JPH026621B2 - - Google Patents
Info
- Publication number
- JPH026621B2 JPH026621B2 JP60095887A JP9588785A JPH026621B2 JP H026621 B2 JPH026621 B2 JP H026621B2 JP 60095887 A JP60095887 A JP 60095887A JP 9588785 A JP9588785 A JP 9588785A JP H026621 B2 JPH026621 B2 JP H026621B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- temperature
- weight
- ethylene
- shrinkage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/005—Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0018—Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
- B29C48/10—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2031/00—Use of polyvinylesters or derivatives thereof as moulding material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/08—Copolymers of ethene
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、主として、包装材料等の用途に供す
る透明性が優れた収縮包装用フイルムに関するも
のであり具体的には、酢酸ビニル基含有量が3〜
30重量%でメルトインデツクスが0.2〜10である
エチレン−酢酸ビニル共重合体(a)95〜10重量%と
メルトインデツクスが0.1〜10のエチレン−α−
オレフイン共重合体エラストマー(b)5〜90重量%
との混合組成よりなる20%収縮温度が85℃以下
で、且つ引張破断強度が5Kg/mm2以上である低温
収縮性で高強度の柔軟性包装用フイルム、特に収
縮包装用フイルム及び特定の低温2軸延伸方法に
よりこれを製造する方法に関するものである。
フイルムによる包装方法にはそれぞれフイルム
の特性を生かした各種の包装方法、例えば袋状に
シールする方法、フイルムをツイストする事によ
る方法、熱を加える事による収縮包装、サランラ
ツプ(旭ダウ社製品名)に代表される密着ラツプ
法、ストレツチラツプ法等、数多くの方法が用い
られ、それぞれに独自の包装特性が要求され、1
つの方法ごとにフイルムの基材、組成、形状、特
性等を適合させたものを選び包装されているのが
現状である。
それらの中で収縮方法とは延伸され配向がセツ
トされたフイルムの熱収縮性を利用し予め被包装
物をゆるく予備包装、例えばシールして被包装物
を囲つた後、フイルムを、熱風、赤外線、熱水、
その他熱媒体により、加熱収縮されて内容物をタ
イトに密着させる方法である。
その特徴は、包装物の外観が美しく商品価値を
高め内容物を衛生的に保ちながら視覚的及び触覚
で品質を確認し得ること、異形物でも、複数個の
商品でも1包みでタイトに固定及び包装出来、振
動、衝撃などに対する保護性能が優れている。
又、今スーパーマーケツトなどに盛んに用いら
れているストレツチ包装方法に比較して、包装ス
ピードを上げる事等が出来る。
ストレツチ包装では包装出来ないような異形
物、トレー等の容器なしの包装も出来得る。又、
よりタイトに包装出来得る等の特徴があるがフイ
ルムが収縮するまで十分加熱しなければならない
のが欠点となつている。
収縮包装用フイルムとして現在最も多く使用さ
れているのは可塑性ポリ塩化ビニル(以後PVC
と言う)の延伸フイルムである。これは比較的低
温で高率の熱収縮を起こし、広い加熱温度範囲で
良好な収縮包装が出来る大きな利点を有するため
で、反面、ヒートシール性、防湿性に劣り可塑剤
による衛生上の問題、熱線による熔断時塩素系ガ
ス等の有毒ガスを発生し、又使用済みのフイルム
を焼却する際の腐食性の有毒ガス、又包装物を低
温で保存する場合、寒冷地で取扱う場合耐寒性に
劣る為、フイルムが硬くなり、脆くなり、破れや
すくなつたりする等に問題を有する。
そこで近年ポリプロピレン系(以下PPと言う)
の収縮包装用フイルムが注目されてきたが収縮性
がPVCに比して劣るのが欠点である。PP系の延
伸フイルムは機械的性質、防湿性、ヒートシール
性などの点で優れており収縮包装フイルムとして
優れたフイルムである。又PVCに比べて原料コ
スト比重が小さい点に有利である。
しかしPPは軟化温度が高い結晶性高分子であ
り、且つ従来の延伸フイルムより高い加熱収縮温
度を有し100℃前後の低温では収縮率が少ない。
その為、収縮包装工程で高温に加熱しければなら
なく、又加熱温度の許容範囲が狭く収縮率の温度
依存度が急な為、包装時の部分的な加熱むらが著
しい収縮むらを生じて“しわ”や“あばた”など
実用上好ましくない欠点を生じやすく、又、これ
を防ぐため十分加熱することは被包装物の過加
熱、フイルムの失透、シール部、エアー抜き穴部
の破れ等を発生する等の大きな欠点になつてい
る。又、従来のポリエチレン系のフイルムでは分
子に十分な延伸配向を付与する事が出来なく、従
つて、得られたフイルムは熱収縮率、特に熱収縮
応力が小さく、又、収縮温度が高くフイルムの強
度、光学特性も悪く包装後の被包装物の結束力も
低く、特殊な用途に、厚みをより厚くして用いら
れている。
又、ポリエチレン系のフイルムでも高エネルギ
ー線を用いて架橋反応を分子に十分に生ぜしめて
延伸したフイルムは熱収縮率、熱収縮応力が大き
く通常のポリエチレンに比して透明性光沢などの
光学特性、耐熱性等、諸特性に非常に優れた諸特
性を有するがしかし高温側での加熱収縮特性、ヒ
ートシールされにくい、引裂抵抗性に劣る等、又
電熱線によるカツトが出来難い等の為包装スピー
ドが劣つてしまう等の欠点を有する。
以上のような収縮包装する場合の重要な特性の
1つとして低温で十分包装出来る事が望まれ特に
生鮮食品物を包装する時等に必要とされる。
又一方、延伸フイルムの製法には、ポリプロピ
レンの場合は150〜160℃の高温に、一度押出機、
ダイより溶融押出し急冷したチユーブ状原反を再
加熱し、内部に空気を導入する事により延伸する
方法、又、低密度ポリエチレンの場合は、従来同
様に2段で二軸延伸し高度の延伸配向をセツトし
ようとする事は加工時破れてしまいやすく技術的
に非常に困難な事とされている。
その為にインフレーシヨン法により、例えば
180〜220℃の温度で押出されてから適当に空気に
より冷却させながら即膨らまして所定のサイズの
フイルムとする方法が一般的である。
この方法はきわめて安価に容易にフイルムを製
造出来得る特徴があるが分子間の流動が起こりや
すく延伸によつて満足な分子配向をセツトする事
が出来ない。
従つて熱収縮率、熱収縮応力が小さくいずれも
高温側にあり特殊な用途にフイルム厚みを増加さ
せてしか用いる事が出来ないものである。
その為に低密度ポリエチレンを成形した後、適
当な条件下で高エネルギー放射線を照射して部分
的に架橋反応を生じせしめてから再加熱し延伸す
る事により分子間の流動を防ぎ十分な分子配向を
セツトする方法等があるが製造設備が高価であり
複雑な欠点がある。
又、最近これらの欠点を改良すべく、いくつか
の試みがなされている。例えば特公昭45−2699号
公報ではエチレン−酢酸ビニル共重合体とアイオ
ノマー樹脂との混合組成を用いる事により加熱流
動特性を改良して延伸フイルムを得る方法、この
方法では強度も本発明のフイルムより低いレベル
で光学特性に劣り、又、特公昭46−4075号公報で
は特定のエチレン−プロピレン共重合体を用いて
延伸する方法等があるが、PVC系フイルムに比
して光学特性、加熱収縮特性、強度等、又加工性
もまだ十分ではない。
よつて本発明者等は、これらのフイルム及び製
法の欠点を更に改良すべく研究を進めた所、加熱
収縮特性の温度依存度の向さ、光学特性フイルム
のシール性、強度等を同時に大巾に改良した可塑
化PVCストレツチフイルム領域の柔軟性をも有
する可塑化PVCフイルムに劣らない優れた軟質
フイルム及びそれらの安価で加工性の優れた特定
の製造法を見い出した。
すなわち、本発明は、酢酸ビニル基含有量が3
〜30重量%でメルトインデツクスが0.2〜10であ
るエチレン−酢酸ビニル共重合体(a)95〜10重量%
とメルトインデツクスが0.1〜10であるエチレン
−α−オレフイン共重合体よりなる熱可塑性エラ
ストマー(b)5〜90重量%との混合組成よりなる延
伸フイルムであり、該フイルムの20%収縮温度が
85℃以下で、且つ引張破断強度が5Kg/mm2以上で
ある低温収縮性に優れた包装適性温度範囲の広い
冷間高配向延伸フイルムである。
また、その製造方法は、酢酸ビニル基含有量が
3〜30重量%でメルトインデツクスが0.2〜10で
あるエチレン−酢酸ビニル共重合体(a)95〜10重量
%とメルトインデツクスが0.1〜10のエチレン−
α−オレフイン共重合体よりなる熱可塑性エラス
トマー(b)5〜90重量%との混合組成とを混合溶融
し環状ダイより押出し液状冷媒により急冷固化し
たチユーブ状原反を100℃以下に加熱し且つ常温
(20℃)〜100℃の延伸温度にてインフレーシヨン
法により、面積延伸倍率が5倍以上、30倍以下
で、且つ横方向の延伸倍率を2〜7倍に冷延伸す
る事を特徴とする光学特性に優れた低温収縮性、
高強度延伸フイルムの製造方法である。
本発明に用いるエチレン−酢酸ビニル共重合体
(a)の酢酸ビニル基含量が3重量%より少ないと、
冷延伸性、フイルム強度、熱収縮性に劣り、又30
重量%以上ではゴム状弾性が高すぎ延伸性が好ま
しくなくなる。
好ましくは5〜25重量%であり、又、メルトイ
ンデツクスが0.2以下では混合性に問題を有し10
以上では基材として強度が不足するようになり延
伸時破れやすくなる等好ましくない。好ましくは
0.3〜5である。
又、エチレン−α−オレフイン共重合体よりな
る熱可塑性エラストマー(b)とは、エチレンと、ブ
テン−1、イソブチレン、1−ペンテン、4−メ
チル−1−ペンテン及びプロピレンの何れか又は
これらの混合物との共重合体の事を言い(エチレ
ンの含量が60〜95モル%、好ましくは65〜90モル
%の範囲であり)、又、メルトインデツクスが0.1
〜10好ましくは0.2〜6の、好ましくは非晶性で
あるが結晶化度30%程度以下で低度の部分結晶性
のものも含む、これらには例えば市販のタフマー
(三井石油化学社製品名)等がある。
これらのものは単体でもシート又はフイルム状
として加工出来得る程度のものが好ましく、密度
0.91g/cm3程度以下で、Vicat軟化点(ASTM−
D1525で荷重1Kgの値)が80℃以下、好ましくは
70℃以下の軟質共重合体が好ましい、上記以外の
いわゆる脆い未架橋ゴム状のコールドフローを起
す領域のもの、例えばエチレン−プロピレンゴム
等は基材の性質を弱くしてしまう為好ましくな
い。好ましい共重合体エラストマーはエチレンと
ブテン−1、プロピレンより選ばれる1者又は2
者以上よりなるランダム共重合体であり、又、こ
れらには少量のポリエン類、例えばヘキサジエン
又はエチリデン・ノルボルネン誘導体類を共重合
させたものでもよい。これらは、例えばバナジウ
ム系の化合物と有機アルミニウム化合物系の触媒
で重合され得る。
本発明は以上の組成の混合物よりなりエチレン
−酢酸ビニル共重合体(a)に対するエチレン−α−
オレフイン共重合体よりなる熱可塑性エラストマ
ー(b)の混合量は両者の合計量に対し5〜90重量%
好ましくは7〜70重量%、更に好ましくは10〜50
重量%であり、5重量%より少なくすると混合物
としての相乗効果を発揮しなくなり、加工性が悪
くなり、又フイルムの強度が低下し、低温収縮性
が悪化する傾向になり、又90重量%以上になる
と、チユーブ状原反の成膜性及び延伸加工性が悪
化しシール性が悪くなる等の欠点を有するように
なる。
以上の様に本発明は上記特定の2者の基材を主
体とした特定の混合量を用いた、チユーブ状急冷
原反を使用して初めて相乗効果が特定の延伸条件
下、つまり低温延伸20〜100℃で出来るようにな
り、これにより優れた性質のフイルムが得られる
ものである。
本発明において、他の組成物、樹脂等例えばポ
リエチレン等を延伸性、諸特性を阻害させない範
囲で混合して用いる事は何らさしつかえない。
本発明のフイルムはその光学特性〔ヘイズ値
(ASTM D1003−52)〕が3%以下で好ましくは
2%である事を特徴とし、更に加熱収縮後も悪化
する事が少ない事を特徴とする。
例えば実施例2RUN No.2では〔0.5%〕の非
常に優れた値を有する。
これはその組成及び製法より特徴づけられる値
であり本発明の組成の急冷した性質を全く損なう
事なく加工、又組成物の融点以下、更に軟化点以
下の領域でも低温でバブル状で安定に延伸する事
が出来る為、又組成の相乗効果により空隙等の構
造欠陥を生じせしめる事なく、又小さく分散して
いる混合成分とも延伸され光の散乱等が少ない平
坦な形状になり、特に透明になるものと思われ
る。
又低温収縮性とは、収縮包装フイルムとして用
いる場合に特に必要な性質の1つでありフイルム
を各温度条件で処理した時の加熱収縮率で表わさ
れる値のうち20%、又は40%収縮する(縦と横の
平均収縮率で表わされる)に必要な温度で表わさ
れ、この値が低い程低温収縮特性を有する事を意
味する。又、通常収縮フイルムとして必要な収縮
率は包装方法によつても異なるが20%以上、好ま
しくは40%以上必要である。具体的には、フイル
ムから切り取つた試験片に規定寸法の縦、横の標
線を入れ収縮中に自分自身又は他の物に粘着しな
いようにタルクなどの粉末をまぶし所定の温度の
熱風で5分間処理し、加熱収縮させた後の各方向
それぞれの寸法の変化率で表わした値を縦横の平
均した値で加熱収縮率を表わすものであり、この
値を各温度で測定し、グラフ化して20%又は40%
の加熱収縮率で表わされる温度を20%、40%収縮
温度と言う。
本発明によるフイルムではこの値が低くなだら
かな温度依存性を有する事を特徴とする。
例えば後述第1図中、3、の様に市販の収縮用
ポリプロピレンフイルムが20%値で120℃、40%
値で134℃と高く急に変化しているのに比して、
例えば、同第1図中、1のように20%で55℃、40
%で73℃と低い値となだらかな形状の特性を有す
る。
この程度は20%値で表わし85℃以下、好ましく
は75℃以下、更に好ましくは70℃以下である。こ
の値は延伸の温度、程度、組成等によつて2次的
に影響されるが本発明の冷間延伸の大きな特徴の
一つとして低いレベルにあるのと、なだらかな収
縮カーブを有する。この値が高いと実用時にかな
りの高温中に長時間晒さないと熱収縮を生じない
事になりヒーターの熱量を大きくしなければなら
なく、又包装作業の速度も遅くなる、又被包装物
に熱が伝わり特に熱により危険な品物、変質変形
してしまう様な品物、特に繊維類、生鮮食品類に
は好ましくない、又収縮カーブが高温で急に立ち
上るような傾向のフイルムは包装時の収縮温度付
近のごくわずかな変動に対する収縮率の変化が大
きい為、予め緩く包装して収縮トンネル内を通過
させた場合にフイルムに当る熱風の温度が全体に
少し低すぎると収縮不足でぴつたりとフイツトし
た包装に仕上らず、又、少し温度が高いと収縮後
の光学特性のみならず強度等の機械物性が大巾に
低下してしまう。
又シール部、エアー抜き穴より破れてしまう等
の欠点を生じる事となる。
又、この値が一方、あまり極端に低い場合に
は、ロール状に巻かれたフイルムが常温で寸法変
化してしまい好ましくない。
市販の可塑性収縮包装用PVCフイルムは、第
1図中、2のようにこの値が20%収縮で58℃、40
%で88℃であり低温収縮性で温度に対してなだら
かな好ましい収縮特性を有する。
第3図に後述の包装テストの結果について良品
が得られる範囲を例示してあるがPVC系のフイ
ルムより更に低温、短時間領域で包装出来得る特
徴が有る。これはPVC系フイルムよりもレスポ
ンスが早い点もきいていると思われる。
今迄、可塑化PVC以外のフイルムでこの様な
収縮率特性で且つ、強度のあるフイルムは未だか
つて市販されていない。
本発明のフイルムはこれを達成したものであり
今迄にないフイルムである。
又、収縮時の加熱収縮応力は収縮包装用フイル
ムとして用いる場合に重要な特性の一つであり、
例えば後述のように加熱収縮率が高くても収縮時
の応力が極度に低ければ包装中及び包装後の被包
装物にフイツトしなく且つ、結束力が出ず収縮包
装用フイルムとしては全く用をなさない。
又、少しの程度でも、物を結束する力が不足の
場合は厚みの厚いフイルムを用いてカバーしなけ
ればならなく、不経済であり、不都合である。通
常この値は最低50g/mm2以上で更には80g/mm2以
上である事が好ましい、第2図に示したように市
販のポリエチレンの収縮フイルム(図中4)で
は、この値が10g/mm2以下5g/mm2程度であり用
途が限定される。
本発明のフイルムは例えば同図中、1のように
180g/mm2もある。
通常本発明のフイルムはこの値が100〜400g/
mm2程度と十分高いレベルを有するものである。
又、この収縮応力が低温収縮性フイルムでは、収
縮率に相応する低いレベルの温度から発揮されな
ければ意味がなく、その温度依存性曲線が(縦、
横の平均値で表わす)収縮率温度曲線とよくバラ
ンスがとれていなければならない。
本発明では、フイルムの腰は特定の混合組成中
の組成を範囲内で変える事により可塑化PVC(可
塑剤33重量%)よりなるストレツチフイルムのよ
うに柔軟な領域のものまで自由に調整し得る。
更に本発明はその引張り強さが強い事が特徴で
あり最低5Kg/mm2の破断強度(JIS Z1702の方法
により測定された値)を有し好ましくは7Kg/mm2
以上、更に好ましくは10Kg/mm2以上の値を有する
ものでありその時の伸びも50%以上、好ましくは
100%以上、更に好ましくは150%以上である。
この様に引張り強度が強く伸びがあるとフイル
ムがタフであり破れにくい事を意味し包装物の保
護フイルムとして非常に有利な事となりフイルム
の厚みを節約出来る。
本発明のフイルムは、例えば後述するRUN
No.4の様に破断強度15Kg/mm2、伸び185%のレベ
ルのものである。これに比し通常は配向により強
度を上げると伸びが極度に低下する傾向にあり、
例えば市販の十分架橋(ゲル67重量%)し、十分
配向したフイルムでは強度8Kg/mm2で伸びが45%
であり破れやすい。
又、用途は収縮フイルムに限定するものでなく
タフネスを利用した産業用フイルムとして一般に
利用出来るものである。
次に本発明の包装用フイルムの製造方法につい
て詳細に説明する。
本発明の方法は、エチレン−酢酸ビニル共重合
体(a)95〜10重量%と、エチレン−α−オレフイン
共重合体よりなる熱可塑性エラストマー(b)5〜90
重量%との混合組成を混合溶融し環状ダイより押
出し液状冷媒により急冷固化せしめた十分偏肉の
少ないチユーブ状原反とし、これを100℃を超え
ない温度で加熱し且つ20℃(室温)〜100℃の延
伸温度条件下で内部に空気を入れる事により面積
延伸倍率が5倍以上、30倍以下で、且つ横方向の
延伸倍率を2〜7倍に延伸する事を特徴とする光
学特性、及び、低温収縮特性に優れた包装適性温
度範囲の広い高強度延伸フイルムの製造方法であ
る。
ここにエチレン−酢酸ビニル共重合体(a)はその
酢酸ビニル基含有量が5〜30重量%でメルトイン
デツクス0.2〜10でありその理由は前述した通り
であり更にエチレン−α−オレフイン共重合体よ
りなる熱可塑性エラストマーは、好ましくはエチ
レン含量が60〜95モル%、より好ましくは65〜90
モル%のエチレンと、ブテン−1、4−メチル−
1−ペンテン、イソブチレン又はプロピレン、こ
れらの混合物等を主体とする化合物との共重合体
の事を言い、又メルトインデツクスが0.1〜10、
好ましくは、0.2〜6の非結晶性又は低度の部分
結晶性のものも含める。これらのものは、単体で
もフイルムとして加工出来る範囲のものが好まし
く、上記以外のいわゆる脆いゴム状の領域のもの
は多く使うと基材の性質を弱くし、又べとつかせ
てしまい延伸加工時パンクする様になる為等好ま
しくない。
本発明は以上の混合組成を加熱溶融し十分に混
練りした後、十分偏肉及び熱、時間履歴を与える
事の少ない環状ダイから180〜280℃の押出し温度
でもつて押出し、周囲を液状冷媒で均一に急冷固
化せしめ、十分均一(外形的にも内部的にも)な
チユーブ状原反とする。
この原反を100℃以下、好ましくは90℃以下、
更に好ましくは80℃以下に加熱し且つ20℃(常
温)〜90℃、好ましくは25℃〜80℃、更に好まし
くは30℃〜70℃の温度で、混合成分中の融解熱の
大部分をしめる成分のDSC法による融点より低
く、更に混合物の好ましくはビカツト軟化点以下
で十分な内圧、例えば100〜1000mm水柱圧でバブ
ル状に2軸に膨張させる事により初めて得られる
ものであり、この時の最適な面積延伸倍率はその
時の温度によつて異なるが好ましくは7〜30倍、
更に好ましくは10〜20倍であり、横方向の延伸倍
率は好ましくは3〜6倍である。この時パンクを
防ぎ十分冷間で延伸出来る条件は前記の範囲内の
組成である事が特に重要であると同時に、前述し
た様に十分均一な原反を作る事が必要であり、例
えば原反の偏肉が原反厚みに対して±10%程度又
はそれ以上だと延伸中パンクしてしまいうまく延
伸出来ない場合がある。
原反の偏肉は好ましくは±5%以下、更に好ま
しくは±3%以下が良い。
延伸の程度は送りニツプロールと引取りニツプ
ロールのスピード比によるタテ方向の延伸比を決
定すると、あとはバブル内に空気を封入しバブル
の延伸終了点近く(白化する寸前)まで延伸し横
方向の膨張が止まる程度とするのが最も安定に延
伸を実施するに良い方法である。又、原反バブル
は内圧と径との関係上、50mm径程度以上、好まし
くは100mm径以上装置のゆるす限り大型サイズが
好都合である。
又得られたフイルムの物性上、出来るだけバブ
ルの安定性のゆるす限り十分冷間の方が好ましい
訳だが実際には安定性とのバランス(パンクしな
い様に)でその時の組成により延伸程度を決定す
ればよい。
本発明の組成方法により得られたフイルムは前
述の通りの優れた特性を有するものであると同時
に延伸後のフイルム偏肉が非常に少なく±5%程
度以下である場合が多い。これは高バブル内圧に
より延伸時強い伸張力がフイルムに付与される未
伸張部が引き伸ばされるため、又通常の方法のよ
うな加熱、冷却の熱履歴が特に少なく均一で安定
性が良いためと思われる。
光学特性(ヘイズ、光沢とも)は原反の段階に
比して本発明の方法による冷間延伸後には格段に
良くなる特徴がある。
この事は島状に分散している樹脂の型状変化に
よるものと思われる。
つまり本法では分散している粒子をも延伸配向
させ偏平化する為光学的に散乱しにくくなり、且
つ分子分散まで混合しないブレンド系であるにも
かかわらず低温でうまく延伸され、同時に強度の
あるフイルムになり、又この加工時表面は分子、
結晶粒の流動により荒される事がない等の為と思
われる。
本発明にては混合組成がそれぞれ相乗効果を発
揮するものであり、いずれかの成分が高強度を求
める時、見られがちな欠陥となり強度が低下する
もととなるものではない。
通常の融点以上に加熱した延伸法ではこの様な
事は全くなく光学特性を良くしようとするには逆
に延伸の温度をより上昇して(例えば160℃と)
ゆかなければならなく、ますます配向はかかりに
くくなつてしまい強度も低くなる傾向にある。
又、融点近くの温度でも同様な事が言え、光学特
性は好ましい結果とはならないばかりか、混合組
成では特に原反が丁度もろい温度条件になり、又
更に偏肉が大きく拡大されてしまいパンクし、高
特性を付与出来ない。
本発明の後述の実施例の如く極低温で例えば45
℃で本発明で言う延伸がうまく達成される事は、
今までになく、特定の組成とそれによる均一な急
冷原反を用いる事、特定の延伸法等の条件を満た
す事によつて初めて達成されるものである。
例えば後述の比較例の様にエチレン−酢酸ビニ
ル共重合体、低密度ポリエチレン、エチレン−α
−オレフイン共重合体等単体、或いはこれらにエ
チレン−プロピレンゴム状共重合体を混合したご
とき組成ではフイルムが破れてバブルが全く生長
しなく、即ち延伸が達成されない。
EVAの如き組成単体ではゴム状に横方向に1
〜1.5倍程度多少は膨らむがすぐにパンクしてし
まい又ゴム状弾性ですぐに元の原反の寸法に戻つ
てしまつて達成され難い。
又、急冷原反が不均一の場合は前述したように
言うまでもなくパンクして均一に延伸され難い。
又、前述した延伸条件以外の温度では全く本発明
のものは得られない。
又、延伸を1軸に実施しただけではすぐに破れ
てしまい、本発明の特性を有する優れたフイルム
は得られなく2軸に前述の条件下で延伸しなけれ
ばならない。
本発明の各組成は、それぞれ適度な相溶バラン
ス状態にあると同時に個々の特性が単独で作用す
る成分、適度に相溶バランスして作用する成分等
が相乗的に働きあつて加工性及びフイルムに特徴
を持つにいたるものと思われる。
以下実施例で本発明のフイルム及び方法を具体
的に説明するがこれに限定されるものではない。
実施例 1
酢酸ビニル基含量:10重量%、メルトインデツ
クス:1.0のエチレン−酢酸ビニル共重合体(a)88
重量%とメルトインデツクス0.45、密度0.88g/
cm3、Vicat軟化点40℃以下のエチレン−α−オレ
フイン共重合エラストマー(α−オレフインがブ
テン−1で20モル%相当含有したもの(b1):12
重量%の組成物を混合し65mm径でL/D37のミキ
シングヘツドタイプスクリユウと先端に設けられ
た150mm径で1.5mmのスリツトを有する環状ダイよ
りシリダー部最高温度250℃可塑化混練した組成
物を押出し、ダイ先端から10cmの程で水の均一に
出る水冷リングで急冷して径100mm厚み170μで偏
肉±1.8%の原反を得た。この混合物のVicat軟化
点は68℃であつた。
この原反を二対の送りニツプロールと引取りニ
ツプロール間に通しこの間で熱風により45℃に加
熱し内部に空気を入れる事により内圧430mm水柱
下で連続的に膨張させ、縦3.2倍、横3.7倍に延伸
して延伸終了後15℃の冷風の吹出るエアーリング
にて冷却し安定板で折りたたみ、ニツプロールで
引取つて耳部を縦方向にスリツトして2枚のフイ
ルムに分け、それぞれ一定の張力で巻き取つて厚
さ14μのフイルムを得た。得られた延伸フイルム
はヘイズ0.6%、グロス150と光学特性に優れ、且
つ非常に強度にすぐれ引張り強度14Kg/mm2、伸び
250%であり、尚、低温収縮性は、第1表のよう
であり又、第1図に図示した様に20%収縮率で56
℃、40%収縮率で75℃であり市販シユリンク
PVCフイルムと同様ななだらかなパターンで、
更に低温側に移行した収縮率特性を有するもので
あつた。
又、収縮応力は最高値で173g/mm2と高いレベ
ルのものであつた。
実用包装テストとしてキユウリ4本を80℃の熱
風が出る市販の収縮トンネル内を3秒間通過させ
る事により、タイトでシワもなくフイツトし包装
仕上りが良く、収縮後の光学特性の悪化もなく、
美麗に収縮包装が出来るものであつた。
又、第3図に示してあるように収縮包装時の熱
風温度トンネル内の滞留時間を変化させて試験し
て見た結果、低温側から広い温度、スピード範囲
で良好に包装出来る結果が得られた。
以上に比して市販のポリプロピレン収縮フイル
ムは90℃ではほとんど収縮しなくサンプルにシワ
を残したままであり、同条件下熱風温度を上げて
170℃としなくては十分な収縮が出来なく、これ
より上げても、又滞留時間を長くしても、フイル
ムに穴があいて破れたり、フイルムが失透したり
して、適正温度範囲が非常に狭いものであつた。
又市販のPVC収縮フイルムは同条件ではまだ収
縮不足で、シワが残り、温度条件を150℃とする
必要があつた。
フイルムの強度、伸び、加熱収縮特性は、縦横
ともバランスがとれた特性を示しているので以後
縦、横の平均値で表わす事とする。
The present invention mainly relates to shrink wrapping films with excellent transparency for use as packaging materials, etc. Specifically, the present invention relates to shrink wrapping films with a vinyl acetate group content of 3 to 3.
30% by weight of ethylene-vinyl acetate copolymer (a) with a melt index of 0.2-10 and 95-10% by weight of ethylene-α- with a melt index of 0.1-10.
Olefin copolymer elastomer (b) 5-90% by weight
A low-temperature shrinkable, high-strength flexible packaging film with a 20% shrinkage temperature of 85°C or less and a tensile strength at break of 5 Kg/mm 2 or more, especially a shrink-wrapping film and a specific low-temperature film. The present invention relates to a method for manufacturing the same using a biaxial stretching method. There are various packaging methods using film that take advantage of the characteristics of the film, such as sealing into a bag, twisting the film, shrink wrapping by applying heat, and Saran Wrap (Asahi Dow product name). Many methods are used, such as the tight wrap method and stretch wrap method, each of which requires unique packaging characteristics.
At present, films are packaged by selecting films that match the base material, composition, shape, properties, etc. of each method. Among them, the shrinking method utilizes the heat-shrinkability of a stretched and oriented film to loosely pre-pack the packaged item, for example, to enclose the packaged item with a seal, and then the film is heated using hot air, infrared rays, etc. ,hot water,
Another method is to shrink the contents tightly using a heating medium. Its features include the ability to visually and tactilely check the quality of the package while increasing its beauty and product value while keeping the contents sanitary; and the ability to securely secure even irregularly shaped items or multiple items in one package. Excellent packaging and protection against vibrations and shocks. Furthermore, compared to the stretch packaging method currently widely used in supermarkets, it is possible to increase the packaging speed. It is also possible to package irregularly shaped items that cannot be wrapped with stretch packaging, such as trays, etc. without containers. or,
Although it has the advantage of being able to be packaged more tightly, its disadvantage is that it must be heated sufficiently until the film shrinks. Currently, the most commonly used film for shrink wrapping is plastic polyvinyl chloride (hereinafter referred to as PVC).
It is a stretched film. This is because it causes a high rate of heat shrinkage at relatively low temperatures and has the great advantage of being able to produce good shrink packaging over a wide heating temperature range.On the other hand, it has poor heat sealability and moisture resistance, and there are hygiene problems caused by plasticizers. Generates toxic gases such as chlorine gas when melting with hot rays, corrosive toxic gases when incinerating used films, and has poor cold resistance when storing packages at low temperatures or handling them in cold regions. Therefore, there are problems in that the film becomes hard, brittle, and easily torn. Therefore, in recent years polypropylene (hereinafter referred to as PP)
Shrink wrapping film has been attracting attention, but its drawback is that its shrinkability is inferior to that of PVC. PP-based stretched film has excellent mechanical properties, moisture resistance, and heat sealability, making it an excellent shrink wrapping film. It also has the advantage of lower raw material cost compared to PVC. However, PP is a crystalline polymer with a high softening temperature, and has a higher heating shrinkage temperature than conventional stretched films, and has a low shrinkage rate at low temperatures of around 100°C.
Therefore, heating must be carried out to a high temperature in the shrink packaging process, and since the tolerance range for heating temperature is narrow and the shrinkage rate has a steep temperature dependence, uneven heating in some areas during packaging can cause significant uneven shrinkage. Practically undesirable defects such as wrinkles and pockmarks tend to occur, and in order to prevent this, sufficient heating may cause overheating of the packaged material, devitrification of the film, and tearing of seals and air vent holes. This has become a major drawback. In addition, in conventional polyethylene films, it is not possible to impart sufficient stretching orientation to the molecules, and therefore, the obtained film has a low heat shrinkage rate, especially a low heat shrinkage stress, and a high shrinkage temperature, which makes the film difficult to use. It has poor strength and optical properties, and has low cohesiveness for packaged items after packaging, so it is used thicker for special purposes. In addition, even in the case of polyethylene films, films that are stretched using high-energy rays to sufficiently cause a cross-linking reaction in the molecules have a high heat shrinkage rate and heat shrinkage stress, and have optical properties such as transparency and gloss compared to ordinary polyethylene. Although it has very excellent properties such as heat resistance, it has poor heat shrinkage properties at high temperatures, is difficult to heat seal, has poor tear resistance, and is difficult to cut with a heating wire, so the packaging speed is limited. It has disadvantages such as inferior quality. One of the important characteristics of the above-mentioned shrink wrapping is that it can be wrapped sufficiently at low temperatures, and is especially required when packaging fresh foods. On the other hand, in the case of polypropylene, the method of manufacturing stretched film involves heating it to a high temperature of 150 to 160°C, and once using an extruder.
This method involves reheating a tube-shaped raw material that has been melt-extruded from a die and rapidly cooling it, and drawing it by introducing air inside.Also, in the case of low-density polyethylene, it is biaxially stretched in two stages as in the conventional method, resulting in a high degree of stretching orientation. Attempting to set it is technically extremely difficult as it tends to tear during processing. For this purpose, by using the inflation method, for example,
A common method is to extrude the film at a temperature of 180 to 220°C and immediately expand it while cooling it with air to form a film of a predetermined size. This method has the advantage of being able to easily produce a film at a very low cost, but it tends to cause intermolecular flow and makes it impossible to set a satisfactory molecular orientation by stretching. Therefore, the heat shrinkage rate and heat shrinkage stress are small, both of which are on the high temperature side, and it can only be used for special purposes by increasing the film thickness. For this purpose, after forming low-density polyethylene, it is irradiated with high-energy radiation under appropriate conditions to cause a partial crosslinking reaction, and then reheated and stretched to prevent intermolecular flow and achieve sufficient molecular orientation. Although there are methods for setting this, the disadvantage is that the manufacturing equipment is expensive and complicated. Recently, several attempts have been made to improve these drawbacks. For example, Japanese Patent Publication No. 45-2699 discloses a method for obtaining a stretched film by improving heat flow characteristics by using a mixed composition of ethylene-vinyl acetate copolymer and ionomer resin, and in this method, the strength is also higher than that of the film of the present invention. In addition, Japanese Patent Publication No. 46-4075 discloses a method of stretching using a specific ethylene-propylene copolymer, but it has poor optical properties and heat shrinkage properties compared to PVC films. , strength, etc., and workability are still insufficient. Therefore, the present inventors conducted research to further improve the shortcomings of these films and manufacturing methods, and at the same time improved the temperature dependence of the heat shrinkage characteristics, the sealing performance of the optical characteristics film, the strength, etc. We have discovered an excellent soft film that is comparable to plasticized PVC films, which also has improved flexibility in the plasticized PVC stretch film area, and a specific method for producing them that is inexpensive and has excellent processability. That is, in the present invention, the vinyl acetate group content is 3
~30% by weight of ethylene-vinyl acetate copolymer (a) with a melt index of 0.2-10 95-10% by weight
and 5 to 90% by weight of a thermoplastic elastomer (b) made of an ethylene-α-olefin copolymer with a melt index of 0.1 to 10, and the 20% shrinkage temperature of the film is
This cold highly oriented stretched film has excellent low-temperature shrinkability at 85° C. or lower and has a tensile strength at break of 5 Kg/mm 2 or higher, and is suitable for packaging over a wide temperature range. In addition, the manufacturing method consists of ethylene-vinyl acetate copolymer (a) having a vinyl acetate group content of 3 to 30% by weight and a melt index of 0.2 to 10 (95 to 10% by weight) and a melt index of 0.1 to 0.1 to 10% by weight. 10 ethylene-
A thermoplastic elastomer (b) consisting of an α-olefin copolymer with a mixed composition of 5 to 90% by weight is mixed and melted, extruded through an annular die, rapidly solidified with a liquid refrigerant, and heated to 100°C or below. It is characterized by being cold-stretched by the inflation method at a stretching temperature of room temperature (20°C) to 100°C, with an area stretching ratio of 5 times or more and 30 times or less, and a transverse direction stretching ratio of 2 to 7 times. Low-temperature shrinkability with excellent optical properties,
This is a method for producing a high-strength stretched film. Ethylene-vinyl acetate copolymer used in the present invention
When the vinyl acetate group content in (a) is less than 3% by weight,
Poor cold stretchability, film strength, heat shrinkage, and 30
If it exceeds % by weight, the rubber-like elasticity will be too high and the stretchability will become unfavorable. Preferably it is 5 to 25% by weight, and if the melt index is less than 0.2, there will be problems with mixability.
If the above is the case, the strength as a base material will be insufficient and it will be easy to tear during stretching, which is undesirable. Preferably
It is 0.3-5. Furthermore, the thermoplastic elastomer (b) made of an ethylene-α-olefin copolymer is ethylene, and any one of butene-1, isobutylene, 1-pentene, 4-methyl-1-pentene, and propylene, or a mixture thereof. (the content of ethylene is in the range of 60 to 95 mol%, preferably 65 to 90 mol%), and the melt index is 0.1.
to 10, preferably 0.2 to 6, preferably amorphous, but also includes low partially crystalline ones with a crystallinity of about 30% or less. ) etc. It is preferable that these materials can be processed singly into a sheet or film, and have a density of
Vicat softening point ( ASTM-
D1525 with a load of 1 kg) is below 80℃, preferably
A soft copolymer having a temperature of 70° C. or lower is preferable, and other so-called brittle uncrosslinked rubber-like cold flow-inducing copolymers, such as ethylene-propylene rubber, are not preferable because they weaken the properties of the base material. A preferred copolymer elastomer is one or two selected from ethylene, butene-1, and propylene.
It is a random copolymer consisting of at least one polyene, and these may also be copolymerized with a small amount of polyenes, such as hexadiene or ethylidene norbornene derivatives. These can be polymerized using, for example, a vanadium-based compound and an organoaluminum compound-based catalyst. The present invention comprises a mixture having the above composition, and the ethylene-α-
The amount of thermoplastic elastomer (b) made of olefin copolymer mixed is 5 to 90% by weight based on the total amount of both.
Preferably 7 to 70% by weight, more preferably 10 to 50%
If it is less than 5% by weight, the mixture will not exhibit a synergistic effect, the processability will deteriorate, the strength of the film will decrease, and the low-temperature shrinkability will tend to deteriorate, and if it is less than 5% by weight, When this happens, the film forming properties and stretching processability of the tube-shaped original fabric deteriorate, resulting in disadvantages such as poor sealing properties. As described above, in the present invention, the synergistic effect is achieved only under specific stretching conditions, that is, by using a tube-shaped quenched original fabric using a specific mixing amount of the two specific base materials mentioned above, that is, low-temperature stretching 20 It can be formed at a temperature of ~100°C, and as a result, a film with excellent properties can be obtained. In the present invention, there is no problem in mixing and using other compositions, resins such as polyethylene, etc., as long as the stretchability and various properties are not impaired. The film of the present invention is characterized in that its optical properties [haze value (ASTM D1003-52)] are 3% or less, preferably 2%, and it is further characterized in that it hardly deteriorates even after heat shrinkage. For example, Example 2 RUN No. 2 has an extremely excellent value of [0.5%]. This is a value characterized by its composition and manufacturing method, and it can be processed without impairing the quenched properties of the composition of the present invention, and can be stably stretched in a bubble shape at low temperatures even below the melting point of the composition, and even below the softening point. Due to the synergistic effect of the composition, the composition does not cause structural defects such as voids, and the thinly dispersed mixed components are stretched to form a flat shape with less light scattering, making it particularly transparent. It seems to be. In addition, low-temperature shrinkability is one of the properties that is especially necessary when used as a shrink wrapping film, and it shrinks by 20% or 40% of the value expressed by the heat shrinkage rate when the film is processed at various temperature conditions. (represented by the average shrinkage rate in the vertical and horizontal directions), and the lower this value is, the better the low-temperature shrinkage characteristics are. Further, the shrinkage rate required for a shrink film is usually 20% or more, preferably 40% or more, although it varies depending on the packaging method. Specifically, a test piece cut from a film is marked with vertical and horizontal markings of specified dimensions, coated with powder such as talc to prevent it from sticking to itself or other objects during shrinkage, and then heated with hot air at a specified temperature for 5 minutes. The heat shrinkage rate is expressed as the vertical and horizontal average value of the value expressed as the change rate of dimensions in each direction after heat shrinkage.This value is measured at each temperature and graphed. 20% or 40%
The temperature expressed by the heating shrinkage rate is called the 20% and 40% shrinkage temperature. The film according to the present invention is characterized in that this value is low and has a gentle temperature dependence. For example, as shown in 3 in Figure 1 below, a commercially available shrinkable polypropylene film is heated at 120°C at 20% and 40%
Compared to the high temperature of 134℃, which changes rapidly,
For example, as shown in Figure 1, at 20%, 55℃, 40℃
It has the characteristics of a low value of 73℃ and a gentle shape. This degree is expressed as a 20% value and is 85°C or lower, preferably 75°C or lower, and more preferably 70°C or lower. This value is secondarily influenced by the temperature, degree, composition, etc. of stretching, but one of the major features of the cold stretching of the present invention is that it is at a low level and has a gentle shrinkage curve. If this value is high, heat shrinkage will not occur unless exposed to a fairly high temperature for a long time in practical use, so the amount of heat from the heater must be increased, the speed of packaging work will be slow, and the product to be packaged will be damaged. It is unsuitable for items that are dangerous due to heat transmission, items that are susceptible to deformation, especially textiles, and fresh foods.Also, films whose shrinkage curve tends to rise suddenly at high temperatures are subject to shrinkage during packaging. Because the shrinkage rate changes greatly in response to very small changes in temperature, if the film is loosely wrapped in advance and passed through a shrink tunnel, if the overall temperature of the hot air hitting the film is a little too low, it will not shrink tightly and will not fit tightly. Moreover, if the temperature is slightly high, not only the optical properties after shrinkage but also the mechanical properties such as strength will be significantly reduced. Further, there may be defects such as the seal portion or the air vent hole being torn. On the other hand, if this value is too extremely low, the dimensions of the film wound into a roll may change at room temperature, which is undesirable. Commercially available PVC film for plastic shrink packaging has this value at 58℃ and 40℃ at 20% shrinkage, as shown in 2 in Figure 1.
% of 88°C, and has favorable low-temperature shrinkage characteristics that are gentle with respect to temperature. FIG. 3 shows an example of the range in which good products can be obtained as a result of the packaging test described later, and it has the characteristic that it can be packaged at lower temperatures and for a shorter time than PVC films. This is probably due to the fact that it has a faster response than PVC films. Until now, no film other than plasticized PVC with such shrinkage rate characteristics and strength has ever been commercially available. The film of the present invention achieves this and is an unprecedented film. In addition, heat shrinkage stress during shrinkage is one of the important characteristics when used as a shrink wrapping film.
For example, as described below, even if the heat shrinkage rate is high, if the stress during shrinkage is extremely low, it will not fit the packaged object during or after packaging, and will not have binding strength, making it completely useless as a shrink wrapping film. Don't do it. Furthermore, if the binding force is insufficient even to a small extent, it is necessary to use a thick film to cover it, which is uneconomical and inconvenient. Normally, this value is at least 50 g/mm 2 or more, preferably 80 g/mm 2 or more. As shown in Figure 2, commercially available polyethylene shrink film (4 in the figure) has a value of 10 g/mm 2 or more. mm 2 or less, about 5 g/mm 2 , and its uses are limited. The film of the present invention is, for example, as shown in 1 in the same figure.
180g/ mm2 is also available. Usually, the film of the present invention has this value of 100 to 400 g/
It has a sufficiently high level of about mm 2 .
In addition, for low-temperature shrinkable films, this shrinkage stress is meaningless unless it is exerted at a low level of temperature corresponding to the shrinkage rate, and the temperature dependence curve is (vertical,
The shrinkage rate (expressed as a horizontal average value) must be well balanced with the temperature curve. In the present invention, the stiffness of the film can be freely adjusted by changing the composition within a certain range within a specific mixture composition, up to a flexible region such as a stretch film made of plasticized PVC (plasticizer 33% by weight). obtain. Furthermore, the present invention is characterized by its high tensile strength, and has a breaking strength of at least 5 Kg/mm 2 (value measured by the method of JIS Z1702) and preferably 7 Kg/mm 2
Above, more preferably, it has a value of 10Kg/mm 2 or more, and the elongation at that time is also 50% or more, preferably
It is 100% or more, more preferably 150% or more. Such high tensile strength and elongation mean that the film is tough and difficult to tear, which is very advantageous as a protective film for packages, and the thickness of the film can be saved. The film of the present invention can be used, for example, in RUN as described below.
Like No. 4, it has a breaking strength of 15 kg/mm 2 and an elongation of 185%. In contrast, when the strength is increased through orientation, the elongation tends to be extremely low.
For example, a commercially available fully crosslinked (gel 67% by weight) and fully oriented film has a strength of 8 kg/mm 2 and an elongation of 45%.
It is easy to tear. Further, the application is not limited to shrinkage films, but can generally be used as industrial films that utilize toughness. Next, the method for manufacturing the packaging film of the present invention will be explained in detail. The method of the present invention comprises a thermoplastic elastomer (b) consisting of 95 to 10% by weight of an ethylene-vinyl acetate copolymer (a) and 5 to 90% by weight of an ethylene-α-olefin copolymer.
% by weight, mixed and melted, extruded through an annular die, quenched and solidified using a liquid refrigerant to obtain a tube-shaped original fabric with sufficiently low thickness deviation, heated at a temperature not exceeding 100℃, and heated to a temperature of 20℃ (room temperature) to 20℃ (room temperature). Optical properties characterized by an area stretching ratio of 5 times or more and 30 times or less, and a lateral direction stretching ratio of 2 to 7 times, by introducing air into the film under a stretching temperature condition of 100°C. The present invention also provides a method for producing a high-strength stretched film that has excellent low-temperature shrinkage characteristics and is suitable for packaging over a wide temperature range. Here, the ethylene-vinyl acetate copolymer (a) has a vinyl acetate group content of 5 to 30% by weight and a melt index of 0.2 to 10, and the reason for this is as described above. The thermoplastic elastomer formed by coalescence preferably has an ethylene content of 60 to 95 mol%, more preferably 65 to 90 mol%.
Mol% of ethylene and butene-1,4-methyl-
It refers to a copolymer with a compound mainly composed of 1-pentene, isobutylene, propylene, or a mixture thereof, and has a melt index of 0.1 to 10.
Preferably, 0.2 to 6 amorphous or partially crystalline ones are also included. It is preferable that these materials be within the range that can be processed into a film even when used alone. If a large amount of so-called brittle rubber-like materials other than those listed above are used, they will weaken the properties of the base material, make it sticky, and cause punctures during stretching. I don't like it because it looks like this. In the present invention, after the above-mentioned mixed composition is heated and melted and sufficiently kneaded, it is extruded at an extrusion temperature of 180 to 280°C through an annular die that does not give sufficient uneven thickness and heat and time history, and is surrounded by a liquid refrigerant. The material is uniformly rapidly cooled and solidified to form a tube-shaped material that is sufficiently uniform (both externally and internally). This original fabric is heated to 100℃ or below, preferably 90℃ or below.
More preferably, the mixture is heated to 80°C or lower and at a temperature of 20°C (normal temperature) to 90°C, preferably 25°C to 80°C, and even more preferably 30°C to 70°C, to absorb most of the heat of fusion in the mixed components. It can only be obtained by expanding biaxially in a bubble shape at a temperature lower than the melting point of the components determined by the DSC method and preferably below the Vikatto softening point of the mixture under sufficient internal pressure, e.g. 100 to 1000 mm of water column pressure. The optimal area stretching ratio varies depending on the temperature at that time, but is preferably 7 to 30 times,
More preferably, the stretching ratio is 10 to 20 times, and the stretching ratio in the transverse direction is preferably 3 to 6 times. At this time, it is particularly important that the composition be within the range described above to prevent punctures and allow for sufficiently cold stretching, and at the same time, as mentioned above, it is necessary to make a sufficiently uniform raw fabric. If the thickness deviation is about ±10% or more with respect to the thickness of the original fabric, it may become punctured during stretching and may not be stretched properly. The thickness deviation of the original fabric is preferably ±5% or less, more preferably ±3% or less. The degree of stretching is determined by the speed ratio of the sending nip roll and the take-up nip roll, and then the stretching ratio in the vertical direction is determined, and then the next step is to fill the bubble with air and stretch the bubble until it reaches the end of stretching (just before whitening), and then expands in the lateral direction. The best way to carry out the stretching most stably is to keep it at a certain level. Further, in view of the internal pressure and the diameter of the original fabric bubble, it is convenient to have a large size of about 50 mm or more in diameter, preferably 100 mm or more as long as the device allows. In addition, due to the physical properties of the obtained film, it is preferable to keep the film as cold as possible as long as the stability of the bubbles is allowed, but in reality, the degree of stretching is determined by the composition at that time, with a balance with stability (avoiding punctures). do it. The film obtained by the composition method of the present invention has the above-mentioned excellent properties, and at the same time, the thickness deviation of the film after stretching is very small, often about ±5% or less. This is thought to be due to the fact that the unstretched portions of the film are stretched due to the high internal pressure of the bubbles, which applies a strong stretching force to the film during stretching, and also because the thermal history of heating and cooling unlike in conventional methods is particularly small and the film is uniform and stable. It will be done. The optical properties (both haze and gloss) are characterized by being much better after cold stretching by the method of the present invention compared to the original fabric stage. This seems to be due to a change in the shape of the resin dispersed in the form of islands. In other words, in this method, the dispersed particles are also stretched and oriented and flattened, making them less likely to be optically scattered.Although it is a blend system that does not mix to the point of molecular dispersion, it can be stretched well at low temperatures, and at the same time it has strength. It becomes a film, and during this processing, the surface becomes molecules,
This is thought to be because it is not roughened by the flow of crystal grains. In the present invention, each of the mixed compositions exhibits a synergistic effect, and when high strength is desired, any of the components does not become a defect that tends to be seen and cause a decrease in strength. This does not happen at all with the normal stretching method in which the film is heated above its melting point, and in order to improve the optical properties, it is necessary to raise the stretching temperature (for example, to 160°C) to improve the optical properties.
As a result, orientation tends to become more difficult and strength tends to decrease.
Moreover, the same thing can be said at temperatures near the melting point, and not only will the optical properties not produce favorable results, but also the mixed composition will create temperature conditions that make the raw fabric particularly brittle, and furthermore, uneven thickness will be greatly expanded and punctures will occur. , high characteristics cannot be imparted. For example, at a cryogenic temperature of 45
The stretching described in the present invention can be successfully achieved at ℃.
This is something that has never been achieved before, and can only be achieved by using a uniform quenched fabric with a specific composition, and by satisfying conditions such as a specific stretching method. For example, as in the comparative example described below, ethylene-vinyl acetate copolymer, low-density polyethylene, ethylene-α
- When using a single composition such as an olefin copolymer or a composition in which an ethylene-propylene rubber-like copolymer is mixed therewith, the film ruptures and no bubbles grow, that is, stretching is not achieved. A single composition such as EVA has a rubber-like shape with 1
Although it expands to some extent by ~1.5 times, it is difficult to achieve this because it quickly punctures and returns to its original size due to its rubber-like elasticity. Furthermore, if the quenched original fabric is non-uniform, it goes without saying that it will be punctured as described above, making it difficult to stretch it uniformly.
Further, the product of the present invention cannot be obtained at any temperature other than the above-mentioned stretching conditions. Moreover, if the film is stretched only uniaxially, it will tear immediately, and an excellent film having the characteristics of the present invention cannot be obtained, so it must be stretched biaxially under the above-mentioned conditions. Each composition of the present invention is in a state of appropriate compatibility balance, and at the same time, components that act individually with their individual properties, and components that have an appropriate compatibility balance and act synergistically work together to improve processability and film properties. It is thought that it has the characteristics of The film and method of the present invention will be specifically explained in Examples below, but the invention is not limited thereto. Example 1 Ethylene-vinyl acetate copolymer (a) 88 with vinyl acetate group content: 10% by weight, melt index: 1.0
Weight% and melt index 0.45, density 0.88g/
cm 3 , Vicat Ethylene-α-olefin copolymer elastomer with a softening point of 40°C or lower (containing α-olefin equivalent to 20 mol% of butene-1 (b 1 ): 12
% by weight of the composition was mixed and plasticized and kneaded at a maximum temperature of 250°C in the cylinder part using a mixing head type screw with a diameter of 65mm and L/D37 and an annular die with a slit of 150mm and 1.5mm provided at the tip. was extruded and quenched using a water-cooling ring that uniformly discharged water at a distance of 10 cm from the tip of the die to obtain a raw fabric with a diameter of 100 mm and a thickness of 170 μm and a thickness deviation of ±1.8%. The Vicat softening point of this mixture was 68°C. This raw fabric is passed between two pairs of feeding nip rolls and take-up nip rolls, heated to 45℃ with hot air between them, and by introducing air inside, it is expanded continuously under an internal pressure of 430 mm water column, 3.2 times in length and 3.7 times in width. After stretching, the film is cooled with an air ring blowing cold air at 15°C, folded with a stabilizer plate, taken up with a nip roll, and the edges are slit vertically to separate it into two films, each of which is held at a constant tension. A film having a thickness of 14 μm was obtained by winding it up. The obtained stretched film has excellent optical properties with a haze of 0.6% and a gloss of 150, and is also extremely strong with a tensile strength of 14 Kg/mm 2 and elongation.
250%, and the low temperature shrinkage is as shown in Table 1, and as shown in Figure 1, 56% shrinkage at 20% shrinkage.
Commercial Shrink at 75°C and 40% shrinkage
With a gentle pattern similar to PVC film,
Furthermore, the shrinkage rate characteristics shifted toward the low temperature side. Further, the shrinkage stress was at a high level of 173 g/mm 2 at the highest value. As a practical packaging test, four cucumbers were passed through a commercially available shrink tunnel that emitted hot air at 80°C for 3 seconds, resulting in a tight, wrinkle-free fit with a good packaging finish and no deterioration in optical properties after shrinkage.
It could be shrink-wrapped beautifully. In addition, as shown in Figure 3, we conducted tests by varying the residence time in the hot air temperature tunnel during shrink wrapping, and the results showed that good packaging was possible over a wide temperature and speed range starting from the low temperature side. Ta. Compared to the above, commercially available polypropylene shrink film hardly shrinks at 90℃, leaving wrinkles on the sample, and under the same conditions, increasing the hot air temperature
Sufficient shrinkage is not possible unless the temperature is 170℃, and even if the temperature is raised higher than this or the residence time is prolonged, the film may become punctured and torn, or the film may become devitrified, and the appropriate temperature range may be exceeded. It was very narrow.
Furthermore, the commercially available PVC shrink film did not shrink enough under the same conditions, leaving wrinkles, and it was necessary to set the temperature condition to 150°C. The strength, elongation, and heat shrinkage properties of the film are well-balanced in both length and width, so they will be expressed as average values in length and width.
【表】
実施例 2
表−2のようなエチレン−酢酸ビニル共重合体
(a)とエチレン−α−オレフイン共重合体エラスト
マー(b)を用いて実施例1と同様な方法で延伸温度
RUNNo.2〜8、それぞれ61、48、54、43、38、
50、45℃で延伸を実施し安定性良く14μのフイル
ムを得た。いずれのフイルムも偏肉が少なく±5
〜8%程度であり、延伸加工性は良好であつた。
フイルムの物性を第3表に示す。[Table] Example 2 Ethylene-vinyl acetate copolymer as shown in Table-2
(a) and ethylene-α-olefin copolymer elastomer (b) in the same manner as in Example 1, stretching temperature
RUN No. 2-8, 61, 48, 54, 43, 38, respectively
Stretching was carried out at 50 and 45°C to obtain a 14μ film with good stability. Both films have minimal thickness deviation of ±5
It was about 8%, and the stretching processability was good. Table 3 shows the physical properties of the film.
【表】
表−3は次頁に記す。
[Table] Table 3 is shown on the next page.
【表】【table】
【表】
以上のようにして得られたフイルムは光学特性
に特にすぐれ十分低温収縮性を有し、しかも収縮
応力も高く強度も強いフイルムであつた。実施例
1と同様に実用包装テストを行つた所包装温度、
スピード範囲も広く良好な結果であつた。
包装の判定は包装されたサンプルに未収縮部分
によるシワ、結束ゆるみ、フイルム表面の凹凸発
生によるアバタ、又、シール部、コンベアロール
接触部等の破れ、空気抜き穴からの破れ、溶融破
れ等の不良現象のない外観、結束力の優れた良品
より判定し、これの得られる領域をもとめたもの
である。
市販の未架橋で、単にダイよりインフレーシヨ
ンしたポリエチレン系のフイルムは2.5Kg/mm2程
度の破断強度、20%収縮温度が117℃と高く、収
縮応力も最高5g/mm2と低く、包装テスト実施時
は高温側にずれていて180℃にしなければ収縮し
なく、破れ結束力がなくゆるく初めのうちから光
学特性の悪いフイルムが更に失透するなどして全
く本発明のものに比し問題にならないものであつ
た。
又、市販の十分架橋したポリエチレン、シユリ
ンクフイルム(キシレン不溶ゲル分67重量%)は
高温(170℃)でないとうまく収縮しなく良いも
のが得られなかつた。これはシール部が破れやす
く、又フイルムが包装時空気抜き穴より大きく破
れ被包装物を全くほうり出してしまう等、又包装
後失透しフイルム光学特性、強度等が大きく低下
してしまう等の現象が多く、その包装適性領域も
狭いものであつた。
尚、本発明のフイルムは、包装後の光学特性の
低下、諸特性の低下はほとんど認められなかつ
た。
実施例 3
実施例1のRUNNo.1の組成を用いて同例と同
様に加工し、径150mm、厚み500μで周方向偏肉±
1.2%の均一な原反を得、42℃に加熱し縦3.3、横
3.7倍に延伸し41μの厚みの均一なフイルムを得
た。延伸は安定に行え、得られたフイルムの特性
は、ヘイズ0.8%、グロス146、引張り破断強度
12.8Kg/mm2、同伸び210%と光学特性、強度に優
れたフイルムが得られた。今迄市販の厚めのシユ
リンクフイルムは前述した様な低密度ポリエチレ
ン製のものがあるがこれらは十分な配向がセツト
され得ない為第1図に図示した様に加熱収縮率も
少なく高温側にずれていて収縮応力も低く用途が
限定されるものである。
厚めのフイルムほど長い加熱時間と高温、収縮
応力が要求される為、本発明のフイルムが低温で
スピーデイーに包装し得る点において更に有利と
なる。
プラスチツク成型品(ポリスチレン製の30×40
×15cmのケース)を実用包装テストした結果、し
わもなく、きれいにす早く、収縮包装する事が出
来た。市販のポリエチレン系のものは加熱するの
により高温(180℃)と時間がかかり、シワや失
透した部分が発生し、被包装物に熱を伝え、コー
ナーエツヂ部を破損させ不満足なものであつた。
早く仕上ようとして更に温度を上げてゆくと十分
均一に加熱する迄に融点に達し溶解する部分が多
くなり、又内容物に熱を伝え更に成形品のエツヂ
部が変形してしまい全く悪い結果となつた。
又以上の本発明のフイルムを製造中及び又は製
造後、熱処理し、アニールする事により安定化す
れば50〜60℃近辺でも寸法変化しないフイルムが
得られ、用途が限定されるものではなく、一般包
装用、農業用、産業用に広く使い得るものであ
る。
比較例 1
以下の組成を実施例1と同様に延伸を試みた。
比RUNNo.1エチレン−酢酸ビニル共重合体
(a1)単体では40〜90℃の温度での連続延伸はす
ぐパンクし破裂してほとんど元にもどつてしまい
出来なく、140℃迄加熱してようやくバブルが出
来た。このフイルムはヘイズ3.7%で低温収縮特
性はなく、20%収縮温度が99℃で収縮応力の最大
値は、2〜3g/mm2と低く、破断強度2.9Kg/mm2
と低く、伸びは530%であつた。
比RUNNo.2エチレン−α−オレフイン共重合
体(b2)単体では加硫ゴムのように弾性が有り、
低温域90℃以下では多少ふくらんでパンクするだ
けで目的のフイルムは得られなかつた。
高温域140℃近辺では原反がブロツキングして
延伸不可能であつた。
比RUNNo.3低密度ポリエチレン(メルトイン
デツクス1.5、密度:0.918g/cm3)単体で試みた
が40〜110℃ではパンクして全く不可能であつた。
150℃に加熱し初めて連続的にフイルムが得られ
たがヘイズ5.9%、20%収縮温度107℃で低温収縮
特性はなく、収縮応力は5g/mm2で破断強度は
2.7Kg/mm2と低く問題にならなかつた。
比RUNNo.4低密度ポリエチレン(メルトイン
デツクス1.0、密度0.919g/cm3)80重量%にエチ
レン−αオレフイン共重合体(b1):20重量%の
組成では40〜110℃では同様にすぐパンクしてし
まいフイルムとする事が出来なかつた。又、140
℃に加熱して初めてフイルムが得られたがヘイズ
6.3%で低温収縮特性も、応力もなく強度も低い
フイルムであつた。
比RUNNo.5エチレン−酢酸ビニル共重合体
(a1)80重量%にEPR(エチレン−プロピレン共
重合ゴム:エチレン50重量%含量)をゴム状ブロ
ツクより切り取りニーダーで20重量%となるよう
混練しペレタイズした組成物を使用した場合は30
〜110℃で延伸時もろく、すぐ破れてしまい延伸
出来なかつた。それより高温では原反がひどくブ
ロツキングして、べとべとし延伸不可能であつ
た。[Table] The film obtained as described above had particularly excellent optical properties and sufficient low-temperature shrinkability, and also had high shrinkage stress and strong strength. When a practical packaging test was conducted in the same manner as in Example 1, the packaging temperature was
The speed range was wide and the results were good. Packaging is judged by defects such as wrinkles in the packaged sample due to unshrinked parts, loose binding, avatars due to unevenness on the film surface, tears at seals, conveyor roll contact parts, tears from air vent holes, melting tears, etc. The judgment was based on good products with no appearance and excellent cohesive strength, and the range in which this could be obtained was determined. Commercially available uncrosslinked polyethylene film that is simply blown through a die has a breaking strength of about 2.5 kg/mm 2 , a high 20% shrinkage temperature of 117°C, and a low shrinkage stress of 5 g/mm 2 at maximum, making it suitable for packaging. At the time of the test, the temperature was shifted to the high temperature side, and it did not shrink unless it was heated to 180℃, and the film, which was torn, had no cohesion, was loose, and had poor optical properties from the beginning, further devitrified, and was completely compared to the film of the present invention. It was not a problem. In addition, commercially available sufficiently crosslinked polyethylene, Shrink Film (xylene insoluble gel content: 67% by weight), does not shrink well unless it is at a high temperature (170°C), and a good product could not be obtained. This is because the seal part is easy to tear, the film is torn larger than the air vent hole during packaging, and the packaged item is completely thrown out, and the film is devitrified after packaging, which greatly reduces the optical properties and strength of the film. There were many products, and the range of suitability for packaging was narrow. In the film of the present invention, almost no deterioration in optical properties or deterioration in various properties was observed after packaging. Example 3 Using the composition of RUN No. 1 of Example 1, it was processed in the same manner as in the same example, and the diameter was 150 mm, the thickness was 500 μm, and the thickness unevenness in the circumferential direction was ±
Obtain a uniform original fabric of 1.2%, heat it to 42℃, and reduce the length by 3.3
A uniform film with a thickness of 41μ was obtained by stretching 3.7 times. Stretching can be performed stably, and the properties of the obtained film are haze 0.8%, gloss 146, and tensile strength at break.
A film with excellent optical properties and strength of 12.8 Kg/mm 2 and elongation of 210% was obtained. Until now, some of the thicker shrink films on the market are made of low-density polyethylene as mentioned above, but since these cannot have sufficient orientation, they have a low heat shrinkage rate as shown in Figure 1. It is misaligned and has low shrinkage stress, which limits its uses. Since thicker films require longer heating times, higher temperatures, and shrinkage stress, the film of the present invention is further advantageous in that it can be packaged quickly at low temperatures. Plastic molded product (30 x 40 made of polystyrene)
As a result of a practical packaging test for a 15cm x 15cm case, it was possible to shrink-wrap the product neatly and quickly without wrinkles. Commercially available polyethylene-based products were unsatisfactory because they were heated to a high temperature (180°C) and took a long time to heat, causing wrinkles and devitrified areas, transmitting heat to the packaged items, and damaging the corner edges. .
If you try to finish the product quickly and raise the temperature further, more parts will reach the melting point and melt by the time it is heated uniformly, and the heat will be transferred to the contents, further deforming the edges of the molded product, resulting in a completely bad result. Summer. Furthermore, if the above-described film of the present invention is stabilized by heat treatment and annealing during and/or after production, a film that does not change in dimensions even at temperatures around 50 to 60°C can be obtained, and its uses are not limited, but it can be used generally. It can be widely used for packaging, agriculture, and industry. Comparative Example 1 The following composition was tried to be stretched in the same manner as in Example 1. Specific RUN No. 1 Ethylene-vinyl acetate copolymer (a 1 ) alone could not be stretched continuously at temperatures of 40 to 90°C, as it would immediately puncture, burst, and almost return to its original state, and could not be stretched until it was heated to 140°C. A bubble was created. This film has a haze of 3.7%, no low-temperature shrinkage characteristics, a 20% shrinkage temperature of 99°C, a low maximum shrinkage stress of 2 to 3 g/mm 2 , and a breaking strength of 2.9 Kg/mm 2
The growth rate was 530%. Specific RUN No. 2 Ethylene-α-olefin copolymer (b 2 ) alone has elasticity like vulcanized rubber,
At low temperatures below 90 degrees Celsius, the film would swell slightly and become punctured, but the desired film could not be obtained. In the high temperature range of around 140°C, the original fabric blocked and could not be stretched. I tried using RUN No. 3 low-density polyethylene (melt index 1.5, density: 0.918 g/cm 3 ) alone, but it punctured at 40 to 110°C and was completely impossible.
A continuous film was obtained for the first time after heating to 150℃, but the haze was 5.9%, the 20% shrinkage temperature was 107℃, there was no low-temperature shrinkage property, the shrinkage stress was 5g/mm 2 , and the breaking strength was
It was low at 2.7Kg/mm 2 and was not a problem. Specification RUN No. 4 Low density polyethylene (melt index 1.0, density 0.919g/cm 3 ) 80% by weight and ethylene-α olefin copolymer (b 1 ): 20% by weight, the composition is similar at 40 to 110℃. I got a puncture and couldn't make it into film. Also, 140
A film was obtained only after heating to ℃, but there was no haze.
At 6.3%, the film had low temperature shrinkage characteristics, no stress, and low strength. RUN No. 5 EPR (ethylene-propylene copolymer rubber: ethylene content 50% by weight) was cut from a rubber block and kneaded with a kneader to 80% by weight of ethylene-vinyl acetate copolymer (a 1 ) to a total concentration of 20% by weight. 30 when using pelletized compositions
When stretched at ~110°C, it became brittle and broke easily, so it could not be stretched. At higher temperatures, the original fabric was severely blocked and sticky and could not be stretched.
第1図はフイルムの収縮率と加熱処温度との関
係、第2図は同じく収縮応力と加熱処理温度の関
係を示すグラフ、第3図は各種フイルムを用い市
販のシユリンクトンネルで実用収縮包装テスト結
果でありキユウリを収縮包装して良品の得られる
範囲を図示したものである。
図中1は本発明実施例1のフイルム、2は市販
の可塑化PVCシユリンクフイルム(厚さ15μ)、
3は市販のPPシユリンクフイルム(厚さ15μ)、
4は未架橋のふつうの低密度ポリエチレンシユリ
ンクフイルム(厚さ50μ)、5は十分架橋された
低密度ポリエチレン製市販のシユリンクフイルム
(厚さ15μ)。
Figure 1 is a graph showing the relationship between film shrinkage rate and heat treatment temperature, Figure 2 is a graph showing the relationship between shrinkage stress and heat treatment temperature, and Figure 3 is a graph showing the relationship between shrinkage stress and heat treatment temperature. These are test results and illustrate the range in which good products can be obtained by shrink-wrapping cucumbers. In the figure, 1 is the film of Example 1 of the present invention, 2 is a commercially available plasticized PVC shrink film (thickness 15μ),
3 is a commercially available PP shrink film (thickness 15μ),
4 is an ordinary uncrosslinked low-density polyethylene shrink film (thickness: 50 μm); 5 is a commercially available shrink film made of sufficiently cross-linked low-density polyethylene (thickness: 15 μm).
Claims (1)
インデツクスが0.2〜10であるエチレン−酢酸ビ
ニル共重合体(a)95〜10重量%とメルトインデツク
スが0.1〜10のエチレン−α−オレフイン共重合
体よりなる熱可塑性エラストマー(b)5〜90重量%
との混合組成よりなる延伸フイルムであり、該フ
イルムの20%収縮温度が85℃以下で、且つ引張破
断強度が5Kg/mm2以上である冷間高配向フイル
ム。 2 酢酸ビニル基含有量が3〜30重量%でメルト
インデツクスが0.2〜10であるエチレン−酢酸ビ
ニル共重合体(a)95〜10重量%とメルトインデツク
スが0.1〜10のエチレン−α−オレフイン共重合
体よりなる熱可塑性エラストマー(b)5〜90重量%
との混合組成を混合溶融し環状ダイより押出し液
状冷媒により急冷固化させたチユープ状原反を、
100℃以下に加熱し、且つ加熱温度20〜100℃で二
対のニツプロール間で内部にエアーを圧入する事
により面積延伸倍率5倍以上、30倍以下、且つ横
方向の延伸倍率2〜7倍で延伸する事を特徴とす
る冷間高配向フイルムの製造方法。[Scope of Claims] 1. Ethylene-vinyl acetate copolymer (a) having a vinyl acetate group content of 3 to 30% by weight and a melt index of 0.2 to 10 (95 to 10% by weight) and a melt index of 0.1 to 10. Thermoplastic elastomer (b) consisting of 10 ethylene-α-olefin copolymers 5 to 90% by weight
A cold highly oriented film having a mixed composition of 20% shrinkage temperature of 85° C. or less and a tensile strength at break of 5 Kg/mm 2 or more. 2. Ethylene-vinyl acetate copolymer (a) having a vinyl acetate group content of 3 to 30% by weight and a melt index of 0.2 to 10 (95 to 10% by weight) and ethylene-α- having a melt index of 0.1 to 10 Thermoplastic elastomer (b) consisting of olefin copolymer (5 to 90% by weight)
A tube-shaped original fabric is made by mixing and melting a mixed composition of
By heating to 100℃ or less and pressurizing air between two pairs of Nippro rolls at a heating temperature of 20 to 100℃, the area stretching ratio is 5 times or more and 30 times or less, and the transverse direction stretching ratio is 2 to 7 times. 1. A method for producing a cold highly oriented film, which is characterized by stretching the film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60095887A JPS60236723A (en) | 1985-05-08 | 1985-05-08 | Manufacture of cold high-orientation film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60095887A JPS60236723A (en) | 1985-05-08 | 1985-05-08 | Manufacture of cold high-orientation film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60236723A JPS60236723A (en) | 1985-11-25 |
JPH026621B2 true JPH026621B2 (en) | 1990-02-13 |
Family
ID=14149823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60095887A Granted JPS60236723A (en) | 1985-05-08 | 1985-05-08 | Manufacture of cold high-orientation film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60236723A (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52121677A (en) * | 1976-04-07 | 1977-10-13 | Mitsubishi Petrochemical Co | Mono dimension elongation film |
JPS5913327B2 (en) * | 1976-06-11 | 1984-03-29 | 三菱樹脂株式会社 | Method for manufacturing shrink wrapping film |
JPS5845974B2 (en) * | 1976-08-10 | 1983-10-13 | 三井化学株式会社 | Polyolefin-based removable protective film |
JPS53105572A (en) * | 1977-02-28 | 1978-09-13 | Dainippon Printing Co Ltd | Production of heat-shrinking polyethylene resin film |
-
1985
- 1985-05-08 JP JP60095887A patent/JPS60236723A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60236723A (en) | 1985-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4336350A (en) | Cold drawn film made of an olefin polymer blend composition | |
US4469753A (en) | Cold drawn high-orientation multilayered film and process for manufacture of said film | |
US4619859A (en) | Highly-oriented stretchable multilayer film and process for producing the same | |
US4336212A (en) | Composition for drawn film, cold drawn film made of said composition and process for manufacture of said film | |
JP3122855B2 (en) | Multilayer film and method of manufacturing multilayer film | |
US3634552A (en) | Polymer blend compositions comprising polypropylene and ethylene/butene copolymer | |
CA1304187C (en) | Butene-rich butene-1 propylene copolymer shrink film | |
US4766178A (en) | Butene-rich butene-1 propylene copolymer composition | |
JPH0147311B2 (en) | ||
JPH0214898B2 (en) | ||
JPS6233946B2 (en) | ||
JPS6227981B2 (en) | ||
JPH026621B2 (en) | ||
JPH11105222A (en) | Heat-shrinkable multilayered film | |
JP2695554B2 (en) | Stretch film for grass | |
JPS6222772B2 (en) | ||
US4481334A (en) | Composition for drawn film, cold drawn film made of said composition and process for manufacture of said film | |
JPS6020410B2 (en) | Polybutene resin composition | |
JPH0341347B2 (en) | ||
JPH0441902B2 (en) | ||
JP2615931B2 (en) | Film production method | |
JPS6146299B2 (en) | ||
JPS6142620B2 (en) | ||
JP3292757B2 (en) | Stretch packaging film | |
JPH0349741B2 (en) |