[go: up one dir, main page]

JPH0273132A - Vacuum vessel for cooler evaluation - Google Patents

Vacuum vessel for cooler evaluation

Info

Publication number
JPH0273132A
JPH0273132A JP22495988A JP22495988A JPH0273132A JP H0273132 A JPH0273132 A JP H0273132A JP 22495988 A JP22495988 A JP 22495988A JP 22495988 A JP22495988 A JP 22495988A JP H0273132 A JPH0273132 A JP H0273132A
Authority
JP
Japan
Prior art keywords
inner tube
temperature
cooling
measured
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22495988A
Other languages
Japanese (ja)
Inventor
Hideo Yamakawa
山川 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22495988A priority Critical patent/JPH0273132A/en
Publication of JPH0273132A publication Critical patent/JPH0273132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To easily quantitatively measure the cooling characteristic and to obtain data of high reliability by providing a temperature measuring means, which measures the ambient temperature of an inner tube, on the outside peripheral side surface of the inner tube. CONSTITUTION:A thermistor 3 is provided on the outside peripheral side surface of an inner tube 10, and its resistance value is measured through a conductor 6 by a terminal 9 to measure the change of the ambient temperature of the inner tube 10. Resistance values of thermistors 1 and 3 to temperature are preliminarily measured to obtain temperature correction data before thermistors 1 and 2 are packaged in a vessel. The DC current flowing from an external power source to a heating body 2 is varied to change the heat load, and the resistance value of the thermistor 1 is measured, and the cooling temperature in a cooling part 13 of the inner tube 10 is measured by this resistance value. Simultaneously, the gradient of the ambient temperature of the inner tube 10 is obtained by the thermistor 3. The change of the quantity of heat transmitted from the outside peripheral surface of the inner tube 11 or terminals 7 to 9 which is obtained from this temperature gradient is taken into consideration of calculation of the measured value of the cooling temperature of the cooling part 13, thereby quantitatively obtaining the characteristic of cooling temperature to heat load for a specific gas flow rate in a cooler 14.

Description

【発明の詳細な説明】 逸血欠1 本発明は冷却器評価用真空容器に関し、特にジュールト
ムソン効果を用いた冷却器の冷却能力を評価するために
用いる冷却器評価用真空容器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum vessel for evaluating a cooler, and more particularly to a vacuum vessel for evaluating a cooler used to evaluate the cooling capacity of a cooler using the Joule-Thomson effect.

良救挟韮 従来、この種の冷却器評価用真空容器においては、第2
図に示すように、ジュールトムソン効果を用いた冷却器
14が挿入される内管10がフランジ12により外管1
1と接合され、内等10と外管11との間は真空となっ
ている。
Conventionally, in this type of vacuum container for evaluating coolers, the second
As shown in the figure, an inner tube 10 into which a cooler 14 using the Joule-Thomson effect is inserted is connected to an outer tube 1 by a flange 12.
1, and there is a vacuum between the inner tube 10 and the outer tube 11.

内管10の外周底部(冷却部13)には夫々導線4,5
を介して外管11に設けられた端子7゜8と電気的に接
続されたサーミスタ1および発熱体2が設けられている
Conductive wires 4 and 5 are provided at the bottom of the outer periphery (cooling section 13) of the inner tube 10, respectively.
A thermistor 1 and a heating element 2 are provided, which are electrically connected to a terminal 7.8 provided on the outer tube 11 via a thermistor 1 and a heating element 2.

冷却器14の冷却能力を評価する場合には、冷却器14
先端のノズル15が内管10の内側の閉じた一端付近ま
で挿入され、高圧ガスボンベ17から冷却器14に配管
16を通して高圧ガスが供給される。
When evaluating the cooling capacity of the cooler 14, the cooler 14
The nozzle 15 at the tip is inserted close to one closed end inside the inner tube 10, and high pressure gas is supplied from the high pressure gas cylinder 17 to the cooler 14 through the pipe 16.

高圧ガスボンベ17から供給され、冷却器14先端のノ
ズル15から噴出する高圧ガスは、冷却器14における
ジュールトムソン効果(断熱光B)によって液化し、内
管10の冷却部13はこの高圧ガスの液化により周囲の
熱が吸収されて冷却される。
The high-pressure gas supplied from the high-pressure gas cylinder 17 and ejected from the nozzle 15 at the tip of the cooler 14 is liquefied by the Joule-Thomson effect (insulated light B) in the cooler 14, and the cooling section 13 of the inner tube 10 liquefies this high-pressure gas. The surrounding heat is absorbed and cooled.

冷却用媒体として窒素ガスを用いると、窒素ガスの液化
点は絶対温度77にであるので、内管10の冷却部13
は約77Kに冷却される。
When nitrogen gas is used as a cooling medium, the liquefaction point of nitrogen gas is at an absolute temperature of 77, so the cooling part 13 of the inner tube 10
is cooled to about 77K.

内管10の冷却部13に設けられた発熱体2には抵抗器
が用いられている。この発熱体2に導線5により電気的
に接続された端子8を介して図示せぬ外部電源から直流
電流を流すと、発熱体2にはジュール熱が発生ずるため
、外部電源からの直流電流を可変することにより発熱体
2から発生ずる熱負荷を制御することができる。
A resistor is used for the heating element 2 provided in the cooling section 13 of the inner tube 10. When direct current is applied to this heating element 2 from an external power source (not shown) through a terminal 8 electrically connected by a conductor 5, Joule heat is generated in the heating element 2. By varying this, the heat load generated from the heating element 2 can be controlled.

サーミスタ1は温度によって抵抗値が広範囲に変化する
特性を有するので、この特性を利用して冷却器14の冷
却能力を測定する。
Since the thermistor 1 has a characteristic that its resistance value changes over a wide range depending on the temperature, the cooling capacity of the cooler 14 is measured using this characteristic.

すなわち、冷却器14により内管10の冷却部13が冷
力jされているどき、発熱体2から発生ずる熱負荷を可
変しながら端子7によってサーミスタ1の抵抗値を測定
することにより、内管10の冷却部13の温度を測定し
て冷却器14の冷却能力を測定する。
That is, when the cooling part 13 of the inner tube 10 is being cooled by the cooler 14, the resistance value of the thermistor 1 is measured by the terminal 7 while varying the heat load generated from the heating element 2, and the inner tube is cooled. The temperature of the cooling unit 13 of the cooling unit 10 is measured to measure the cooling capacity of the cooler 14.

しかしながら、このような従来の冷却器評価用真空容器
では、発熱体2の熱負荷以外にも熱負荷として外管11
の外周面もしくは端子7.8から流入する熱量があり、
容器の寸法や形状、および環境温度などにより熱の流入
量が異なるため、熱負荷に対するフライオスタラl−(
冷却器14)のガス流量などをパラメータとする冷却特
性の定量的計UJが困難であり、冷却特性(熱負荷対冷
却温度、熱負荷対ガス流量など)のデータの信頼性が低
いという欠点がある。
However, in such a conventional vacuum container for cooler evaluation, in addition to the heat load on the heating element 2, there is also a heat load on the outer tube 11.
There is an amount of heat flowing in from the outer peripheral surface of the terminal 7.8,
Since the amount of heat inflow varies depending on the size and shape of the container, as well as the environmental temperature, the amount of Fry Ostara l-(
It is difficult to quantitatively measure cooling characteristics using parameters such as the gas flow rate of the cooler 14), and the reliability of data on cooling characteristics (heat load vs. cooling temperature, heat load vs. gas flow rate, etc.) is low. be.

九肌立旦追 本発明は上記のような従来のものの欠点を除去すべくな
されたもので、冷却特性の定量的計測を容易に行うこと
ができ、信頼性の高い冷却特性のデータを得ることがで
きる冷却器評価用真空容器の提供を目的とする。
The present invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it is possible to easily perform quantitative measurement of cooling characteristics and obtain highly reliable data on cooling characteristics. The purpose is to provide a vacuum container for evaluating coolers.

1哩座且蔦 本発明による冷却器評価用真空容器は、内管内に挿入さ
れた冷却器の冷却能力を測定する冷却器評価用真空容器
であって、前記内管の周囲温度を測定する温度測定手段
を前記内管の外周側面に設けたことを特徴とする。
1. The vacuum container for evaluating a cooler according to the present invention is a vacuum container for evaluating a cooler that measures the cooling capacity of a cooler inserted into an inner tube, and the temperature at which the ambient temperature of the inner tube is measured. A measuring means is provided on the outer circumferential side of the inner tube.

K盗溺 次に、本発明の一実施例について図面を参照して説明す
る。
Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の構成を示す構成図である0
図において、本発明の一実施例による冷却器評価用真空
容器は、サーミスタ3と導線6と端子9とを除いて、第
2図に示す従来の冷却器評価用真空容器と同様の構成と
なっており、同一部品には同一符号を付しである。また
、それら同一部品の動作も同様である。
FIG. 1 is a configuration diagram showing the configuration of an embodiment of the present invention.
In the figure, the vacuum container for evaluating a cooler according to an embodiment of the present invention has the same structure as the conventional vacuum container for evaluating a cooler shown in FIG. Identical parts are given the same reference numerals. Further, the operations of these same parts are also the same.

サーミスタ3は内管10の外周側面に設けられており、
サーミスタ3の抵抗値を導線6を介して端子9から測定
することにより内管10の周囲温度の変化を測定する。
The thermistor 3 is provided on the outer peripheral side of the inner tube 10,
By measuring the resistance value of the thermistor 3 from the terminal 9 via the conductor 6, changes in the ambient temperature of the inner tube 10 are measured.

また、サーミスタ1とサーミスタ3とは容器内に実装す
る前に、予め温度に対するサーミスタ抵抗値を測定し、
温度校正データを得ておく。
In addition, before mounting thermistor 1 and thermistor 3 in the container, the thermistor resistance value with respect to temperature is measured in advance,
Obtain temperature calibration data.

図示せぬ外部電源から発熱体2に流す直流電流を可変し
て熱負荷を変化させてサーミスタ1の抵抗値を測定し、
このサーミスタ1の抵抗値から内管10の冷却部13に
おける冷却温°度を測定する。
The resistance value of the thermistor 1 is measured by varying the direct current flowing through the heating element 2 from an external power source (not shown) to change the heat load.
The cooling temperature in the cooling section 13 of the inner tube 10 is measured from the resistance value of the thermistor 1.

同時に、サーミスタ3の抵抗値を測定することにより内
管10の周囲温度の変化を測定し、内管10の周囲の温
度勾配を求める。
At the same time, by measuring the resistance value of the thermistor 3, changes in the ambient temperature of the inner tube 10 are measured, and the temperature gradient around the inner tube 10 is determined.

この温度勾配から得られた外管11の外周面もしくは端
子7〜9から流入する熱量の変化を内管10の冷却部1
3における冷却温度の測定値の計算に入れることにより
、冷却器14における特定のガス流量に対する熱負荷対
冷却温度の特性が定型的に得られる。
The change in the amount of heat flowing from the outer peripheral surface of the outer tube 11 or the terminals 7 to 9 obtained from this temperature gradient is reflected in the cooling section 1 of the inner tube 10.
By taking into account the measurements of the cooling temperature at 3, the characteristic of heat load versus cooling temperature for a particular gas flow rate in the cooler 14 is obtained in a formulaic manner.

このように、外管11の外周面もしくは端子7〜9から
流入する熱量を計測するためのサーミスタ3を内管10
の外周側面に設けるようにすることによって、容器の寸
法や形状、および環境温度などによる熱の流入量が不安
定なことから21定が困難であった冷却特性の定量的計
測を容易に行うことができる。
In this way, the thermistor 3 for measuring the amount of heat flowing from the outer peripheral surface of the outer tube 11 or the terminals 7 to 9 is connected to the inner tube 10.
By installing it on the outer peripheral side of the container, quantitative measurements of cooling characteristics, which have been difficult to measure due to the instability of the amount of heat inflow due to the dimensions and shape of the container and the environmental temperature, can be easily performed. Can be done.

また、サーミスタ3の抵抗値の測定により得られた温度
勾配により、サーミスタ1の抵抗値の測定により得られ
た内管10の冷却部13における冷却温度の測定値を校
正できるので、信頼性の高い冷却特性のデータを得るこ
とができる。
Furthermore, the temperature gradient obtained by measuring the resistance value of the thermistor 3 can be used to calibrate the measured value of the cooling temperature in the cooling section 13 of the inner tube 10 obtained by measuring the resistance value of the thermistor 1. Data on cooling characteristics can be obtained.

尚、本発明の一実施例ではサーミスタ3により内管10
の周囲温度の変化を測定しているが、他の温度計測器に
より内管10の周囲温度の変化を測定してもよく、これ
に限定されない。
Incidentally, in one embodiment of the present invention, the inner tube 10 is
Although the change in the ambient temperature of the inner tube 10 is measured, the change in the ambient temperature of the inner tube 10 may be measured using other temperature measuring instruments, and the present invention is not limited thereto.

九肌五皇遇 以上説明したように本発明は、冷却器の冷却能力を測定
するために冷却器が挿入される内管の外周温度を測定す
るようにすることによって、冷却特性の定量的計測を容
易に行うことができ、信頼性の高い冷却特性のデータを
得ることができるという効果がある。
As explained above, the present invention enables quantitative measurement of cooling characteristics by measuring the outer peripheral temperature of the inner tube into which the cooler is inserted in order to measure the cooling capacity of the cooler. This has the advantage that it is possible to easily carry out the process, and to obtain highly reliable data on cooling characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示ず構成図、第2図
は従来例の構成を示す構成図である。 主要部分の符号の説明 13・・・・・・サーミスタ 2・・・・・・発熱体 4〜6・・・・・・導線 7〜9・・・・・・端子 10・・・・・・内管 11・・・・・・外管 14・・・・・・冷却器
FIG. 1 is a block diagram showing the structure of an embodiment of the present invention, and FIG. 2 is a block diagram showing the structure of a conventional example. Explanation of symbols of main parts 13...Thermistor 2...Heating elements 4-6...Conductors 7-9...Terminal 10... Inner pipe 11...Outer pipe 14...Cooler

Claims (1)

【特許請求の範囲】[Claims] (1)内管内に挿入された冷却器の冷却能力を測定する
冷却器評価用真空容器であって、前記内管の周囲温度を
測定する温度測定手段を前記内管の外周側面に設けたこ
とを特徴とする冷却器評価用真空容器。
(1) A vacuum container for evaluating a cooler that measures the cooling capacity of a cooler inserted into an inner tube, wherein temperature measuring means for measuring the ambient temperature of the inner tube is provided on the outer peripheral side of the inner tube. A vacuum container for evaluating coolers.
JP22495988A 1988-09-08 1988-09-08 Vacuum vessel for cooler evaluation Pending JPH0273132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22495988A JPH0273132A (en) 1988-09-08 1988-09-08 Vacuum vessel for cooler evaluation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22495988A JPH0273132A (en) 1988-09-08 1988-09-08 Vacuum vessel for cooler evaluation

Publications (1)

Publication Number Publication Date
JPH0273132A true JPH0273132A (en) 1990-03-13

Family

ID=16821880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22495988A Pending JPH0273132A (en) 1988-09-08 1988-09-08 Vacuum vessel for cooler evaluation

Country Status (1)

Country Link
JP (1) JPH0273132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769046A (en) * 1995-04-04 1998-06-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon-carbon cylinder block
US9550320B2 (en) 2013-08-01 2017-01-24 Kabushiki Kaisha Toshipla Synthetic resin container manufacturing method and synthetic resin container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769046A (en) * 1995-04-04 1998-06-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon-carbon cylinder block
US9550320B2 (en) 2013-08-01 2017-01-24 Kabushiki Kaisha Toshipla Synthetic resin container manufacturing method and synthetic resin container

Similar Documents

Publication Publication Date Title
Hwang et al. Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeter
US5713668A (en) Self-verifying temperature sensor
US4338563A (en) Corrosion measurement with secondary temperature compensation
JP2589283B2 (en) Isothermal connector
US4971452A (en) RTD assembly
Suga et al. An Automatic Adiabatic Calorimeter for Low Temperatures. The Heat Capacity of Standard Benzoic Acid
JPS6270722A (en) Device and method of calibrating device with temperature element
US2444410A (en) Resistance thermometer
US6408215B1 (en) Isothermal port for microwave network analyzer and method
US5775811A (en) Temperature sensor system using a micro-crystalline semiconductor thin film
JPH0273132A (en) Vacuum vessel for cooler evaluation
Kopp et al. Carbon resistors as low temperature thermometers
US4682898A (en) Method and apparatus for measuring a varying parameter
US4995731A (en) Method for measuring heat transfer coefficient and sensor including heat transfer element and thermal insulation element
CN109282911A (en) High-precision temperature probe and high-precision thermometer
US3267726A (en) Heat flux probe
US4695793A (en) Resistive sensing thermal device for current measurement
JP3893475B2 (en) Thermoelectric element figure of merit measuring apparatus and measuring method
US4541730A (en) Apparatus and method for testing evacuatable dewar vessels
Zrudsky et al. A high resolution dynamic technique of thermoelectric power measurements
JP4474550B2 (en) Thermoelectric element characteristic evaluation method
Anderson et al. Characteristics of germanium resistance thermometers from 1 to 35 K and the ISU magnetic temperature scale
JPS6381242A (en) Vacuum container for evaluating cooler
CN219265523U (en) Temperature measuring device for vacuum physical deposition
CN214845452U (en) Resistance device