[go: up one dir, main page]

JPH0269655A - On-line automatic analyzing instrument for bioreactor - Google Patents

On-line automatic analyzing instrument for bioreactor

Info

Publication number
JPH0269655A
JPH0269655A JP63220430A JP22043088A JPH0269655A JP H0269655 A JPH0269655 A JP H0269655A JP 63220430 A JP63220430 A JP 63220430A JP 22043088 A JP22043088 A JP 22043088A JP H0269655 A JPH0269655 A JP H0269655A
Authority
JP
Japan
Prior art keywords
sample
bioreactor
filter
pump
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63220430A
Other languages
Japanese (ja)
Inventor
Yoshiki Yamagata
山縣 孝樹
Toshio Tanaka
俊夫 田中
Hirobumi Motoi
博文 本井
Shinichi Fukutome
真一 福留
Jun Nakamura
準 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Original Assignee
Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japanese Res & Dev Assoc Bio Reactor Syst Food Ind filed Critical Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Priority to JP63220430A priority Critical patent/JPH0269655A/en
Publication of JPH0269655A publication Critical patent/JPH0269655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To attain continuation and automation of a series of pretreating processes by assembling a filter which filters pH-adjusted samples in a turntable. CONSTITUTION:The sample of the product of a bioreactor 8 is sucked into and held in a sample loop 7 through a low-pressure six-way changeover valve 6 while the gas produced from the sample is exhausted by means of an exhaust pump 22 by opening a solenoid valve 5. A fixed quantity of a buffer liquid for dilution having a desired pH value in a tank 1 is fed to a dilution tank 9 by pushing out the sample into a loop by means of a pump 3 through a changeover solenoid valve 4 and the valve 6 after the buffer liquid is passed through a filter 2 and mixed with the sample by means of a stirrer. Thus the sample is diluted and adjusted in pH. The sample liquid thus adjusted is fed to a filter 32 by means of a pump 14 through a solenoid valve 23 and small holes 36 and 33 through pipelines and filtered by the filter under a pressure. The liquid filtered by the filter 32 is fed to a sample loop 17 through small holes 31 and 27 and a hexagonal valve 16 and further fed to a column 18. A solvent for gradient in a reservoir tank 20 is sent to the column 18 by means of an HPLC pump 19.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明はバイオリアクターより生成される生成物のオン
ライン分析装置、さらに詳しくは、高速液体クロマトグ
ラフィーを利用したオンライン分析装置である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention is an online analysis device for products produced from a bioreactor, and more specifically, an online analysis device using high performance liquid chromatography.

[従来の技術1 バイオリアクターは狭義には固定化酵素反応を利用した
りアクタ−として、又広義には発酵、培養等を含めた生
化学反応を利用したりアクタシと定義される。バイオリ
アクターにより有用生体成分を生産するにあたりリアク
ターの運転管理はきわめて重要である。運転管理の指標
としては、従来からpH,温度、溶存酸素等の物理化学
的指標が用いられてきたが、近年固定化酵素を用いたバ
イオセンサーが開発され、発酵や培養におけるグルコー
スの消長やアルコールの生成等をオンラインで検出し、
制御する方法が種々検討されている。
[Prior Art 1] A bioreactor is defined in a narrow sense as an actor that utilizes an immobilized enzyme reaction, and in a broader sense as an actor that utilizes a biochemical reaction including fermentation, culture, etc. Operational management of the reactor is extremely important when producing useful biological components using a bioreactor. Physical and chemical indicators such as pH, temperature, and dissolved oxygen have traditionally been used as indicators for operational management, but in recent years biosensors using immobilized enzymes have been developed, Detect generation etc. online,
Various control methods are being studied.

しかしながらバイオセンサーによるオンラインのモニタ
リング並びに制御システムにおいては固定化酵素の失活
やリアクター内の成分の電極膜への吸着等により必ずし
も長期間安定な出力が得られないという欠点がある。ま
た蛋白質、炭水化物。
However, online monitoring and control systems using biosensors have the drawback that stable output cannot always be obtained for a long period of time due to deactivation of immobilized enzymes, adsorption of components in the reactor to electrode membranes, and the like. Also protein and carbohydrates.

脂質、核酸関連物質のような高分子化合物に対して利用
しつるバイオセンサーは今のところはほとんど無いに等
しい。そのため上記化合物をメルクマールとしたい場合
には一般には、手動にてリアクターより経時的に試料を
採取し、希釈、 pH調整さらに遠心分離、フィルター
濾過等の前処理を施した後高速液体クロマトグラフによ
り別途分析し、その結果をバイオリアクター運転にフィ
ードバックしているのが現状である。
At present, there are almost no biosensors that can be used for macromolecular compounds such as lipids and nucleic acid-related substances. Therefore, if you want to make the above compound into mercumalum, you generally manually collect samples from the reactor over time, perform pretreatments such as dilution, pH adjustment, centrifugation, and filter filtration, and then separate them using high-performance liquid chromatography. Currently, the results are analyzed and fed back to bioreactor operation.

高速液体クロマトグラフィーは、近年急速に進歩し、複
雑な生体成分の分離分析が短時間にしかも再現性よく行
うことができるようになってきたが、上述の前処理工程
とくにpH調整後の試料中の懸濁物の除去を人手で行う
必要があり、これがオンライン自動分析のネックになっ
ていた。
High-performance liquid chromatography has rapidly advanced in recent years, and it has become possible to separate and analyze complex biological components in a short time and with good reproducibility. The suspended matter had to be removed manually, which was a bottleneck for online automated analysis.

[発明が解決しようとする課題] 本発明の目的は上記問題点を解決し、一連の前処理工程
を自動化・連続化した、高速液体クロマトグラフを利用
したバイオリアクターオンライン自動分析装置を提供す
ることにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the above-mentioned problems and provide a bioreactor online automatic analysis device using a high-performance liquid chromatograph that automates and continuousizes a series of pretreatment steps. It is in.

[課題を解決するための手段] 本発明はバイオリアクターより生成される生成物の試料
を採取する手段、採取した試料を希釈しpHを調整する
手段、pH調整後の試料をターンテーブルに組み込んだ
フィルターにより濾過する手段、濾過後の試料を高速液
体クロマトによりクロマトグラムを得る手段および試料
ラインを洗滌処理する手段を備えてなるバイオリアクタ
ーオンライン自動分析装置および該自動分析装置にさら
にクロマトグラムの特定画分の面積値を算出する手段お
よび該面積値を生成物の機能特性に換算する手段を加え
たバイオリアクターオンライン自動分析装置である。
[Means for Solving the Problems] The present invention includes a means for collecting a sample of a product produced from a bioreactor, a means for diluting the collected sample and adjusting the pH, and a turntable incorporating the sample after pH adjustment. A bioreactor online automatic analyzer comprising means for filtering with a filter, means for obtaining a chromatogram using high-performance liquid chromatography for the sample after filtration, and means for washing the sample line, and the automatic analyzer further includes a specific image of the chromatogram. This is a bioreactor online automatic analyzer that includes a means for calculating the area value of the product and a means for converting the area value into functional properties of the product.

第1図に本発明の装置の一例を示す。第1図を参照しな
がら本発明の装置および操作を詳細に説明する。
FIG. 1 shows an example of the apparatus of the present invention. The apparatus and operation of the present invention will now be described in detail with reference to FIG.

バイオリアクター8により生成される生成物のサンプル
は、サンプル用電磁弁5を開き、排気用ポンプ22によ
り排気しながら、低圧六方切り替え弁6を経てサンプル
ループ7に吸引保持される。
A sample of the product produced by the bioreactor 8 is sucked and held in the sample loop 7 via the low-pressure six-way switching valve 6 while the sample electromagnetic valve 5 is opened and the exhaust pump 22 is evacuated.

希釈用の液は所望のpl(のバッファー液で、希釈液タ
ンク1に貯えられ、フィルター2を通ってポンプ3によ
り切り替え電磁弁4.低圧六方切り替え弁6を経て一定
量がサンプルループ7に保持されたサンプルを押し出し
ながら希釈槽9に送られ、マグネチックスタラ−1Oに
よって両者は均一に混合され、サンプルの希釈・pH調
整が行われる。バイオリアクターの生成物の分析のため
には、バイオリアクター出口から採取したサンプルを直
ちに濾過することが多いが、上記の操作のように、液体
クロマトにかけるためのpl(調整を行い、その際生じ
つる沈殿も含めて、次の濾過手段で濾過することが好ま
しい、濾過手段は、本発明の分析装置の特徴をなすもの
であって、ターンテーブル1)に複数個のディスポーザ
ブルフィルター32を組み込んだものである。この−例
を第2図に示す。第2図はフィルターの組み込みおよび
処理液の流れを説明するための一部断面図である。ター
ンテーブル1)には、回転軸30に対して同心円上に複
数個のターンテーブルを貫通する小孔31を設けそれぞ
れ密閉コマ型のフィルター32をターンテーブル上面に
密着するように取りつける。さらに各フィルターに対し
て、別の同心円上に1個宛のターン結する。ターンテー
ブル1)にはこれと接する固定盤34を設け、前記ター
ンテーブルに設けた複数対の小孔がターンテーブルを回
転させることにより完全に合致する1対の小孔36.3
7を設け、この小孔36.37はそれぞれ第1図の希釈
槽9およびカラム18と弁等を介して配管連結する。タ
ーンテーブルと固定盤の小孔が合致し、濾過通液時に漏
液しないようにするため、接触面のすり合せ例えばター
ンテーブルの下面と小孔36.37の配管のっぽ出し面
とをすり合せ等の加工をすることが望ましい。フィルタ
ー32は、ディスポーザブル形式のもので容易に着脱で
きるものがよく、用いるフィルターは孔径045μm以
下が好ましい。
The dilution solution is a buffer solution of the desired PL, which is stored in a diluent tank 1, passes through a filter 2, is switched by a pump 3 using a solenoid valve 4, and a fixed amount is retained in a sample loop 7 via a low-pressure six-way switching valve 6. The sample is sent to the dilution tank 9 while being pushed out, and both are mixed uniformly by the magnetic stirrer 1O, and the sample is diluted and pH adjusted. In many cases, the sample taken from the outlet is immediately filtered, but as in the above procedure, it is necessary to adjust the PL (preparation method) for applying it to liquid chromatography, and filter it with the following filtration means, including the precipitate that is generated at that time. The preferred filtration means is a feature of the analyzer of the present invention, and is a turntable 1) incorporating a plurality of disposable filters 32. An example of this is shown in FIG. Figure 2 is a partial cross-sectional view for explaining the incorporation of the filter and the flow of the processing liquid.The turntable 1) has a plurality of small holes 31 passing through the turntable concentrically with respect to the rotating shaft 30. are provided, and a closed top-shaped filter 32 is attached to the top surface of the turntable in close contact with each other. Furthermore, for each filter, one turn is connected on another concentric circle. The turntable 1) is provided with a fixed platen 34 in contact with the turntable 1), and a plurality of pairs of small holes provided in the turntable are provided with a pair of small holes 36.3 that are perfectly aligned when the turntable is rotated.
7 are provided, and the small holes 36 and 37 are connected to the dilution tank 9 and column 18 shown in FIG. 1 through valves and the like, respectively. In order to ensure that the small holes of the turntable and fixed plate match and that there is no leakage during filtration, the contact surfaces should be rubbed together, for example, the bottom surface of the turntable and the exposed surface of the piping in small holes 36 and 37 should be rubbed together. It is desirable to perform the following processing. The filter 32 is preferably of a disposable type and can be easily attached and detached, and the filter used preferably has a pore diameter of 045 μm or less.

濾過すべき希釈槽中の液はポンプ14により切り替え電
磁弁23を経てサンプルループ24に一旦移され、再び
ポンプ14により切り替え電磁弁23を経て小孔36.
33を配管を介して通過してフィルター32で加圧濾過
され、濾液は小孔31.37を通過して高圧サンプリン
グ六方弁16を経てサンプルループ17に送られ、つい
でカラム18に送られる。グラジェント用ソルベントは
貯槽20に貯えられ、HPLCポンプ19によりカラム
18に送られる。上記濾過はポンプのサクションを利用
した吸引濾過であってもよい。
The liquid in the dilution tank to be filtered is once transferred to the sample loop 24 via the switching solenoid valve 23 by the pump 14, and then transferred to the small hole 36 by the pump 14 again via the switching solenoid valve 23.
33 via piping and pressure filtration with filter 32, the filtrate passes through small holes 31, 37 and is sent to sample loop 17 via high pressure sampling six-way valve 16, and then to column 18. The gradient solvent is stored in a storage tank 20 and sent to the column 18 by an HPLC pump 19. The above filtration may be suction filtration using the suction of a pump.

各サンプルの採取〜分析前には、希釈液タンク1中の希
釈液により、ポンプ3.+4.切り替え電磁弁4.15
等を操作して、流路を洗滌することができることは第1
図より明らかである。図において13は廃液用電磁弁、
 21は廃液瓶であり、高圧系の流路洗滌のための切り
替え電磁弁15と希釈液タンク1との配管ならびに排液
槽(図示せず)への配管等は省略し、矢印で示すに止め
た。
Before each sample is collected and analyzed, the diluent in the diluent tank 1 is used to pump the pump 3. +4. Switching solenoid valve 4.15
The first thing is that you can clean the flow path by operating the
It is clear from the figure. In the figure, 13 is a waste liquid solenoid valve;
Reference numeral 21 is a waste liquid bottle, and the piping between the switching solenoid valve 15 for cleaning the flow path of the high-pressure system and the diluent tank 1, as well as the piping to the drain tank (not shown), etc., are omitted and only shown by arrows. Ta.

本発明の装置により分析、定mを行なうにあたり、使用
するクロマトグラフィーの手法としてはイオン交換クロ
マトグラフィー、分子篩クロマトグラフィー、疎水クロ
マトグラフィー アフィニティークロマトグラフィー、
逆相クロマトグラフィー等高速液体クロマトグラフィー
として用いられる手法ならいづれでもよい。
When performing analysis and determination using the apparatus of the present invention, chromatography techniques used include ion exchange chromatography, molecular sieve chromatography, hydrophobic chromatography, affinity chromatography,
Any method used for high performance liquid chromatography such as reverse phase chromatography may be used.

以上述べたように本発明の装置は、前述のフィルター3
2の脱着以外は、全て自動的に連続的に行うことができ
る。フィルターの交換は、分析サンプルの性状、分析頻
度にもよるが、ターンテーブルにフィルターを8個セッ
トできる場合、12時間に1回程度であるから、バイオ
リアクターオンライン自動分析装置として充分使用し得
るものである。
As described above, the device of the present invention has the above-mentioned filter 3.
All steps except attachment and detachment in step 2 can be performed automatically and continuously. The filters need to be replaced once every 12 hours if 8 filters can be set on the turntable, although this depends on the properties of the analysis sample and the frequency of analysis, so it can be used as a bioreactor online automatic analyzer. It is.

さらに得られたクロマトグラムの特定の両分の面積値が
、バイオリアクターによる生成物の特性値と高い相関の
ある場合には、その画分の面積値を演算する手段および
、その面積値を特性値に換算する手段を加え、運転プロ
グラムにフィードバックさせるようにしておけば、バイ
オリアクター運転の自動コントロールも可能になる。
Furthermore, if the area values of specific two fractions of the obtained chromatogram are highly correlated with the characteristic values of the product produced by the bioreactor, a method for calculating the area value of that fraction and a characteristic of the area value are provided. By adding a means to convert the value into a value and feeding it back to the operating program, automatic control of bioreactor operation becomes possible.

[実施例] 小麦グルテンを固定化酵素を用いて部分加水分解を行う
バイオリアクターの生成物の分析を第1図に示した装置
で行った。原料の小麦グルテンの濃度は5%1反応温度
40℃、空間速度2hr−’で運転されているバイオリ
アクターから、試料0.5mj2をとり、希釈倍率30
倍、pHを4.2に調整し、親水性膜0.45μmのフ
ィルターを用いて濾過し、内径4、6mm長さ25cm
の0DS−120Tカラム(東ソー社製)を用い、1m
I2/minの流速で傾斜溶離法による高圧液相クロマ
トグラフィーを行った。使用した溶媒系は、A液に0.
1%(容量%、以下同じ)のトリフルオロ酢酸、B液に
0.1%のトリフルオロ酢酸、 19.9%の水、60
%のアセトニトリル120%のインプロパツールから成
る溶液を用いた。
[Example] The product of a bioreactor in which wheat gluten is partially hydrolyzed using an immobilized enzyme was analyzed using the apparatus shown in FIG. The concentration of wheat gluten as a raw material was 5%. A sample of 0.5 mj2 was taken from a bioreactor operated at a reaction temperature of 40°C and a space velocity of 2 hr-' and diluted at a dilution rate of 30.
Adjust the pH to 4.2 and filter using a 0.45 μm hydrophilic membrane filter with an inner diameter of 4.6 mm and a length of 25 cm.
0DS-120T column (manufactured by Tosoh), 1 m
High-pressure liquid phase chromatography was performed using a gradient elution method at a flow rate of I2/min. The solvent system used was 0.
1% (volume %, same below) trifluoroacetic acid, 0.1% trifluoroacetic acid in B solution, 19.9% water, 60
A solution consisting of 120% Improper Tools in 120% Acetonitrile was used.

試料採取から分析終了までの所要時間は20分であった
。この分析と並行して行った従来法による前処理−クロ
マトグラフィーの組合せでは90分を要した。
The time required from sample collection to completion of analysis was 20 minutes. A combination of conventional pretreatment and chromatography performed in parallel with this analysis required 90 minutes.

[発明の効果] 本発明によればターンテーブルに組み込んだ濾過手段を
備えたことによりポンプ操作、バルブの切り換え操作等
を自動化するだけでクロマトグラフィーと連動するバイ
オリアクターのオンライン自動化が可能となり、コンピ
ューターを導入することにより希釈率、試料注入量等を
任意に設定できる。さらに液体クロマトグラフィーで用
いるカラムを生体成分分析に適したものを任意に選択す
ることができ、様々な生体成分分析が可能である。
[Effects of the Invention] According to the present invention, by providing a filtration means built into a turntable, online automation of a bioreactor that is linked to chromatography is possible simply by automating pump operations, valve switching operations, etc. By introducing this, the dilution rate, sample injection amount, etc. can be set arbitrarily. Furthermore, columns used in liquid chromatography can be arbitrarily selected to be suitable for biological component analysis, and various biological component analyzes are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の一例を示す説明図、第2図は濾
過手段の説明図である。 1・・・・・・希釈液タンク 2・・・・・・フィルター 3・・・・・・ポンプ 4・・・・・・切り替え電磁弁 5・・・・・・サンプル用電磁弁 6・・・・・・低圧六方切り替え弁 7・・・・・・サンプルループ 8・・・・・・バイオリアクター 9・・・・・・希釈槽 IO・・・・・・マグネチックスターラ−1)・・・・
・・ターンテーブル 12・・・・・・モーター 13・・・・・・廃液用電磁弁 14・・・・・・ポンプ 15・・・・・・切り替え電磁弁 16・・・・・・高圧サンプリング六方弁17・・・・
・・サンプルループ 18・・・・・・カラム 19・・・・・・HPLCポンプ 20・・・・・・貯槽 21・・・・・・廃液瓶 22・・・・・・排気用ポンプ 23・・・・・・切り替え電磁弁 24・・・・・・サンプルループ 30・・・・・・回転軸 31・・・・・・小孔 32・・・・・・フィルター 33・・・・・・小孔 34・・・・・・固定盤 36、37・・・小孔
FIG. 1 is an explanatory diagram showing an example of the apparatus of the present invention, and FIG. 2 is an explanatory diagram of a filtering means. 1... Diluent tank 2... Filter 3... Pump 4... Switching solenoid valve 5... Sample solenoid valve 6... ...Low pressure six-way switching valve 7 ...Sample loop 8 ...Bioreactor 9 ...Dilution tank IO ...Magnetic stirrer 1) ...・・・
... Turntable 12 ... Motor 13 ... Waste liquid solenoid valve 14 ... Pump 15 ... Switching solenoid valve 16 ... High pressure sampling Six-way valve 17...
... Sample loop 18 ... Column 19 ... HPLC pump 20 ... Storage tank 21 ... Waste liquid bottle 22 ... Exhaust pump 23 ... ...Switching solenoid valve 24...Sample loop 30...Rotary shaft 31...Small hole 32...Filter 33... Small hole 34... Fixed plate 36, 37... Small hole

Claims (4)

【特許請求の範囲】[Claims] (1)バイオリアクターより生成される生成物の試料を
採取する手段、採取した試料を希釈しpHを調整する手
段、pH調整後の試料をターンテーブルに組み込んだフ
ィルターにより濾過する手段、濾過後の試料を高速液体
クロマトによりクロマトグラムを得る手段および試料ラ
インを洗滌処理する手段を備えてなるバイオリアクター
オンライン自動分析装置。
(1) A means for collecting a sample of the product produced by the bioreactor, a means for diluting the collected sample and adjusting the pH, a means for filtering the pH-adjusted sample using a filter built into a turntable, and a means for filtering the sample after filtration. A bioreactor online automatic analyzer comprising a means for obtaining a chromatogram of a sample by high-performance liquid chromatography and a means for cleaning a sample line.
(2)請求項1の自動分析装置にさらにクロマトグラム
の特定画分の面積値を算出する手段および該面積値を生
成物の機能特性に換算する手段を加えたバイオリアクタ
ーオンライン自動分析装置。
(2) A bioreactor online automatic analyzer, which further comprises means for calculating the area value of a specific fraction of a chromatogram and means for converting the area value into functional characteristics of a product, to the automatic analyzer according to claim 1.
(3)バイオリアクターより生成される生成物が蛋白質
である請求項1又は2に記載のバイオリアクターオンラ
イン分析装置。
(3) The bioreactor online analysis device according to claim 1 or 2, wherein the product produced by the bioreactor is a protein.
(4)バイオリアクターより生成される生成物が、小麦
グルテンの酵素部分分解物である請求項1又は2に記載
のバイオリアクターオンライン分析装置。
(4) The bioreactor online analysis device according to claim 1 or 2, wherein the product produced by the bioreactor is an enzymatic partial decomposition product of wheat gluten.
JP63220430A 1988-09-05 1988-09-05 On-line automatic analyzing instrument for bioreactor Pending JPH0269655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63220430A JPH0269655A (en) 1988-09-05 1988-09-05 On-line automatic analyzing instrument for bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63220430A JPH0269655A (en) 1988-09-05 1988-09-05 On-line automatic analyzing instrument for bioreactor

Publications (1)

Publication Number Publication Date
JPH0269655A true JPH0269655A (en) 1990-03-08

Family

ID=16750990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63220430A Pending JPH0269655A (en) 1988-09-05 1988-09-05 On-line automatic analyzing instrument for bioreactor

Country Status (1)

Country Link
JP (1) JPH0269655A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123008A2 (en) * 2007-04-06 2008-10-16 Giuseppe Lazzarino Automated system of collection, detection and analysis of biological liquids for bio-chemical-clinical monitoring of a patient preferably under intensive therapy
JP2011513732A (en) * 2008-02-29 2011-04-28 ウオーターズ・テクノロジーズ・コーポレイシヨン Chromatographic monitoring and control of multiple process streams
JP2020530101A (en) * 2017-08-01 2020-10-15 アムジエン・インコーポレーテツド Systems and methods for performing real-time glycan assays on samples

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113748A (en) * 1981-12-26 1983-07-06 Jeol Ltd Pre-labeling device
JPS61120058A (en) * 1984-11-16 1986-06-07 Hitachi Ltd Method and instrument for analyzing intended component
JPS6263859A (en) * 1985-09-13 1987-03-20 Shimadzu Corp Automatic analyzer for homovanillic acid and vanilamandelic acid
JPS62106802A (en) * 1985-11-01 1987-05-18 Sumitomo Chem Co Ltd residue extraction equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113748A (en) * 1981-12-26 1983-07-06 Jeol Ltd Pre-labeling device
JPS61120058A (en) * 1984-11-16 1986-06-07 Hitachi Ltd Method and instrument for analyzing intended component
JPS6263859A (en) * 1985-09-13 1987-03-20 Shimadzu Corp Automatic analyzer for homovanillic acid and vanilamandelic acid
JPS62106802A (en) * 1985-11-01 1987-05-18 Sumitomo Chem Co Ltd residue extraction equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123008A2 (en) * 2007-04-06 2008-10-16 Giuseppe Lazzarino Automated system of collection, detection and analysis of biological liquids for bio-chemical-clinical monitoring of a patient preferably under intensive therapy
WO2008123008A3 (en) * 2007-04-06 2008-12-18 Giuseppe Lazzarino Automated system of collection, detection and analysis of biological liquids for bio-chemical-clinical monitoring of a patient preferably under intensive therapy
JP2011513732A (en) * 2008-02-29 2011-04-28 ウオーターズ・テクノロジーズ・コーポレイシヨン Chromatographic monitoring and control of multiple process streams
JP2020530101A (en) * 2017-08-01 2020-10-15 アムジエン・インコーポレーテツド Systems and methods for performing real-time glycan assays on samples

Similar Documents

Publication Publication Date Title
US4837157A (en) Sample preparation method for liquid chromatography
Van Staden Membrane separation in flow injection systems: Part 1. Dialysis
DE4126436C2 (en)
Mattiasson et al. Ultrafiltration affinity purification: isolation of concanavalin A from seeds of Canavalia ensiformis
Vaidyanathan et al. Monitoring of submerged bioprocesses
von der Au et al. Development of an automated on-line purification HPLC single cell-ICP-MS approach for fast diatom analysis
CN110208401B (en) Solid-phase dehydration extraction-supercritical fluid chromatography-mass spectrometry online analysis system and method
Mattiasson et al. Sampling and sample handling—crucial steps in process monitoring and control
CN103293253B (en) Efficient purification-analysis system for biotechnological medicine and medicine separation detection method thereof
JPH0269655A (en) On-line automatic analyzing instrument for bioreactor
de Castro et al. Is dialysis alive as a membrane-based separation technique?
Reda et al. Automatic fermentor sampling and stream analysis
CN114184714A (en) Method for distinguishing exosome sources
Buttler et al. Characterization of a sampling unit based on tangential flow filtration for on-line bioprocess monitoring
Zhi et al. Direct processing and analysis of solid and other complex samples with automatic flow injection systems
Amador-Hernandez et al. Pervaporation: a useful tool in food analysis
Puchades et al. State of the art in on‐line techniques coupled to flow injection analysis FIA/on‐line‐a critical review
JPH02141659A (en) Analysis of sample and liquid chromatography apparatus
CN119013389A (en) Article and method for analyte concentration measurement
CA2527199A1 (en) Immunochromatographic method
JPH03163357A (en) Catecholamine analysis method and its analyzer
WO2021176106A1 (en) A system for producing a biopharmaceutical product
Van de Merbel The use of ultrafiltration and column liquid chromatography for on-line fermentation monitoring
CN105688442A (en) Column chromatography and membrane filtration integration system
JPH1010107A (en) Sample analysis method by liquid chromatography