[go: up one dir, main page]

JPH0264255A - Cogeneration system by internal combustion engine - Google Patents

Cogeneration system by internal combustion engine

Info

Publication number
JPH0264255A
JPH0264255A JP63215824A JP21582488A JPH0264255A JP H0264255 A JPH0264255 A JP H0264255A JP 63215824 A JP63215824 A JP 63215824A JP 21582488 A JP21582488 A JP 21582488A JP H0264255 A JPH0264255 A JP H0264255A
Authority
JP
Japan
Prior art keywords
energy
heat
internal combustion
combustion engine
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63215824A
Other languages
Japanese (ja)
Inventor
Hidekazu Kanbara
神原 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO ELECTRIC Manufacturing CO Ltd
Original Assignee
TAIYO ELECTRIC Manufacturing CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO ELECTRIC Manufacturing CO Ltd filed Critical TAIYO ELECTRIC Manufacturing CO Ltd
Priority to JP63215824A priority Critical patent/JPH0264255A/en
Publication of JPH0264255A publication Critical patent/JPH0264255A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To obtain a great economic effect by using an external energy source of only an internal combustion engine so that roughly 100% waste heat energy is furnished so as to be utilized when a thermo-electric ratio for demand is greater than a thermo-electric ratio for generation. CONSTITUTION:The thermal load 40 of the cooling/heating and hot water supply ing equipment is furnished with the waste heat energy Q1 of an internal combus tion engine 1 as input thermal energy wherein the equipment is provided with an electro-thermal energy conversion system such as an electrically driven heat pump and the like. And when these are not sufficient enough in capacity (Q3/WL1>Q1/WL), a part WL2 of the output power WL of a generator 2 is input ted through a switch S2 so as to be converted into thermal energy QL2 thereafter by the electro-thermal energy conversion system. Then, the energy is added to waste heat energy Q1 so that the load can also be furnished with total ther mal energy Q2(=Q1+QL2) while being controlled in such a way that the total thermal energy Q2 will come close to the thermal demand Q3 of the thermal load 40 through the opening/closing actuation of the switch S2.

Description

【発明の詳細な説明】 「産業上の利用分野」 内燃機関で発電機を駆動して得られる電力源と排熱エネ
ルギー源の双方により、電気負荷と空調設備などの熱負
荷の双方の需要を賄うようにするシステムに関する。
[Detailed Description of the Invention] "Industrial Application Field" Demands for both electric loads and heat loads such as air conditioning equipment can be met by both the electric power source obtained by driving a generator with an internal combustion engine and the waste heat energy source. Regarding the system that makes it possible to pay for it.

r従来の技術」 −aにホテル、病院、ビルあるいは工場などでは熱負荷
である冷暖房・給湯設備が設けられており、このための
熱源を必要としている。そして、この熱源と電気負荷の
電源は、通常商用電源から得ているが、近年、省エネ化
を目的として、需要家側で設ける熱併給内燃力発電装置
から得ることが多くなっている。この熱併給内燃力発電
装置は内燃機関によって発電機を駆動して得る電力を電
気負荷へ供給するとともに、内燃機関から排出される排
熱エネルギーを熱負荷である冷暖房・給油設備へ供給す
るよう構成しており、従来は、第2図に示すようなシス
テム構成のものが一般的に知られている。
2. Prior Art -a Hotels, hospitals, buildings, factories, etc. are equipped with air-conditioning and hot water supply equipment, which is a heat load, and require a heat source for this purpose. The power for this heat source and electric load is usually obtained from a commercial power source, but in recent years, for the purpose of energy saving, it has increasingly been obtained from a cogeneration internal combustion power generation device installed on the consumer side. This cogeneration internal combustion power generation device is configured to supply electric power obtained by driving a generator using an internal combustion engine to an electrical load, and also to supply exhaust heat energy discharged from the internal combustion engine to heating, cooling, and oil supply equipment, which are heat loads. Conventionally, a system configuration as shown in FIG. 2 is generally known.

以下、これについて説明すると、このシステムでは、内
燃機関1により発電機2を駆動して所要の電力WL (
=WL1)を得て、需要電力量WL1なる電気負荷3へ
供給するとともに、内燃機関1から排出される有効利用
可能な排熱エネルギーQ。
This will be explained below. In this system, the internal combustion engine 1 drives the generator 2 to generate the required electric power WL (
=WL1), and is supplied to the electric load 3 with the demand power amount WL1, and is also discharged from the internal combustion engine 1 and can be used effectively.

のうちから、冷暖房・給湯設備などの熱負荷4にその需
要熱Q、に応じた分を供給し、有効利用するよう構成さ
れる。
The system is configured to supply heat according to the demand Q, to a heat load 4 such as air conditioning/heating/hot water equipment, etc., for effective use.

ところで、このシステムでは、内燃機関1で発電R2を
駆動して得る電力量WLと自身から排出する有効利用可
能な排熱エネルギーffi Q sの割合のいわゆる発
生熱電比Q* /WLは、その使用する内燃機関によっ
てほぼ一定の値に固定されるのに対し、需要側である電
気負荷量WL、iと冷暖房・給湯設備の熱負荷量Q、の
割合のいわゆる需要熱電比Q 3 / W L 1はそ
の需要目的によって大きく異なり、また、季節などによ
っても大きく変化するので、これら双方のQ x / 
W L tとQ t / W t、が−致することはき
わめて希であり、かなり相違することの方がはるかに多
い。
By the way, in this system, the so-called generated thermoelectric ratio Q*/WL, which is the ratio of the electric power WL obtained by driving the power generation R2 with the internal combustion engine 1 and the effectively usable waste heat energy ffi Qs emitted from the internal combustion engine 1, is determined by its use. However, the so-called demand heat-to-power ratio Q 3 / W L 1 is the ratio of the electrical load WL, i on the demand side and the heat load Q of the air conditioning/hot water supply equipment. Q x /
It is extremely rare for W L t and Q t / W t to match, and it is far more likely that they differ considerably.

そのため、第2図に示す従来例では、電気負荷3の需要
電力WL、をちょうど賄うように内燃機関1を運転した
ときに得られるQ、がQlに対して不足する場合(Qh
 /WLI>Ql /wt、 )は、その不足分を図示
されていない商用電源などの外部エネルギー源(及びこ
れを専用のエネルギー源とする新たな熱負荷)を用いて
補充するようにし、逆に過剰になる場合(Q i / 
W L 1 < Q t / W L )は、その過剰
分を図示されていない放熱器などにより放熱処理するよ
う構成される。したがって、商用電源設備や放熱器など
の余分の設備を必要とし、それだけ設備費や運転費が高
くなって経済的効果が損なわれるといった課題があった
Therefore, in the conventional example shown in FIG.
/WLI>Ql /wt, ), the shortage is supplemented using an external energy source (not shown) such as a commercial power source (and a new heat load that uses this as a dedicated energy source), and vice versa. If it becomes excessive (Q i /
W L 1 < Q t / W L ) is configured to radiate the excess heat using a radiator (not shown) or the like. Therefore, there is a problem in that extra equipment such as commercial power supply equipment and a radiator is required, which increases equipment costs and operating costs accordingly, impairing economic effects.

[発明が解決しようとする課題」 この発明の目的は、以上説明した従来システムの課題の
うち、需要熱電比Q i / W L 1の方が発生熱
電比Q s / ’#V Lより大きい場合において、
商用電源などの外部エネルギー源(及びこれを専用のエ
ネルギー源とする新たな熱負荷)を用いて補充を行わな
くとも、内燃機関1だけ省外遣エネルギー源の使用によ
り、且つQ i /’ W L tに変動を生じても有
効利用可能な排熱エネルギーQ1を常に100%近く利
用してWLIとQ、の双方を賄うようにする経済的効果
の大きいシステム構成を提供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the problems of the conventional system described above, when the demand thermoelectric ratio Q i / W L 1 is larger than the generated thermoelectric ratio Q s / '#V L In,
By using an external energy source that saves only the internal combustion engine 1, and without replenishing using an external energy source such as a commercial power source (and a new heat load that uses this as a dedicated energy source), It is an object of the present invention to provide a highly economically effective system configuration that always utilizes nearly 100% of effectively usable waste heat energy Q1 even when L t fluctuates to cover both WLI and Q.

「課題を解決するための手段・作用」 この目的を達成するものとして、この発明においては次
のような手段を採った。
"Means and actions for solving the problem" In order to achieve this object, the following means were adopted in this invention.

冷暖房・給湯設備などの熱負荷(40)は、電動ヒート
ポンプ式などの電気/熱変換装置を含むものとし、その
入力熱エネルギー源として、内燃機関(1)の有効利用
可能な排熱エネルギー(Q1)のみによっても賄うこと
もできるし、また、これだけでは不足するとき(Q i
 / Wt、t> Q t /WL>は、発電機(2)
の出力電力(WL)の−部(w L 2 )をスイッチ
(S2)を通して入力し前記電気/熱変換装置によって
熱エネルギー<QL1)に熱変換してから排熱エネルギ
ー(Q1)に加え合わせたトータル熱エネルギー<Q2
 )  (”Qt +QL1)によってもまかなえるよ
うにし、且つスイッチ(S2)の開閘揉作によってこの
トータル熱エネルギー(Q2)が熱負荷(40)の需要
熱Q1)に常に近づくようにコントロールする。
The heat load (40) such as air conditioning and hot water supply equipment includes an electric/thermal conversion device such as an electric heat pump type, and the effectively usable exhaust heat energy (Q1) of the internal combustion engine (1) is used as the input thermal energy source. It can also be covered by only Qi
/ Wt, t> Q t /WL> is the generator (2)
The − part (w L 2 ) of the output power (WL) of is inputted through the switch (S2) and converted into thermal energy <QL1) by the electricity/thermal conversion device, and then added to the waste heat energy (Q1). Total thermal energy <Q2
) (Qt +QL1), and is controlled so that this total thermal energy (Q2) always approaches the demand heat Q1) of the heat load (40) by opening the switch (S2).

すなわち、スイッチ(S2)を開としたときの発生熱電
比Q t / W L  (= w t、t )が負荷
側の需要熱電比Q i / W L sより小さく、Q
3に対しQlが不足するときは、スイッチ(S2)を閉
じ、WLをWL2分増加させてW L=WLl+WL2
となし、したがってQ、もそれに見合った分(ΔQ)増
加させ、且つこの増加後のQ、に前記の〜N’L2分よ
り得た熱エネルギーQ L 2分を加え合わせたトータ
ル熱エネルギーQ2を熱負荷(20)の熱源となすこと
により、熱負荷(20)と電気負荷(3)の双方の需要
側に対する実質的な各供給エネルギーの比となるいわゆ
る供給熱電比Q 2 / W L 1を発生熱電比Q 
1 / W L tより増大させ、これを需要熱電比Q
 3 / W t、 tに近づけるような供給熱電比制
御を行わせる。
That is, the generated thermoelectric ratio Q t / W L (= w t, t ) when the switch (S2) is opened is smaller than the demand thermoelectric ratio Q i / W L s on the load side, and Q
When Ql is insufficient for 3, close the switch (S2) and increase WL by WL2, WL=WLl+WL2
Therefore, Q is also increased by a commensurate amount (ΔQ), and the total thermal energy Q2 is obtained by adding the thermal energy Q L 2 minutes obtained from the ~N'L2 minutes above to Q after this increase. By using it as the heat source of the heat load (20), the so-called supply thermoelectric ratio Q 2 / W L 1, which is the ratio of each substantial supply energy to the demand side of both the heat load (20) and the electric load (3), is obtained. Generated thermoelectric ratio Q
1/W L t, and convert this to the demand thermoelectric ratio Q
3/W t, The supply heat and power ratio is controlled so as to approach t.

「実施例」 以下、この発明を第1図に示す実施例を参照して説明す
る。第1図において、1は電力量WLを出力する発電機
2を駆動する内燃機関で、有効利用可能な排熱エネルギ
ーQ1を排出する。3は電気負荷であり、その需要電力
ff1WL1のすべては発電機2の出力WLのうちから
賄われる。40はその需要熱量をQ】とする図示されて
いないが、排熱ボイラーなどの適当な熱交換器や電動ヒ
ートポンプ式などの電気/熱変換装置を含んだ冷暖房・
給湯設備の熱負荷であり、その入力エネルギー源として
は、内燃機関1の排出するQlのみによって賄うことも
できるしくただし、この場合はQl中Q、で、スイッチ
S2は開)、またどこのQlだけで不足する場合(Q 
i / Wt、t> Q t / Wt、 )は、スイ
ッチS2を閉とし、発電機2の全出力電力WLのうちか
ら電気負荷3の需要電力WLl分を差し引いた残りの電
力WL2(=WL  WLI)分を入力し、図示されて
いない電動ヒートポンプ式電気/熱変換装置などによっ
て熱エネルギーQL2分に熱変換してからQ、に加え合
わせたトータル熱エネルギーQ2  (=Qt +QL
2)によっても賄えるようにし、且つ、このQ2をQ、
に近づけるように(つまりは、前述の供給熱電比Qz/
WLl”y需要熱電比Q 、/ W L sとなるよう
に)、スイッチS2の1m閉操作を行なわせる。
"Embodiment" Hereinafter, the present invention will be described with reference to an embodiment shown in FIG. In FIG. 1, reference numeral 1 denotes an internal combustion engine that drives a generator 2 that outputs electric power WL, and discharges effectively usable waste heat energy Q1. 3 is an electric load, and all of its power demand ff1WL1 is provided from the output WL of the generator 2. 40 has a heat demand of Q].Although not shown in the figure, it is an air-conditioning/heating system including a suitable heat exchanger such as a waste heat boiler and an electric/thermal conversion device such as an electric heat pump type.
This is the heat load of the hot water supply equipment, and its input energy source can be covered only by the Ql discharged by the internal combustion engine 1. However, in this case, Ql is in Ql, and switch S2 is open), and which Ql If it is insufficient (Q
i / Wt, t > Q t / Wt, ), the switch S2 is closed and the remaining power WL2 (= WL WLI ) minutes, convert it into thermal energy QL2 minutes by an electric heat pump type electricity/thermal conversion device (not shown), etc., and then add the total thermal energy Q2 (=Qt +QL) to Q.
2), and set Q2 to Q,
(in other words, the above-mentioned supply heat and power ratio Qz/
The switch S2 is closed by 1 m so that the demand heat/electric ratio Q,/WLs becomes WLl''y.

次に、この第1図に示すシステムにおいて、内燃機関1
の発生熱電比Q t / W Lが2.0(なお、内燃
機関1の入力1次エネルギーに対する発電効率は0,2
67、有効利用可能な排熱回収率は0.533、回合熱
効率は0.8)の場合を例にとり、各部のエネルギー量
の関係などを第3図を参照して説明する。(ただし、電
気負荷3の需要電力W1.を100%基準とする。また
、各部の損失は無視する) 第3図では、横軸は内燃機
rJA1の入力1次エネルギー量Pであり、縦軸はそれ
に対応する各部のエネルギー量、すなわち、a線はWL
を、a線はWLI(常に100%基準の一定)を示し、
b線はa線(WL )に08分を上積みしたもの(つま
り、b線とa線ではさまれた部分がQs )を示す、3
1点はa線とa線の交点、di線はこの88点を通る縦
軸に平行な線であり、このd!線とb線及び横軸との交
点がす、及びPm点である。そして、WL2=○のとき
の各部のエネルギー量は、WL、 =WL1= a t
 P t  (= 100%)、Ql = Q Is 
= b + a t  (= 200%)、p=p、=
(wL+Qt )10.8  =375%となる。した
がって、Q、がWLlの200%(需要熱電比Q。
Next, in the system shown in FIG.
The generated thermoelectric ratio Q t / W L is 2.0 (the power generation efficiency with respect to the input primary energy of the internal combustion engine 1 is 0.2
Taking as an example the case where the effectively usable waste heat recovery rate is 0.533 and the combined heat efficiency is 0.8), the relationship between the energy amounts of each part will be explained with reference to FIG. (However, the power demand W1 of electric load 3 is taken as 100% standard. Also, losses in each part are ignored.) In Fig. 3, the horizontal axis is the input primary energy amount P of the internal combustion engine rJA1, and the vertical axis is the input primary energy amount P of the internal combustion engine rJA1. The energy amount of each part corresponding to it, that is, the a-line is WL
, the a-line indicates WLI (always constant at 100% standard),
The b line shows the a line (WL) plus 08 minutes (that is, the part sandwiched between the b line and the a line is Qs), 3
One point is the intersection of the a line and the a line, the di line is a line parallel to the vertical axis passing through these 88 points, and this d! The intersections of the line, b line, and horizontal axis are points S and Pm. Then, the energy amount of each part when WL2=○ is WL, =WL1= a t
P t (= 100%), Ql = Q Is
= b + a t (= 200%), p = p, =
(wL+Qt)10.8=375%. Therefore, Q is 200% of WLl (demand thermoelectric ratio Q).

/WL1=2)のときは、スイッチS2を開とすれば、
各部のエネルギー量の関係は前述のように定まるので、
内燃機関1の有効利用可能な排熱エネルギーQ、(=2
00%)は、熱負荷40の需要熱uQx  (−200
%)と一致し完全利用できる。
/WL1=2), if switch S2 is opened,
The relationship between the amount of energy in each part is determined as described above, so
Effectively usable exhaust heat energy Q of internal combustion engine 1, (=2
00%) is the demand heat uQx (-200
%) and is fully available.

ところで、Q3がWLlの300%(Qi/WLI=3
)を必要とするときは、熱負荷40へのエネルギーの供
給はQ、のほかにスイッチS2を閉じWL2(QL2)
分を加え合わせ双方のトータル熱エネルギー量Q2  
(=Q1 +QL2)を300%にするが、この場合の
各部のエネルギー量の関係を第3図において示せば、前
述のa線にQ、の300%分を上積みしたe線を画き、
このe線と前述のb線との交点b2を求め、このb2点
を通る縦軸に平行なd、線を画き、このd2線と前述の
a線、a線及び横軸との交点a2 、at及びP2を求
めれば、各部のエネルギー量の関係は、WL、=a’。
By the way, Q3 is 300% of WLl (Qi/WLI=3
), the supply of energy to the heat load 40 is performed by closing switch S2 in addition to Q, WL2 (QL2).
Total amount of heat energy for both sides Q2
(=Q1 +QL2) is set to 300%, and if the relationship between the energy amounts of each part in this case is shown in Fig. 3, the e-line is drawn by adding 300% of Q to the above-mentioned a-line,
Find the intersection point b2 of this line e and the above-mentioned line b, draw a line d parallel to the vertical axis passing through this point b2, and find the intersection a2 of this line d2 and the above-mentioned line a, a line and the horizontal axis, If at and P2 are found, the relationship between the energy amounts of each part is WL, = a'.

P2(=100%)  、WL2 (QL2)= a 
2 a t(=33.3%>、Q、=Q、、+ΔQ=b
2a2(=226.7%) 、 Q2 =Qt +Qt
、2=Qi  (=300%)、PmP2  (=50
0%)となる、つまり、PをWLlの500%分とすれ
ば、Q、の300%分はちょうど92分で供給可能とな
り、したがって、Qlは余すところなく完全利用となる
P2 (=100%), WL2 (QL2) = a
2 a t(=33.3%>,Q,=Q,,+ΔQ=b
2a2 (=226.7%), Q2 =Qt +Qt
, 2=Qi (=300%), PmP2 (=50
0%), that is, if P is 500% of WLl, 300% of Q can be supplied in exactly 92 minutes, so Ql is completely utilized.

なお、△Q = 66.7%、Q L2= 33.3%
である。
In addition, △Q = 66.7%, Q L2 = 33.3%
It is.

なお、第1図では、スイッチS2は1個になっているが
必要に応じ複数個となし、切替え巾を細かくすることも
できるし、かつ又、図示されていない制御装置によって
Q2が常にできるだけQlに近づくように複数のスイッ
チS2の開閉繰作を。
In addition, although there is one switch S2 in FIG. 1, it is possible to use a plurality of switches if necessary to make the switching width narrower, and also, by using a control device (not shown), Q2 is always adjusted to the maximum possible level. Repeatedly open and close multiple switches S2 to approach .

行わせることもできる。You can also make it happen.

「発明の効果」 従来例の第2図のシステムでは、例えば、前述例の発生
熱電比が2であるのに需要熱電比が3を必要とする場合
、熱負荷4に対する熱源の不足分100%(ただし、電
気負荷の需要電力WL1分を10〇九基準とする。)を
外部エネルギー源より補充せねばならず、そのため、例
えば商用電源より少なくともその分を賄うための商用電
源設備を設けなくてはならないし、しかも、この商用電
源は通常入力1次エネルギーに対する発電効率はそれほ
ど良くない(通常40%以下)のに対し、この発明に係
るシステムを採用すれば、前述したように熱負荷40の
需要熱のすべてを商用電源などの外部エネルギー源を併
用しなくとも内燃機関1のみの運転により賄うことがで
きるし、しかも熱負荷40に変動があっても常に有効利
用可能な排熱エネルギーQ、をほぼ完全に利用でき、入
力1次エネルギーに対する総合熱効率を常に最高に近い
状jr3(通常80%ぐらい)に維持できる。したがっ
て、設備費、運転費とも安価になり、きわめて大きな経
済効果を得ることができる。
"Effects of the Invention" In the conventional system shown in FIG. 2, for example, if the generated thermoelectric ratio in the above example is 2 but the demand thermoelectric ratio is 3, the shortage of the heat source for the heat load 4 is 100%. (However, the electric load demand power WL 1 minute is based on 1009.) must be supplemented from an external energy source, and therefore, for example, commercial power supply equipment must be installed to cover at least that amount from a commercial power source. Moreover, the power generation efficiency of this commercial power source for the input primary energy is usually not so good (usually less than 40%), but if the system according to the present invention is adopted, the heat load of 40% can be reduced as described above. All of the required heat can be met by operating only the internal combustion engine 1 without using an external energy source such as a commercial power supply, and moreover, the exhaust heat energy Q, which can always be effectively used even if the heat load 40 fluctuates, can be utilized almost completely, and the overall thermal efficiency with respect to the input primary energy can always be maintained at a state close to the maximum jr3 (usually about 80%). Therefore, equipment costs and operating costs are both low, and extremely large economic effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、それぞれこの発明に係る実施例及
び従来の実施例を示す内燃機関駆動発電装置による熱雷
併給システム図であり、第3図は第1図の熱電併給シス
テムにおける各部のエネルギー量の関係を示す特性図で
ある。 l・・・内燃機関、2・・・発電機、3・・・電気負荷
、4.40−・・冷暖房・給湯設備などの熱負荷、WL
・・・発電機(2)の発生電力、WLl・・・電気負荷
(3)の需要電力、WL2−・・熱負荷(40)への入
力電力、 Q、・・・内燃機関(1)の排出する有効利用可能な排
熱エネルギー、Q L4・・・WL2が熱変換された熱
エネルギー、Q2・・・トータル熱エネルギー(=Q。 +QL2)。 α2f=C++cL2)今Q5 1、コ 一月 丁二1−I− 第10 番21図
1 and 2 are diagrams of a combined heat and power generation system using an internal combustion engine-driven power generation device showing an embodiment according to the present invention and a conventional example, respectively, and FIG. 3 shows each part of the combined heat and power generation system of FIG. 1. FIG. 2 is a characteristic diagram showing the relationship between energy amounts. l... Internal combustion engine, 2... Generator, 3... Electrical load, 4.40-... Heat load such as air conditioning/hot water supply equipment, WL
...Power generated by the generator (2), WLl...Power demand of the electrical load (3), WL2-...Power input to the heat load (40), Q,...Power of the internal combustion engine (1) Effectively usable exhaust heat energy to be discharged, Q L4... Thermal energy from which WL2 is converted into heat, Q2... Total thermal energy (=Q. +QL2). α2f=C++cL2) Now Q5 1, Koichitsu-cho-2 1-I- No. 10, Figure 21

Claims (1)

【特許請求の範囲】 内燃機関で発電機を駆動して得る電力を電気負荷へ供給
するとともに、当該内燃機関から排出される排熱エネル
ギーを冷暖房・給湯設備などの熱負荷へ供給し有効利用
するよう構成される内燃機関による熱電併給システムに
おいて、 更に、電気負荷(3)の需要電力(W_L_1)と冷暖
房・給湯設備などの熱負荷(40)の需要熱(Q_3)
との割合である需要熱電比(Q_3/W_L_1)が内
燃機関(1)駆動の発電機(2)セットの発生する電力
(W_L)と有効利用可能な排熱エネルギー(Q_1)
との割合である発生熱電比(Q_1/W_L)より大き
い場合において、 熱負荷(40)は、その入力エネルギー源として内燃機
関(1)の有効利用可能な排熱エネルギー(Q_1)の
みによって賄うこともできるし、また、発電機(2)の
出力電力(W_L)の一部(W_L_2)をスイッチ(
S_2)を通して入力し、電動ヒートポンプなどにより
熱変換して得る熱エネルギー(Q_L_2)分を前記排
熱エネルギー(Q_1)に加えたトータル熱エネルギー
(Q_2)(=Q_1+Q_L_2)によっても賄える
ようにし、且つ、スイッチ(S_2)の開閉操作によっ
てこのトータル熱エネルギー(Q_2)が前記需要熱(
Q_3)に常に近づくようにしたことを特徴とする内燃
機関による熱電併給システム。
[Claims] In addition to supplying electric power obtained by driving a generator with an internal combustion engine to an electrical load, exhaust heat energy discharged from the internal combustion engine is supplied to a heat load such as an air-conditioning/heating/hot-water supply facility for effective use. In a combined heat and power generation system using an internal combustion engine configured as shown in FIG.
The demand heat and power ratio (Q_3/W_L_1), which is the ratio between the electric power generated by the internal combustion engine (1) and the generator (2) set (W_L), and the effectively usable waste heat energy (Q_1)
In the case where the generated thermoelectric ratio (Q_1/W_L) which is the ratio of You can also switch part (W_L_2) of the output power (W_L) of the generator (2) to the switch (
S_2), and the heat energy (Q_L_2) obtained by heat conversion by an electric heat pump or the like can be covered by the total heat energy (Q_2) (=Q_1+Q_L_2) added to the exhaust heat energy (Q_1), and By opening and closing the switch (S_2), this total thermal energy (Q_2) is converted into the demand heat (
Q_3) A combined heat and power generation system using an internal combustion engine characterized by being always close to Q_3).
JP63215824A 1988-08-30 1988-08-30 Cogeneration system by internal combustion engine Pending JPH0264255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63215824A JPH0264255A (en) 1988-08-30 1988-08-30 Cogeneration system by internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63215824A JPH0264255A (en) 1988-08-30 1988-08-30 Cogeneration system by internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0264255A true JPH0264255A (en) 1990-03-05

Family

ID=16678865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63215824A Pending JPH0264255A (en) 1988-08-30 1988-08-30 Cogeneration system by internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0264255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565807A (en) * 1991-08-23 1993-03-19 Toshiba Corp Control device for cogeneration system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565807A (en) * 1991-08-23 1993-03-19 Toshiba Corp Control device for cogeneration system

Similar Documents

Publication Publication Date Title
US4150300A (en) Electrical and thermal energy supply system for buildings
US5617504A (en) Cogeneration system and control therefor with auxiliary heating elements and thermal barrier
JP2821760B2 (en) Optimal control method for cogeneration system
JPH1042472A (en) Private power generation system
CN110361969A (en) A kind of cool and thermal power integrated energy system optimizing operation method
JP2011217590A (en) Air conditioning system
JP2003199254A (en) Cogeneration system and program therefor
JPH084586A (en) Cogeneration system
JP2009074744A (en) Gas heat pump cogeneration apparatus
JP3653256B2 (en) Hybrid energy system
JPH0264255A (en) Cogeneration system by internal combustion engine
JP7117094B2 (en) power generation system
JP2018182905A (en) Power supply system
JPH0364701B2 (en)
JP2628218B2 (en) Optimal control method for cogeneration system
CN205477790U (en) Gas cool and thermal power trigeminy supplies system&#39;s generator and waste heat direct -fired machine connected system
CN211975087U (en) Thermoelectric and cold triple supply peak regulation system based on thermocline storage tank
JP3675070B2 (en) Cogeneration system
JPH0666110A (en) Control method of heat pump in heat and electric power double supplying system
CN114251872B (en) Small-sized combined cooling heating power system based on artificial intelligence and control method thereof
JP3258998B2 (en) Operation control method for cogeneration system
JP3289151B2 (en) Pumped storage combined heat storage facility
JP3301784B2 (en) Control method of heat storage tank in combined heat and power system
KR20020091009A (en) A very efficient thermo-annexation generator using the regenerative heat exchanger and the using method thereof
JPH08186938A (en) Power supply system