provided on the right side wall 8 of the sample chamber is variable in position, and can be adjusted from the outside so that the maximum bright or maximum dark fringes can be obtained before the start of etching. In the case of this device, the photodetector 12 uses a semiconductor photodiode, for example, a silicon photodiode, for the purpose of miniaturization, and is led to an external recorder 16 by a lead wire 15 for recording. In this case, there is no need to use an avalanche photodiode because a fast optical response speed is not required. What is important in the arrangement of the optical measurement system described above is that it does not interfere with the ion beam system. Therefore, the arrangement shown in FIG. 1 is adopted so that the straight line connecting the reflector 9 of the optical measurement system and the photodetector 12 is not parallel to the plane connecting the primary ion generating section 1 sample surface 2 extraction electrode 3. ing.

第2図は本装置を用いて測定された例であり、
試料はボロンを100KVでシリコンにイオン打ち
込みをしたものである。不純物ボロン17および
母体シリコン18の深さ方向分布とともにグラフ
下部に干渉縞の強度変化19が記録され、エツチ
ング深さの目盛となつている。なお、この様なア
ナログ的な表示のみならず数値としてデイジタル
的に表示する事も適当な電気回路を用いる事によ
り容易に達成される。
Figure 2 shows an example of measurement using this device.
The sample was boron ion implanted into silicon at 100KV. In addition to the depthwise distribution of impurity boron 17 and host silicon 18, intensity changes 19 of interference fringes are recorded at the bottom of the graph, and serve as a scale of etching depth. Incidentally, not only such an analog display but also a digital display as a numerical value can be easily achieved by using an appropriate electric circuit.

なお本発明の方法の適用は、上記の質量分析器
のみならず、イオンによつて表面を物理的にエツ
チングする機構を有する装置(例えば、電子顕微
鏡試料作成装置、オージユ電子分光分装置等)に
於いても試料のエツチング深さをその場で観察で
きることから充分有用であることはいうまでもな
い。
The method of the present invention can be applied not only to the above-mentioned mass spectrometers, but also to devices that have a mechanism for physically etching surfaces with ions (e.g., electron microscope sample preparation devices, audio electron spectroscopy devices, etc.). Needless to say, this method is very useful since the etching depth of the sample can be observed on the spot.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す系統図。第2
図は本発明を用いて測定したボロンを打ち込んだ
シリコンにおける不純物深さ方向分布およびエツ
チング深さを測定した結果の一例を示す。 図において、1…一次イオン発生部、2…被検
査試料断面図、3…二次イオン引き出し電極、4
…質量分析系、5…半導体レーザー光源、6…半
導体レーザーリード線、7…半透明鏡、8…試料
室右側壁、9…反射鏡、10…試料室左側壁、1
1…スリツト、12…半導体光検出器、13…参
照光光路、14…測距光光路、15…半導体光検
出器リード線、16…記録計、17…ボロンプロ
フアイル、18…シリコンプロフアイル、19…
干渉縞強度変化。
FIG. 1 is a system diagram showing one embodiment of the present invention. Second
The figure shows an example of the results of measuring the impurity depth distribution and etching depth in boron-implanted silicon using the present invention. In the figure, 1...Primary ion generation part, 2... Cross-sectional view of the sample to be inspected, 3... Secondary ion extraction electrode, 4
...Mass spectrometry system, 5...Semiconductor laser light source, 6...Semiconductor laser lead wire, 7...Semi-transparent mirror, 8...Right side wall of sample chamber, 9...Reflector, 10...Left side wall of sample chamber, 1
DESCRIPTION OF SYMBOLS 1...Slit, 12...Semiconductor photodetector, 13...Reference light optical path, 14...Distance measuring light optical path, 15...Semiconductor photodetector lead wire, 16...Recorder, 17...Boron profile, 18...Silicon profile, 19...
Interference fringe intensity change.

Claims (1)

【特許請求の範囲】[Claims] 1 質量分析装置において、測定試料室内に半導
体レーザーを光源とし、フオトダイオードを受光
器とする光学的測距計を具備し、測定試料の質量
分析と同時に該測定試料のエツチング深さを計測
し記録表示するように構成されている事を特徴と
する二次イオン質量分析装置。
1. A mass spectrometer is equipped with an optical distance meter that uses a semiconductor laser as a light source and a photodiode as a light receiver in the measurement sample chamber, and simultaneously measures and records the etching depth of the measurement sample at the same time as the mass analysis of the measurement sample. A secondary ion mass spectrometer configured to display information.
JP56072514A 1981-05-14 1981-05-14 Secondary ion mass analyzing unit Granted JPS57187851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56072514A JPS57187851A (en) 1981-05-14 1981-05-14 Secondary ion mass analyzing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56072514A JPS57187851A (en) 1981-05-14 1981-05-14 Secondary ion mass analyzing unit

Publications (2)

Publication Number Publication Date
JPS57187851A JPS57187851A (en) 1982-11-18
JPH027510B2 true JPH027510B2 (en) 1990-02-19

Family

ID=13491517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56072514A Granted JPS57187851A (en) 1981-05-14 1981-05-14 Secondary ion mass analyzing unit

Country Status (1)

Country Link
JP (1) JPS57187851A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012007832A1 (en) * 2010-07-14 2012-01-19 University Of Cape Town Depth control of laser cutter

Also Published As

Publication number Publication date
JPS57187851A (en) 1982-11-18

Similar Documents

Publication Publication Date Title
US6855928B2 (en) Analysis of semiconductor surfaces by secondary ion mass spectrometry and methods
US4169228A (en) X-ray analyzer for testing layered structures
CN102435315B (en) Photon counting Raman spectrometer capable of realizing full spectrum direct-reading performance
US4569592A (en) Plasma monitor
EP1336095B1 (en) Measurement of surface defects
JP3889851B2 (en) Film thickness measurement method
JP2002189004A (en) X-ray analyzer
CN102507464A (en) Photon counting full-spectrum direct reading absorption spectrometer
JPH027510B2 (en)
US7075073B1 (en) Angle resolved x-ray detection
US4059763A (en) Electron beam current, profile and position monitor
US4740693A (en) Electron beam pattern line width measurement system
JPH01112122A (en) Extremely weak light spectroscopic device
EP1580546B1 (en) Methods for X-ray reflectance measurement
JPH0537230Y2 (en)
JP2856562B2 (en) Insulation film inspection method
JPH063296A (en) Auger electron spectral device
JP3541250B2 (en) Non-contact type object detection measurement method and device
JP2002243672A (en) X-ray analyzer
JPS6398550A (en) EXAFS device in the soft X-ray region
JPH01181434A (en) Beam modulated spectroscope
JPH0578902B2 (en)
Lifshin Factors affecting X-ray sensitivity in electron microbeam instrumentation
JPH02187689A (en) Method of calibrating energy dispersion type x-ray detector for light element
JPS63131531A (en) Semiconductor evaluation equipment