JPH0272293A - Heat insulating structure - Google Patents
Heat insulating structureInfo
- Publication number
- JPH0272293A JPH0272293A JP63222738A JP22273888A JPH0272293A JP H0272293 A JPH0272293 A JP H0272293A JP 63222738 A JP63222738 A JP 63222738A JP 22273888 A JP22273888 A JP 22273888A JP H0272293 A JPH0272293 A JP H0272293A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- heat insulating
- urethane foam
- foam
- agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000006260 foam Substances 0.000 claims abstract description 31
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 14
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 10
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 8
- 125000001743 benzylic group Chemical group 0.000 claims abstract description 7
- 239000005011 phenolic resin Substances 0.000 claims abstract description 6
- 239000003054 catalyst Substances 0.000 claims abstract description 5
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 5
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 5
- 239000004033 plastic Substances 0.000 claims abstract 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000012212 insulator Substances 0.000 claims description 7
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000003381 stabilizer Substances 0.000 claims description 5
- 229920001568 phenolic resin Polymers 0.000 claims description 4
- 239000004604 Blowing Agent Substances 0.000 claims description 3
- 230000023402 cell communication Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 2
- 239000005001 laminate film Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- WDPYDDUVWLUIDM-UHFFFAOYSA-N ethyl carbamate;phenol Chemical compound CCOC(N)=O.OC1=CC=CC=C1 WDPYDDUVWLUIDM-UHFFFAOYSA-N 0.000 abstract description 5
- 239000004088 foaming agent Substances 0.000 abstract description 3
- 238000004904 shortening Methods 0.000 abstract description 3
- 238000004891 communication Methods 0.000 abstract description 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 7
- 238000009413 insulation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005187 foaming Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000002650 laminated plastic Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Thermal Insulation (AREA)
- Refrigerator Housings (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、冷蔵庫、冷凍プレハブ等に利用する断熱体に
関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat insulator used in refrigerators, frozen prefabricated products, and the like.
従来の技術
第3図は、従来の断熱体を示している。以下に従来例の
構成について第3図を参考に説明する。BACKGROUND OF THE INVENTION FIG. 3 shows a conventional heat insulator. The configuration of the conventional example will be explained below with reference to FIG.
近年、断熱箱体の断熱性能を向上させるため内部を減圧
した断熱体を用いることが注目されている。この断熱体
の芯材としては、パーライト等の粉末、ハニカム、及び
発泡体等が用いられる。例えば、特開昭57−1338
70号公報に示されるように連通気泡を有する硬質ウレ
タンフオームを芯材とする提案がなされている。この特
開昭57−133870号公報を第3図で説明すると、
図において、1は断熱性構造体であシ、連続気泡を有す
る硬質ウレタンフオーム2を気密性薄膜から成る容器3
で被い、内部を0.001 tm H(Jまで減圧し密
閉している。硬質ウレタンフオーム2は、気泡骨格径3
oo〜1oOoμm程度の市販の一般材料を高温高湿下
で真空脱気して気泡を破り、連続気泡を得ることが特徴
となっている。In recent years, attention has been paid to the use of a heat insulating body with a reduced internal pressure in order to improve the heat insulation performance of the heat insulating box. As the core material of this heat insulating body, powder such as perlite, honeycomb, foam, etc. are used. For example, JP-A-57-1338
As shown in Japanese Patent No. 70, a proposal has been made to use a hard urethane foam having open cells as a core material. This Japanese Patent Application Laid-open No. 57-133870 is explained using Fig. 3.
In the figure, 1 is a heat insulating structure, 2 is a hard urethane foam having open cells, and a container 3 is made of an airtight thin film.
The hard urethane foam 2 has a cell skeleton diameter of 3.
The feature is that a commercially available general material with a size of about 0 to 100 μm is vacuum degassed under high temperature and high humidity to break the bubbles and obtain open cells.
発明が解決しようとする課題
このような断熱性構造体1においては、硬質フレタンフ
オーム2の気泡骨格径が3oO〜1000μmであるた
め、0.001 W Hq以下の圧力にしないと気体の
熱伝導率は十分に小さくならず、優れた断熱性は得られ
ないものである。基本的に気体の熱伝導率は、気体層の
壁間距離(本構成においてば、気泡骨格径)が気体の平
均自由工程より短かぐなると急激に減少するが、壁間距
離が長いほど、同じ気体熱伝導率を得るのにより低−圧
力が必要となる。一般式としては、以下の(1)式で示
される。Problems to be Solved by the Invention In such a heat-insulating structure 1, since the bubble skeleton diameter of the rigid foam 2 is 3oO to 1000 μm, the heat conduction of the gas must be maintained at a pressure of 0.001 W Hq or less. The ratio is not sufficiently small, and excellent heat insulation properties cannot be obtained. Basically, the thermal conductivity of a gas decreases rapidly when the distance between the walls of the gas layer (in this configuration, the bubble skeleton diameter) becomes shorter than the mean free path of the gas, but as the distance between the walls becomes longer, the same Lower pressures are required to obtain gas thermal conductivity. The general formula is represented by the following formula (1).
Ky=A−p−V・CrCLf−d/(Lf+d))
・・・−(1)A:定数 ρ:密度(Ks+/i〕
V:平均分子速度Cm/s:]
Lf:平均自由工程
Cr:定容比熱(ksl/Kp″C〕
d:壁間距離(m]
よって、従来例においては、気泡骨格径が300〜10
00μmであるため、1o g Hg以下という工業
的に取り扱いにくい圧力が必要となり、量産での大規模
な設備や排気時間が長くなる等の課題があった。さらに
、10mmHq以下の圧力域では材料のガス放出量の影
響を受けやすぐ、低分子量のモノマー成分を含有しやす
い有機体の本構成の場合、特に排気時間が長くかかる課
題があり、量産効率が悪かった。Ky=A-p-V・CrCLf-d/(Lf+d))
...-(1) A: Constant ρ: Density (Ks+/i) V: Average molecular velocity Cm/s:] Lf: Mean free path Cr: Constant volume specific heat (ksl/Kp″C) d: Distance between walls (m) Therefore, in the conventional example, the bubble skeleton diameter is 300 to 10
00 μm, a pressure of 1 o g Hg or less, which is difficult to handle industrially, is required, which poses problems such as the need for large-scale equipment and long evacuation time in mass production. Furthermore, in the pressure range of 10 mmHq or less, it is easily affected by the amount of gas released by the material, and in the case of this organic composition that tends to contain low molecular weight monomer components, there is a problem that the evacuation time is particularly long, which reduces mass production efficiency. It was bad.
本発明は、上記課題分解決するため工業的に取り扱いや
すい低真空度域で優れた断熱性能を得ることにより、排
気時間を短縮し、量産を可能とするものである。The present invention solves the above-mentioned problems by achieving excellent heat insulation performance in a low vacuum range that is industrially easy to handle, thereby shortening the evacuation time and making mass production possible.
課題を解決するための手段
本発明は、水酸基価400〜eoomgKOH/、9の
ベンジリックエーテル型フェノ−yv樹脂と有機ポリイ
ソシアネート、触媒、整泡剤1発泡剤及び気泡連通化剤
を使って得られる連続気泡溝造の硬質フェノールウレタ
ンフォームヲ1tff 熱体の芯材トして用いるもので
ある。Means for Solving the Problems The present invention uses a benzylic ether type pheno-yv resin with a hydroxyl value of 400 to eoomgKOH/9, an organic polyisocyanate, a catalyst, a foam stabilizer, a foaming agent, and a cell communication agent. This is a hard phenolic urethane foam with open-cell groove structure that is used as the core material of the heating element.
作 用
本発明は上記構成により芯材は微細な気泡骨格のため、
この芯材を、金属−プラスチックスラミネートフィルム
から成る容器で被い、内部を減圧すると、0.1〜0.
01 w Hg程度の工業的に取り扱いやすい圧力によ
っても優れた断熱性能が得られるもので、排気時間の短
縮化によって、量産効率が大幅に向上するものである。Function The present invention has the above-mentioned structure, and since the core material has a fine cell skeleton,
This core material is covered with a container made of metal-plastic laminate film, and when the inside is reduced in pressure, the pressure is reduced to 0.1 to 0.
Excellent heat insulation performance can be obtained even at an industrially easy-to-handle pressure of about 0.01 w Hg, and by shortening the evacuation time, mass production efficiency can be greatly improved.
実施例
以下、本発明の一実施例を第1図、第2図を3考に説明
する。EXAMPLE Hereinafter, an example of the present invention will be explained with reference to FIG. 1 and FIG. 2.
図において、4は表1に示す原料を用いてウレタン高圧
発泡機で発泡し、硬化させた硬質フェノールウレタンフ
オームで常温においてエージングした後、所定の大きさ
に切断したものである。In the figure, 4 is a hard phenol urethane foam that was foamed in a high-pressure urethane foaming machine using the raw materials shown in Table 1, cured, aged at room temperature, and then cut into a predetermined size.
表1
表1においでレジンA及びBはベンジリックエーテル型
フェノール樹脂で、レジンAは水酸基価4 s Omy
KOH/’、j9 、 vノ、/Bは水酸基価50
Q 119KOH/′gである。整泡剤は信越化学(株
)環シリコーン界面活性剤F−373,発泡剤は昭和電
工((1)フロンR−1j 、触i1はジメナルエタ5
ノ〜ルアミン、気泡連通化剤は日本油脂(株)製ステア
リン酸カルシウムである。有博−コリイノシ、 2′:
、−)は日本ポリウレタン(株)製粗製ジ;フェールメ
タンジイソンアネート(アミン当量136)である。比
較例として用いたレジンC及びレシンDはベンジリック
エーテル型フェノール樹脂で、レジンCは水酸基価3
a o rruj KOH/、q 、レシンDは水酸基
価610写KOH/、51’である。これらの原料を種
々組み合せて発泡を行ない、この一部を実施例として1
.4(z 1 、−hx 2、比較例として1.・にA
、 7ffi B 、 7fa Cを表わした。得ら
れた硬質フェノールウレタンフォム4の密度、連続気泡
率及び気泡骨格径、圧縮強度を表2に示す。この後、得
られた硬質ウレタンフオーム4を150℃で約2時間加
熱し、吸着水分及び膨潤ガスを蒸発させてアルミ蒸着ポ
リエステルフィルムから成る容器5で被い、内部を0.
001 、0.01 、0.1 、0.5.1 、Om
xHq まで減圧し、密閉して断熱体6を得た。このと
きの排気時間は、実施例、比較例共に、それぞれ35分
。Table 1 In Table 1, resins A and B are benzylic ether type phenolic resins, and resin A has a hydroxyl value of 4 s Omy.
KOH/', j9, vno, /B has a hydroxyl value of 50
Q: 119KOH/'g. The foam stabilizer is Shin-Etsu Chemical Co., Ltd.'s cyclic silicone surfactant F-373, and the foaming agent is Showa Denko ((1) Freon R-1j, Touch i1 is Dimenal Eta 5.
The nolamine and the bubble communication agent are calcium stearate manufactured by NOF Corporation. Arihiro - Cory boar, 2':
, -) is crude di-fermethane diisonanate (amine equivalent: 136) manufactured by Nippon Polyurethane Co., Ltd. Resin C and Resin D used as comparative examples are benzylic ether type phenolic resins, and Resin C has a hydroxyl value of 3.
ao rruj KOH/, q, Resin D has a hydroxyl value of 610 KOH/, 51'. Various combinations of these raw materials are used for foaming, and some of them are used as examples.
.. 4 (z 1 , -hx 2, as a comparative example 1.・A
, 7ffi B, and 7fa C. Table 2 shows the density, open cell ratio, cell skeleton diameter, and compressive strength of the obtained hard phenolic urethane foam 4. Thereafter, the obtained rigid urethane foam 4 is heated at 150° C. for about 2 hours to evaporate the adsorbed water and swelling gas, and is covered with a container 5 made of aluminum-deposited polyester film, so that the inside is covered with a 0.
001, 0.01, 0.1, 0.5.1, Om
The pressure was reduced to xHq and the heat insulator 6 was obtained. The evacuation time at this time was 35 minutes for both the example and the comparative example.
6分、2分、1分30秒であった。得られた断熱体6の
密閉直後の熱伝導率も表2に示した。なお、熱伝導率は
真空理工(株)製K Maticを用い平均温度24
℃で測定した。They were 6 minutes, 2 minutes, and 1 minute 30 seconds. The thermal conductivity of the obtained heat insulator 6 immediately after sealing is also shown in Table 2. The thermal conductivity was measured using K Matic manufactured by Shinku Riko Co., Ltd. at an average temperature of 24.
Measured at °C.
表2から明らかなように、水酸基価400〜600 #
KOH/jJ (7) ベンジリックエーテル型フェ
ノール樹脂と有機ポリイソシアネート、触媒9発泡剤、
整泡剤及び気泡連通剤を使って得られる連fffi E
泡構造の硬質フェノールウレタンフオーム4は、気泡
骨格が非常に微細なものになり、フオーム収縮やフライ
アビリテ、イーの問題もなく、寸法安定性にすぐれたフ
オームが得られることが判った。−力水酸基価が400
〜KOH/、9以下であるレジンCではフオームの圧縮
強度が低く、減圧下でのフオーム収縮が発生し寸法安定
性に欠け、圧縮強度を確保するため密度を上げた場合に
おいては得られる断熱体6の熱伝導率を悪化させる。丑
だ、水酸基価600岬KOH/、9以上であるレジンD
ではフライアビリティ−が悪く減圧された断熱体中で粉
末化し、断熱体6が形成できなかった。As is clear from Table 2, the hydroxyl value is 400 to 600 #
KOH/jJ (7) Benzylic ether type phenolic resin and organic polyisocyanate, catalyst 9 blowing agent,
Continuous fffi E obtained using a foam stabilizer and a cell opening agent
It was found that the hard phenol urethane foam 4 with a foam structure has a very fine cell skeleton, and a foam with excellent dimensional stability can be obtained without problems such as foam shrinkage, flyability, and E. - Hydroxyl value is 400
~KOH/, Resin C which is less than 9 has a low foam compressive strength, and the foam shrinks under reduced pressure and lacks dimensional stability.If the density is increased to ensure compressive strength, the insulation material obtained 6 deteriorates the thermal conductivity. Resin D with a hydroxyl value of 600 Misaki KOH/, 9 or more
In this case, the flyability was poor and the powder was pulverized in the heat insulating body under reduced pressure, so that the heat insulating body 6 could not be formed.
これらの現象については、原料の相溶性や樹脂硬化に至
るプロセス等が影響していると考えられるが、本プロセ
スの詳細は解明に至っていない。These phenomena are thought to be influenced by the compatibility of raw materials and the process leading to resin curing, but the details of this process have not yet been elucidated.
以上のように発泡し、微細な気泡骨格を有する硬質ウレ
タンフオーム4を断熱体6の芯材として用いることによ
り、断熱体θ中の気体熱伝導率は。By using the hard urethane foam 4 which is foamed and has a fine cell skeleton as the core material of the heat insulating body 6 as described above, the thermal conductivity of the gas in the heat insulating body θ is as follows.
気泡骨格径のより大きなものに比べて、高い圧力でも同
等まで低減でき、工業的にも取り扱いやすい0.1〜0
.01 mm Hgで優れた断熱性能を発揮する。この
結果、排気時間が短時間ですむため、量産しやすく、又
、排気装置も簡易なもので圧力が得られる等、生産性に
大きく寄与するものである1゜また、フオーム収縮やフ
ライアビリティ−の問題もなく寸法安定性にすぐれ2次
加工等の作業性も良好である。なお、気泡骨格径を微細
化すると、排気抵抗が増加し、所定の圧力まで減圧する
のに要する排気時間は長くなると考えられるが、0.0
1111111 Hg域では影響はなく、さらに分子流
領域が支配する0、001 M Hgで影響が現われる
。従って本発明で用いる断熱体は0.1〜0.01 m
m)(gの圧力において十分な断熱性能を発揮できるた
め気泡骨格径を微細化しても生産性に対して問題はない
。Compared to those with a larger bubble skeleton diameter, it can reduce pressure to the same level even at high pressures, and is easy to handle industrially.
.. Demonstrates excellent heat insulation performance at 0.01 mm Hg. As a result, the evacuation time is short, making it easier to mass-produce, and the evacuation device is also simple, allowing pressure to be obtained, which greatly contributes to productivity. It has no problems, has excellent dimensional stability, and has good workability in secondary processing. It should be noted that if the bubble skeleton diameter is made finer, the exhaust resistance increases and the exhaust time required to reduce the pressure to a predetermined pressure becomes longer.
There is no effect in the 1111111 Hg region, and an effect appears in the 0,001 M Hg region where the molecular flow region dominates. Therefore, the heat insulator used in the present invention has a thickness of 0.1 to 0.01 m.
m) (Since sufficient heat insulating performance can be exhibited at a pressure of g, there is no problem with productivity even if the cell skeleton diameter is made finer.
発明の効果
本発明は、上記の説明から明らかなように、以下に示す
ような効果が得られるのである。Effects of the Invention As is clear from the above description, the present invention provides the following effects.
水酸基価400〜800 mm HCJのベンジリック
エーテル型フェノール樹脂と有機ポリイソシアネート、
触媒、整泡剤5発泡剤及び気泡連通化剤を使って得られ
る連続気泡構造の硬質フェノールウレタンフオームは、
極めて微細な気泡骨格を有する。従ってこのウレタンフ
ォームラ金属−プラスチノクスラミネートフィルムから
成る容器で被い、内部を減圧すると、工業的に取り扱い
やすい0゜01〜0.lmmHgの圧力でも十分に気体
の熱伝導が低下し優れた断熱性を示すため、短時間かつ
容易な排気設備で量産することが可能となり、大幅な生
産性向上に寄与するものである。また、芯材となる硬質
フェノールウレタンフオームはフオーム収1@やフライ
アビリティ−の問題もなく寸法安定性にすぐれ2次加工
等の作業性も良好であるという利点を具備している。Hydroxyl value 400-800 mm HCJ benzylic ether type phenol resin and organic polyisocyanate,
A hard phenolic urethane foam with an open cell structure obtained using a catalyst, a foam stabilizer, a blowing agent, and a cell communication agent is
It has an extremely fine cell skeleton. Therefore, by covering the container with this urethane foam metal-plastinox laminate film and reducing the pressure inside, the temperature will be 0°01 to 0.0°, which is easy to handle industrially. Even at a pressure of 1 mmHg, the heat conduction of the gas is sufficiently reduced and it exhibits excellent heat insulation properties, so it can be mass-produced in a short time and with simple exhaust equipment, contributing to a significant improvement in productivity. In addition, the hard phenol urethane foam that serves as the core material has the advantage of having excellent dimensional stability without problems with foam yield or flyability, and good workability in secondary processing and the like.
第1図は本発明の一実施例における硬質フェノールウレ
タンフオームの外観斜視図、第2図は同断熱体の断面図
、第3図は従来例の断熱性構造体の断面図である。
4・・・・・・硬質フェノールウレタンフオーム、5・
・・・・・容器、6・・・・・・断熱体。
代理人の氏名 弁理士 粟 野 重 孝 ほか1名gP
wフェノールフレダソフ1−ム
5− 百 酪
6−・ m 悲 滲FIG. 1 is an external perspective view of a hard phenolic urethane foam according to an embodiment of the present invention, FIG. 2 is a sectional view of the same heat insulating body, and FIG. 3 is a sectional view of a conventional heat insulating structure. 4...Hard phenolic urethane foam, 5.
...Container, 6...Insulator. Name of agent: Patent attorney Shigetaka Awano and one other gP
w phenolfredasof1-mu5-100 butybean6-・m sad oo
Claims (1)
クエーテル型フェノール樹脂と有機ポリイソシアネート
、触媒、整泡剤、発泡剤及び気泡連通化剤を用いて得ら
れる連続気泡構造の硬質フェノールウレタンフォームを
金属−プラスチックスラミネートフィルムから成る容器
で被い、内部を減圧して密閉した断熱体。A hard phenolic urethane foam with an open cell structure obtained using a benzylic ether type phenolic resin with a hydroxyl value of 400 to 600 mgKOH/g, an organic polyisocyanate, a catalyst, a foam stabilizer, a blowing agent, and a cell communication agent is made into a metal-plastic material. An insulator that is covered with a container made of laminate film and sealed by reducing the pressure inside.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63222738A JP2548323B2 (en) | 1988-09-06 | 1988-09-06 | Insulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63222738A JP2548323B2 (en) | 1988-09-06 | 1988-09-06 | Insulation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0272293A true JPH0272293A (en) | 1990-03-12 |
JP2548323B2 JP2548323B2 (en) | 1996-10-30 |
Family
ID=16787128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63222738A Expired - Fee Related JP2548323B2 (en) | 1988-09-06 | 1988-09-06 | Insulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2548323B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5693685A (en) * | 1993-08-10 | 1997-12-02 | Matsushita Electric Industrial Co., Ltd. | Thermal insulator and method for producing the same |
JP2009014267A (en) * | 2007-07-04 | 2009-01-22 | Corona Corp | Hot water storage type hot water supply machine |
-
1988
- 1988-09-06 JP JP63222738A patent/JP2548323B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5693685A (en) * | 1993-08-10 | 1997-12-02 | Matsushita Electric Industrial Co., Ltd. | Thermal insulator and method for producing the same |
JP2009014267A (en) * | 2007-07-04 | 2009-01-22 | Corona Corp | Hot water storage type hot water supply machine |
Also Published As
Publication number | Publication date |
---|---|
JP2548323B2 (en) | 1996-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW568929B (en) | Open-celled rigid polyurethane foam and method for producing the same | |
US5084320A (en) | Evacuated thermal insulation | |
CN105985503B (en) | A kind of negative-pressure foaming polyurethane reaction composition and the method using the composition preparation polyurethane foam | |
CN107474303B (en) | A kind of negative Poisson's ratio polymer foam material and preparation method thereof | |
JPH071479A (en) | Manufacture of heat-insulating structure | |
CN109485910A (en) | Flexible high-resistance combustion property biology base aerogel material and preparation method thereof | |
US5439945A (en) | Foams produced under reduced pressure and method of preparing such foams | |
JPH0272293A (en) | Heat insulating structure | |
JP2002504879A (en) | Composite vacuum insulation panel of polystyrene and polyurethane and its use for manufacturing insulation members | |
JP4428034B2 (en) | Foamed polyimide structure and manufacturing method thereof | |
JPH0272294A (en) | Heat insulating structure | |
US10336040B2 (en) | Method for manufacturing a composite element for vacuum insulation elements | |
JPS6361588B2 (en) | ||
JPS62251593A (en) | Manufacture of heat insulator | |
JPS61235671A (en) | Heat insulator | |
JPS61153476A (en) | Heat insulator | |
JPS62147275A (en) | Manufacture of heat insulator | |
JPS61153477A (en) | Heat-insulating box body | |
JPS63201477A (en) | Heat insulator | |
JPH0272295A (en) | Heat insulating structure | |
JPS6259375A (en) | Heat insulator | |
JPH04143586A (en) | Adiabatic body | |
JPS6334479A (en) | Heat insulator | |
JPS63116082A (en) | Manufacture of heat insulator | |
CN108976628A (en) | A kind of EPS pressure-resisting plate produced using supercritical carbon dioxide process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |