JPH0262958B2 - - Google Patents
Info
- Publication number
- JPH0262958B2 JPH0262958B2 JP59116650A JP11665084A JPH0262958B2 JP H0262958 B2 JPH0262958 B2 JP H0262958B2 JP 59116650 A JP59116650 A JP 59116650A JP 11665084 A JP11665084 A JP 11665084A JP H0262958 B2 JPH0262958 B2 JP H0262958B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- optical
- junction element
- output
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 73
- 239000004065 semiconductor Substances 0.000 claims description 58
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 9
- 239000013307 optical fiber Substances 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000005219 brazing Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000005253 cladding Methods 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical group [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】
〔技術分野〕
本発明は、マウント上に半導体PN接合素子を
配設し、そのマウント上にかかる半導体PN接合
素子をはさんでその両側に、当該半導体PN接合
素子の活性層と光学的に結合された1対の光入出
力部、例えば入出力導波路または入出力レンズ系
を配設した、小型のハイブリツド形光モジユール
を製造するための光モジユール製造法に関するも
のである。[Detailed Description of the Invention] [Technical Field] The present invention provides a method for disposing a semiconductor PN junction element on a mount, and placing the semiconductor PN junction element on both sides of the mount with the semiconductor PN junction element sandwiched therebetween. This invention relates to an optical module manufacturing method for manufacturing a compact hybrid optical module in which a pair of optical input/output parts, such as an input/output waveguide or an input/output lens system, are arranged optically coupled to an active layer. be.
この種光モジユールの一例として、かかる半導
体PN接合素子を有するレーザダイオード光スイ
ツチ(LD光SW)のモジユール構造の一例を第
1図に示す。ここで、1は半導体PN接合素子、
2,2′は半導体PN接合素子1の活性層と光学
的に結合された結合用球レンズ、3,3′は球レ
ンズ2に対して光学的に結合された結合用集束性
ロツドレンズ、4,4′はロツドレンズ4に対し
て光学的に結合された入出力用単一モードフアイ
バであり、これら各部分1〜3をモジユール化用
マウント5上に配設する。Vは半導体PN接合素
子1への電源端子、Rは電流制限抵抗である。6
は光フアイバ4に結合された光パワメータ、7は
光フアイバ4に光を入射させる光源である。
As an example of this type of optical module, an example of the module structure of a laser diode optical switch (LD optical SW) having such a semiconductor PN junction element is shown in FIG. Here, 1 is a semiconductor PN junction element,
2, 2' are coupling ball lenses optically coupled to the active layer of the semiconductor PN junction element 1; 3, 3' are coupling focusing rod lenses optically coupled to the ball lens 2; 4, Reference numeral 4' denotes an input/output single mode fiber optically coupled to the rod lens 4, and each of these parts 1 to 3 is arranged on a modularization mount 5. V is a power supply terminal to the semiconductor PN junction element 1, and R is a current limiting resistor. 6
7 is an optical power meter coupled to the optical fiber 4, and 7 is a light source that makes light enter the optical fiber 4.
従来は、このような光モジユールを以下のよう
な工程で製造していた。まず、半導体PN接合素
子1をマウント5に固定し、電流駆動端子Vより
発振閾値電流以上の順方向電流を流して光を放射
させる。しかる後に、一方の側の球レンズ2を
x,y,zの3軸方向に光軸調整して半導体PN
接合素子1からの出力光を平行ビームにする。次
に、集束性ロツドレンズ3の光軸を調整して光パ
ワメータ6の振れが最大になるように調整する。
次に、もう一方のレンズ系2′,3′,4′の光軸
合せを同様の手続きによつて行う。最後に、光パ
ワメータ6の代わりに光源7を他端の光フアイバ
4′に接続して光スイツチング素子としてのPN
接合素子1を通過する光が最大になるようにレン
ズ系3,3′の光軸調整を行つてから、マウント
5にこれら各部を固定して光モジユールとする。 Conventionally, such optical modules have been manufactured using the following steps. First, the semiconductor PN junction element 1 is fixed to the mount 5, and a forward current equal to or higher than the oscillation threshold current is caused to flow from the current drive terminal V to emit light. After that, the optical axis of the ball lens 2 on one side is adjusted in the three axes directions of x, y, and z, and the semiconductor PN is
The output light from the junction element 1 is made into a parallel beam. Next, the optical axis of the converging rod lens 3 is adjusted so that the deflection of the optical power meter 6 is maximized.
Next, the optical axes of the other lens systems 2', 3', and 4' are aligned by the same procedure. Finally, instead of the optical power meter 6, a light source 7 is connected to the optical fiber 4' at the other end to form a PN as an optical switching element.
After adjusting the optical axes of the lens systems 3, 3' so that the light passing through the junction element 1 is maximized, each of these parts is fixed to a mount 5 to form an optical module.
したがつて、半導体PN接合素子1を最初にマ
ウント5に固定し、その後に入出力用光導波路を
接続固定する場合には従来の方法を用いることが
できるが、入出力用導波路があらかじめ形成され
ている所へ光SW素子をマウントするようにして
ハイブリツド形集積化モジユールを製造する場合
には、上述した従来の方法を適用することはでき
ない。 Therefore, if the semiconductor PN junction element 1 is first fixed to the mount 5 and then the input/output optical waveguide is connected and fixed, the conventional method can be used, but if the input/output waveguide is formed in advance. In the case of manufacturing a hybrid integrated module by mounting an optical SW element in a location where the optical SW element is mounted, the above-mentioned conventional method cannot be applied.
また、LD光SW素子を温度制御なしで使用す
る場合には、半導体PN接合素子1の両端面の反
射率が1%以下とする必要がある。したがつて、
実用上重要な低反射率の半導体PN接合素子1を
光SW素子として用いる場合には、大電流を注入
してもレーザ発振に至らず、LED動作となり、
出力光パワは非常に小さい。 Furthermore, when the LD optical SW element is used without temperature control, the reflectance of both end faces of the semiconductor PN junction element 1 needs to be 1% or less. Therefore,
When the semiconductor PN junction element 1 with low reflectance, which is important in practice, is used as an optical SW element, even if a large current is injected, laser oscillation does not occur, and the device operates as an LED.
Output optical power is very small.
したがつて、従来の製造法をとる場合において
も、光パワが小さいため、光軸調整は困難であ
る。しかもまた、LED動作で発光した光パワで
光軸を合わせた場合には、その調整位置は、半導
体PN接合素子1の導波モードの結合最適位置と
は異なるという欠点があつた。 Therefore, even when using the conventional manufacturing method, optical axis adjustment is difficult because the optical power is small. Moreover, when the optical axis is aligned using the optical power emitted by the LED operation, there is a drawback that the adjusted position is different from the optimal coupling position of the waveguide mode of the semiconductor PN junction element 1.
そこで、本発明の目的は、これらの欠点を解決
するために、半導体PN接合素子を発光させない
状態で光軸合わせを行う光モジユールの製造法を
提供することにある。
SUMMARY OF THE INVENTION In order to solve these drawbacks, it is an object of the present invention to provide a method for manufacturing an optical module in which optical axis alignment is performed without causing the semiconductor PN junction element to emit light.
かかる目的を達成するために、本発明では、マ
ウント上に配設された半導体PN接合素子と、前
記マウント上に前記半導体PN接合素子をはさん
で両側に配設され、前記半導体PN接合素子の活
性層と光学的に結合された1対の光入出力部とを
有する光モジユールを製造するにあたつて、あら
かじめ前記1対の光入出力部を互の光軸を合わせ
ておき、前記半導体PN接合素子が前記1対の光
入出力部の中間に位置するように前記半導体PN
素子と前記1対の光入出力部の位置関係を定め、
前記1対の入出力部から前記半導体PN接合素子
の両端面に異なる周波数で変調された光信号をそ
れぞれ同時に入射させ、前記周波数の各々におい
て前記半導体PN接合素子の端子電圧変化が最大
になるように前記半導体PN接合素子の位置を調
整し、その調整が終了した後に前記半導体PN接
合素子を前記マウント上に固定する。
In order to achieve such an object, the present invention includes a semiconductor PN junction element disposed on a mount, and a semiconductor PN junction element disposed on both sides of the semiconductor PN junction element on the mount with the semiconductor PN junction element sandwiched therebetween. In manufacturing an optical module having a pair of optical input/output sections optically coupled to an active layer, the optical axes of the pair of optical input/output sections are aligned in advance, and the optical axes of the optical input/output sections are aligned with each other. The semiconductor PN is arranged such that the PN junction element is located between the pair of optical input/output parts.
determining the positional relationship between the element and the pair of optical input/output sections,
Optical signals modulated at different frequencies are simultaneously applied to both end faces of the semiconductor PN junction element from the pair of input/output sections, so that the terminal voltage change of the semiconductor PN junction element is maximized at each of the frequencies. The position of the semiconductor PN junction element is adjusted, and after the adjustment is completed, the semiconductor PN junction element is fixed on the mount.
以下に図面を参照して本発明を詳細に説明す
る。
The present invention will be described in detail below with reference to the drawings.
本発明により半導体PN接合素子1を発光させ
ることなく最適結合位置を検出するための構成の
基本を第2図により説明する。ここで、7′は半
導体PN接合素子1と同程度の発振波長を持つ光
源用レーザダイオード、8はこのレーザダイオー
ド7′にバイアス電流I0を印加するための直流電
源、9,9′はレーザダイオード7′からの出力を
半導体PN接合素子1に集光する集光用レンズ、
10はレンズ9と9′との間に配置した光アイソ
レータ、11は半導体PN接合素子1の負荷抵抗
RLに対してコンデンサを介して結合した、例え
ば利得が22dBのRF増幅器、12は増幅器11か
らの出力を受けるトラツキングスコープを示す。 The basic structure of the present invention for detecting the optimum bonding position without causing the semiconductor PN junction element 1 to emit light will be explained with reference to FIG. Here, 7' is a light source laser diode having an oscillation wavelength comparable to that of the semiconductor PN junction element 1, 8 is a DC power supply for applying a bias current I0 to this laser diode 7', and 9 and 9' are laser diodes. a condensing lens that condenses the output from the diode 7' onto the semiconductor PN junction element 1;
10 is an optical isolator placed between lenses 9 and 9', and 11 is a load resistance of semiconductor PN junction element 1.
An RF amplifier with a gain of 22 dB, for example, is coupled to R L via a capacitor, and 12 represents a tracking scope that receives the output from the amplifier 11.
このトラツキングスコープから、例えば100M
Hzに固定した電流を測定用光源7′に供給して、
100MHzで変調し、得られた出力光を20倍の対物
レンズ9,9′で半導体PN接合素子1の活性層
に注入する。この素子1の端子電圧のRFパワを
トラツキングスコープ12で測定する。 For example, 100M from this tracking scope.
Supplying a current fixed at Hz to the measurement light source 7',
The output light is modulated at 100 MHz and is injected into the active layer of the semiconductor PN junction element 1 through 20x objective lenses 9 and 9'. The RF power of the terminal voltage of this element 1 is measured with a tracking scope 12.
第3図は、このようにして、半導体PN接合素
子1の端子電圧で検出されるRFパワのビームス
ポツト位置依存性を測定した結果を示したもので
ある。ここで、Δyは活性層の厚さ方向、Δxは活
性層の平行方向、およびΔzは光軸方向にビーム
スポツトをそれぞれ変位させたときのRFパワの
変動を示す。 FIG. 3 shows the results of measuring the beam spot position dependence of the RF power detected by the terminal voltage of the semiconductor PN junction element 1 in this manner. Here, Δy represents the variation in RF power when the beam spot is displaced in the thickness direction of the active layer, Δx in the parallel direction of the active layer, and Δz in the optical axis direction.
この結果から、RFパワが3dB落ちる変位量は、
Δx,Δz共に±5μm、Δyは±1μmとなることが
わかる。したがつて、レンズによる結合のかわり
に入出力用光導波路から光ビームを10μm程度の
間隙で活性層に注入し、このPN接合素子の端子
電圧の変化を測定することによつて高精度に光軸
合せを行うことができる。 From this result, the amount of displacement in which the RF power drops by 3 dB is
It can be seen that both Δx and Δz are ±5 μm, and Δy is ±1 μm. Therefore, instead of coupling using a lens, a light beam can be injected into the active layer from an input/output optical waveguide with a gap of about 10 μm, and the change in the terminal voltage of this PN junction element can be measured to generate light with high precision. Axis alignment can be performed.
本発明はかかる実験結果に基いてなしたもので
あつて、第4図は本発明を実施する一例を示す構
成図である。ここで、1は結合用入出力導波路に
対して光軸合せをした後に固定されるべき半導体
PN接合素子である。13および14は光源とし
てのレーザダイオード7′および7″をそれぞれ周
波数f1およびf2で変調するためのドライバ、15
は変調周波数f1およびf2に同調してRFパワを検出
する選択レベルメータであり、ドライバ13およ
び14からの周波数f1およびf2の信号により、そ
れぞれ独立に同調して、入力レベルを測定するこ
とができる。16および16′はそれぞれ光フア
イバ4および4′に結合されたモジユール用入出
力導波路のコアであり、両コア16と16′との
間に半導体PN接合素子1を配置する。17はこ
の素子1へ接続されたリードワイヤ、18はAu
めつき層などによる端子用導通層である。 The present invention was made based on such experimental results, and FIG. 4 is a block diagram showing an example of implementing the present invention. Here, 1 is the semiconductor to be fixed after optical axis alignment with the input/output waveguide for coupling.
It is a PN junction element. 13 and 14 are drivers for modulating the laser diodes 7' and 7'' as light sources at frequencies f 1 and f 2 , respectively; 15
is a selective level meter that detects RF power by tuning to the modulation frequencies f 1 and f 2 , and measures the input level by tuning independently to the signals of frequencies f 1 and f 2 from drivers 13 and 14. can do. Numerals 16 and 16' are cores of module input/output waveguides coupled to optical fibers 4 and 4', respectively, and a semiconductor PN junction element 1 is disposed between both cores 16 and 16'. 17 is a lead wire connected to this element 1, 18 is Au
This is a conductive layer for terminals, such as a plating layer.
第4図に示した導波路部分をCVD法や、スパ
ツタ法等で形成した光導波路とした例を第5図に
示す。第5図において、21は基板であり、熱伝
導性を考慮してシリコンやセラミツクスなどを用
いる。この基板21上には上述した端子用導通層
18を配置し、その導通層18上にCVD法を用
いてクラツド層22を配置し、そのクラツド層2
2内に1本の連続したコア16,16′を埋め込
んで入出力導波路を構成する。この導波路の途中
を反応性スパツタ法やダイシングマシンなどで導
通層18まで切り欠く。その切欠部にヒートシン
ク23を導電性ロウ剤、たとえばハンダ24によ
つて固定する。ヒートシンク23上には半導体
PN接合素子1を載置し、以てその両端面が入出
力導波路と対向し、その活性層はコア16,1
6′と対向するようにする。 FIG. 5 shows an example in which the waveguide portion shown in FIG. 4 is formed as an optical waveguide by a CVD method, a sputtering method, or the like. In FIG. 5, 21 is a substrate, which is made of silicon, ceramics, etc. in consideration of thermal conductivity. The above-mentioned conductive layer 18 for terminals is placed on this substrate 21, and a clad layer 22 is placed on the conductive layer 18 using the CVD method.
One continuous core 16, 16' is embedded in the core 2 to form an input/output waveguide. The middle of this waveguide is cut out to the conductive layer 18 using a reactive sputtering method, a dicing machine, or the like. A heat sink 23 is fixed to the notch with a conductive brazing agent such as solder 24. A semiconductor is placed on the heat sink 23.
A PN junction element 1 is mounted, with both end faces facing the input/output waveguide, and its active layer is connected to the core 16,1.
Make it face 6'.
クラツド層22を上部電極となし、ここにリー
ドワイヤ17を接続し、ロウ剤24により導通状
態となつている導通層18を下部電極となして、
これら両電極間の電圧を選択レベルメータ15に
供給し、周波数f1およびf2の電圧のレベルを測定
する。そのために、ドライバ13および14から
の信号により選択レベルメータ15を周波数f1お
よびf2に同調させておき、その状態で、光源7′
および7″をそれぞれ周波数f1およびf2で変調する
ことにより、入出力導波路からそれぞれ異なつた
周波数f1およびf2で変調された光信号を半導体
PN接合素子1の活性層に注入する。ここで、選
択レベルメータ15はf1およびf2に各々独立して
同調を取ることができるので、入射側および出射
側とも別個に光軸合せを行うことができ、したが
つて入出力導波路と半導体PN接合素子とを容易
に最適位置に合わすことができる。そこで、ロウ
剤23を溶かした状態で、半導体PN接合素子1
を最適位置に定め、その位置でロウ剤23を冷却
して素子1を固定する。なお、入出力導波路と半
導体PN接合素子1との間隙が10μm以上になる
と、結合損失が増大するので、ビームスポツトサ
イズの整合を取る必要がある。 The cladding layer 22 is used as an upper electrode, the lead wire 17 is connected thereto, and the conductive layer 18, which is in a conductive state by the brazing agent 24, is used as a lower electrode.
The voltage between these two electrodes is supplied to a selective level meter 15, and the voltage levels at frequencies f 1 and f 2 are measured. For this purpose, the selection level meter 15 is tuned to the frequencies f 1 and f 2 by signals from the drivers 13 and 14, and in that state, the light source 7'
and 7″ at frequencies f 1 and f 2 , respectively, to transmit optical signals modulated at different frequencies f 1 and f 2 from the input and output waveguides to the semiconductor.
Inject into the active layer of the PN junction element 1. Here, since the selection level meter 15 can be tuned independently to f 1 and f 2 , the optical axis can be aligned separately on the input side and the output side, and therefore the input and output waveguides and the semiconductor PN junction element can be easily aligned to the optimum position. Therefore, with the soldering agent 23 melted, the semiconductor PN junction element 1 is
is set at an optimal position, and the soldering agent 23 is cooled at that position to fix the element 1. Note that when the gap between the input/output waveguide and the semiconductor PN junction element 1 becomes 10 μm or more, the coupling loss increases, so it is necessary to match the beam spot size.
第6図は入出力導波路として光フアイバを用い
た例であり、コア16,16′とクラツド22と
を光フアイバ30の形態とする。本例において
は、まず、導通層18の上に光フアイバ30を固
定層31で固定する。固定層30の材料として
は、接着剤あるいはハンダを用いることができ
る。次に、反応性スパツタ法やダイシングマシン
を用いて、光フアイバ30から導通層18にまで
至る切欠をうがち、導通層18を露出させる。こ
の段階で光フアイバ30の端面を緩衝沸酸で軽く
選択エツチングすることによつてそのコア16,
16′を突出させて集光レンズとして作用させる。
次に、基板21を加熱してロウ剤24を溶かした
状態で上述の光軸合せを行つてから半導体PN接
合素子1を最適位置で固定する。 FIG. 6 shows an example in which an optical fiber is used as the input/output waveguide, and the cores 16, 16' and the cladding 22 are in the form of an optical fiber 30. In this example, first, the optical fiber 30 is fixed on the conductive layer 18 with the fixing layer 31. As the material for the fixing layer 30, adhesive or solder can be used. Next, using a reactive sputtering method or a dicing machine, a notch extending from the optical fiber 30 to the conductive layer 18 is made to expose the conductive layer 18. At this stage, the core 16,
16' is made to protrude and act as a condenser lens.
Next, the optical axis alignment described above is performed while the substrate 21 is heated to melt the brazing agent 24, and then the semiconductor PN junction element 1 is fixed at an optimal position.
本発明では、入出力導波路の光軸はあらかじめ
合つているため、半導体PN接合素子の位置の調
整が容易である。しかも、調整された位置の固定
はロウ剤を用いて行うため、光フアイバモジユー
ルの作製時間が短かく、かつ非常にコンパクトな
光モジユールを作製することができる。 In the present invention, since the optical axes of the input and output waveguides are aligned in advance, it is easy to adjust the position of the semiconductor PN junction element. Furthermore, since the adjusted position is fixed using a brazing agent, the manufacturing time of the optical fiber module is short and an extremely compact optical module can be manufactured.
なお、本発明の方法は、半導体PN接合素子に
対する入出力部にレンズ系を用いたモジユール構
造の場合でも容易に光軸合わせを行うことができ
ることは自明である。 Note that it is obvious that the method of the present invention can easily align the optical axis even in the case of a modular structure in which a lens system is used as an input/output section for a semiconductor PN junction element.
また、レーザ素子のように光出力を大きくとれ
る素子のモジユール化においても、本発明の方法
を有効に適用できることは明らかである。 Furthermore, it is clear that the method of the present invention can be effectively applied to the modularization of devices capable of increasing optical output, such as laser devices.
本発明の方法により製造される光モジユールと
しては、次のような種々の形態のものとすること
ができる。 The optical module manufactured by the method of the present invention can have various forms as described below.
(1) 発光モジユール
活性層の両側から発光する半導体PN接合素
子を用いることによつて、両側の入出力導波路
から光を取り出す。(1) Light emitting module By using semiconductor PN junction elements that emit light from both sides of the active layer, light is extracted from the input/output waveguides on both sides.
(2) スイツチモジユール
入力導波路から半導体PN接合素子に光を入
れ、この半導体PN接合素子に電流を流すか流
さないかの制御により、出力導波路から出力光
を取り出すかあるいは遮断するかの制御を行
う。(2) Switch module Inputs light from the input waveguide to the semiconductor PN junction element, and controls whether or not current flows through the semiconductor PN junction element to extract or block the output light from the output waveguide. Take control.
(3) 増幅モジユール
半導体PN接合素子に発振閾値以下の順方向
電流を流しておくことにより、入力導波路から
光信号が入射したときにのみ、増幅された光信
号を出力導波路から取り出す。(3) Amplification module By flowing a forward current below the oscillation threshold through the semiconductor PN junction element, the amplified optical signal is extracted from the output waveguide only when the optical signal is incident from the input waveguide.
以上のような機能をもつ光モジユールを、光集
積回路の中の一基本構成単位とすることができ
る。 An optical module having the above-mentioned functions can be used as one basic structural unit in an optical integrated circuit.
以上説明したように、本発明によれば半導体
PN接合素子の入力部および出力部の双方からそ
れぞれ異なつた周波数で変調された光信号をこの
半導体PN接合素子に注入して光軸合わせを行う
ので、以下のような利点がある。
As explained above, according to the present invention, semiconductor
Since the optical axis alignment is performed by injecting optical signals modulated at different frequencies from both the input and output parts of the PN junction element into the semiconductor PN junction element, there are the following advantages.
(1) 完全無反射端の素子でもモジユール化でき
る。(1) Even completely non-reflective elements can be made into modules.
(2) 組み立て時に半導体PN接合素子に電流を注
入して発光させるようにしないから、信頼度が
高い。(2) High reliability because no current is injected into the semiconductor PN junction element to cause it to emit light during assembly.
(3) 入・出力側の光軸を同時に調整することがで
きる。(3) Optical axes on the input and output sides can be adjusted simultaneously.
(4) 作製時間が短かい。(4) Production time is short.
(5) 変位検出感度が高い。(5) High displacement detection sensitivity.
(6) 製造の自動化が容易である。(6) Production automation is easy.
第1図は従来の光スイツチモジユール製造法の
説明図、第2図は半導体PN接合素子の端子電圧
を測定する本発明における測定系の原理を示す構
成図、第3図は第2図の測定系において半導体
PN接合素子の端子電圧で検出したRFパワのビー
ムスポツト位置依存性を示す図、第4図は本発明
の光スイツチモジユール製造法を実施するための
系を示す構成図、第5図は第4図における導波路
として堆積型光導波路を用いた例を示す断面図、
第6図は同じく導波路として光フアイバを用いた
例を示す断面図である。
1……半導体PN接合素子、2……球レンズ、
3……集束性ロツドレンズ、4……光フアイバ、
5……モジユール用マウント、6……光パワメー
タ、7,7′,7″……光源用レーザダイオード、
8……直流電源、9,9′……集光用レンズ、1
0……光アイソレータ、11……RF増幅器、1
2……トラツキングスコープ、13,14……ド
ライバ、15……選択レベルメータ、16,1
6′……入出力用光導波路のコア、17……リー
ドワイヤ、18……導通層、21……基板、22
……クラツド層、23……ヒートシンク、24…
…ロウ剤、30……光フアイバ、31……固定
層。
Figure 1 is an explanatory diagram of the conventional optical switch module manufacturing method, Figure 2 is a block diagram showing the principle of the measurement system in the present invention for measuring the terminal voltage of a semiconductor PN junction element, and Figure 3 is the same as that of Figure 2. Semiconductor in measurement system
A diagram showing the beam spot position dependence of RF power detected by the terminal voltage of a PN junction element, FIG. 4 is a block diagram showing a system for implementing the optical switch module manufacturing method of the present invention, and FIG. A cross-sectional view showing an example in which a deposited optical waveguide is used as the waveguide in FIG.
FIG. 6 is a cross-sectional view showing an example in which an optical fiber is similarly used as the waveguide. 1... Semiconductor PN junction element, 2... Ball lens,
3... Focusing rod lens, 4... Optical fiber,
5...Module mount, 6...Optical power meter, 7, 7', 7''...Laser diode for light source,
8...DC power supply, 9,9'...Condensing lens, 1
0... Optical isolator, 11... RF amplifier, 1
2... Tracking scope, 13, 14... Driver, 15... Selection level meter, 16, 1
6'...Core of input/output optical waveguide, 17...Lead wire, 18...Conducting layer, 21...Substrate, 22
... Cladding layer, 23 ... Heat sink, 24 ...
...brazing agent, 30...optical fiber, 31...fixing layer.
Claims (1)
と、前記マウント上に前記半導体PN接合素子を
はさんで両側に配設され、前記半導体PN接合素
子の活性層と光学的に結合された1対の光入出力
部とを有する光モジユールを製造するにあたつ
て、 あらかじめ前記1対の光入出力部を互の光軸を
合わせておき、 前記半導体PN接合素子が前記1対の光入出力
部の中間に位置するように前記半導体PN素子と
前記一対の光入出力部の位置関係を定め、 前記1対の入出力部から前記半導体PN接合素
子の両端面に異なる周波数で変調された光信号を
それぞれ同時に入射させ、 前記周波数の各々において前記半導体PN接合
素子の端子電圧変化が最大になるように前記半導
体PN接合素子の位置を調整し、 その調整が終了した後に前記半導体PN接合素
子を前記マウント上に固定することを特徴とする
光モジユール製造法。[Scope of Claims] 1. A semiconductor PN junction element disposed on a mount, and an active layer of the semiconductor PN junction element disposed on both sides of the mount with the semiconductor PN junction element sandwiched therebetween. In manufacturing an optical module having a pair of optical input/output sections coupled to each other, the optical axes of the pair of optical input/output sections are aligned in advance, and the semiconductor PN junction element is connected to the optical input/output section. A positional relationship between the semiconductor PN element and the pair of optical input/output sections is determined so that the semiconductor PN element and the pair of optical input/output sections are located in the middle of the pair of optical input/output sections; Inject optical signals modulated by each frequency at the same time, adjust the position of the semiconductor PN junction element so that the terminal voltage change of the semiconductor PN junction element is maximized at each of the frequencies, and after the adjustment is completed. A method for manufacturing an optical module, characterized in that the semiconductor PN junction element is fixed on the mount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11665084A JPS60261186A (en) | 1984-06-08 | 1984-06-08 | Manufacture of optical module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11665084A JPS60261186A (en) | 1984-06-08 | 1984-06-08 | Manufacture of optical module |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60261186A JPS60261186A (en) | 1985-12-24 |
JPH0262958B2 true JPH0262958B2 (en) | 1990-12-27 |
Family
ID=14692477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11665084A Granted JPS60261186A (en) | 1984-06-08 | 1984-06-08 | Manufacture of optical module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60261186A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6881551B2 (en) | 1991-03-04 | 2005-04-19 | Therasense, Inc. | Subcutaneous glucose electrode |
US6942518B2 (en) | 1999-11-04 | 2005-09-13 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
US6975893B2 (en) | 1999-06-18 | 2005-12-13 | Therasense, Inc. | Mass transport limited in vivo analyte sensor |
US6973706B2 (en) | 1998-03-04 | 2005-12-13 | Therasense, Inc. | Method of making a transcutaneous electrochemical sensor |
US7003340B2 (en) | 1998-03-04 | 2006-02-21 | Abbott Diabetes Care Inc. | Electrochemical analyte sensor |
US7058437B2 (en) | 1998-10-08 | 2006-06-06 | Therasense, Inc. | Methods of determining concentration of glucose |
US7225535B2 (en) | 1998-10-08 | 2007-06-05 | Abbott Diabetes Care, Inc. | Method of manufacturing electrochemical sensors |
US7381184B2 (en) | 2002-11-05 | 2008-06-03 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US7620438B2 (en) | 2006-03-31 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US8840553B2 (en) | 1998-04-30 | 2014-09-23 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8915850B2 (en) | 2005-11-01 | 2014-12-23 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8920319B2 (en) | 2005-11-01 | 2014-12-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9011332B2 (en) | 2001-01-02 | 2015-04-21 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9039975B2 (en) | 2006-03-31 | 2015-05-26 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9078607B2 (en) | 2005-11-01 | 2015-07-14 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9095290B2 (en) | 2007-03-01 | 2015-08-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US9234864B2 (en) | 1997-02-06 | 2016-01-12 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
US9323898B2 (en) | 2005-11-04 | 2016-04-26 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US12268496B2 (en) | 2017-01-23 | 2025-04-08 | Abbott Diabetes Care Inc. | Systems, devices and methods for analyte sensor insertion |
US12274548B2 (en) | 2022-09-02 | 2025-04-15 | Abbott Diabetes Care Inc. | Sensor insertion devices and methods of use |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5558590A (en) * | 1978-10-25 | 1980-05-01 | Fujitsu Ltd | Location adjustment of light emitting device |
-
1984
- 1984-06-08 JP JP11665084A patent/JPS60261186A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5558590A (en) * | 1978-10-25 | 1980-05-01 | Fujitsu Ltd | Location adjustment of light emitting device |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7462264B2 (en) | 1991-03-04 | 2008-12-09 | Abbott Diabetes Care Inc. | Subcutaneous glucose electrode |
US6881551B2 (en) | 1991-03-04 | 2005-04-19 | Therasense, Inc. | Subcutaneous glucose electrode |
US9234864B2 (en) | 1997-02-06 | 2016-01-12 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
US6973706B2 (en) | 1998-03-04 | 2005-12-13 | Therasense, Inc. | Method of making a transcutaneous electrochemical sensor |
US7003340B2 (en) | 1998-03-04 | 2006-02-21 | Abbott Diabetes Care Inc. | Electrochemical analyte sensor |
US9011331B2 (en) | 1998-04-30 | 2015-04-21 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066694B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9072477B2 (en) | 1998-04-30 | 2015-07-07 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9014773B2 (en) | 1998-04-30 | 2015-04-21 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9042953B2 (en) | 1998-04-30 | 2015-05-26 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8840553B2 (en) | 1998-04-30 | 2014-09-23 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8880137B2 (en) | 1998-04-30 | 2014-11-04 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066697B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9234863B2 (en) | 1998-10-08 | 2016-01-12 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
US7225535B2 (en) | 1998-10-08 | 2007-06-05 | Abbott Diabetes Care, Inc. | Method of manufacturing electrochemical sensors |
US9291592B2 (en) | 1998-10-08 | 2016-03-22 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
US9316609B2 (en) | 1998-10-08 | 2016-04-19 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
US7563350B2 (en) | 1998-10-08 | 2009-07-21 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
US7058437B2 (en) | 1998-10-08 | 2006-06-06 | Therasense, Inc. | Methods of determining concentration of glucose |
US9341591B2 (en) | 1998-10-08 | 2016-05-17 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
US6975893B2 (en) | 1999-06-18 | 2005-12-13 | Therasense, Inc. | Mass transport limited in vivo analyte sensor |
US6942518B2 (en) | 1999-11-04 | 2005-09-13 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
US9017259B2 (en) | 2000-06-27 | 2015-04-28 | Abbott Diabetes Care Inc. | Integrated sample acquisition and analyte measurement device |
US9271669B2 (en) | 2000-06-27 | 2016-03-01 | Abbott Diabetes Care Inc. | Method for integrated sample acquisition and analyte measurement device |
US9011332B2 (en) | 2001-01-02 | 2015-04-21 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9498159B2 (en) | 2001-01-02 | 2016-11-22 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US7381184B2 (en) | 2002-11-05 | 2008-06-03 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US7582059B2 (en) | 2002-11-05 | 2009-09-01 | Abbott Diabetes Care Inc. | Sensor inserter methods of use |
US9078607B2 (en) | 2005-11-01 | 2015-07-14 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8920319B2 (en) | 2005-11-01 | 2014-12-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8915850B2 (en) | 2005-11-01 | 2014-12-23 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9326716B2 (en) | 2005-11-01 | 2016-05-03 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9323898B2 (en) | 2005-11-04 | 2016-04-26 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US8933664B2 (en) | 2006-03-31 | 2015-01-13 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US7620438B2 (en) | 2006-03-31 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US9039975B2 (en) | 2006-03-31 | 2015-05-26 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US9380971B2 (en) | 2006-03-31 | 2016-07-05 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US9095290B2 (en) | 2007-03-01 | 2015-08-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US12268496B2 (en) | 2017-01-23 | 2025-04-08 | Abbott Diabetes Care Inc. | Systems, devices and methods for analyte sensor insertion |
US12274548B2 (en) | 2022-09-02 | 2025-04-15 | Abbott Diabetes Care Inc. | Sensor insertion devices and methods of use |
Also Published As
Publication number | Publication date |
---|---|
JPS60261186A (en) | 1985-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0262958B2 (en) | ||
JP2507644B2 (en) | Light source | |
JP2533637B2 (en) | Method for manufacturing device comprising optoelectronic device and optical waveguide coupled thereto | |
US7602823B2 (en) | Light-emitting element | |
JP3486378B2 (en) | Method for manufacturing a photoelectric device | |
US7144788B2 (en) | Method for manufacturing a transmitting optical sub-assembly with a thermo-electric cooler therein | |
US4807956A (en) | Opto-electronic head for the coupling of a semi-conductor device with an optic fiber, and a method to align this semi-conductor device with this fiber | |
GB2293248A (en) | Optical waveguide component coupling using mating substrates | |
JPH08195528A (en) | Laser diode module | |
JPS5931237B2 (en) | Semiconductor laser output control device | |
JP2004179273A (en) | Semiconductor laser chip component and semiconductor laser module using the same | |
US6181855B1 (en) | Optical and/or electro-optical connection having electromagnetic radiation-produced welds | |
US6711186B2 (en) | Optical module | |
JP2005260223A (en) | Optical transmission subassembly | |
JP2000353845A (en) | Semiconductor laser module | |
JP3042453B2 (en) | Light receiving module | |
US6877911B2 (en) | Optical-fiber supporting member and optical transmission device using the same | |
JP2000121870A (en) | Optical transmission and reception module, and its manufacture | |
JPH0951108A (en) | Light reception light emitting element module and its manufacturing method | |
JP2004101996A (en) | Surface type optical semiconductor module with fiber | |
JP3348122B2 (en) | Optical transmission module and manufacturing method thereof | |
US7021835B1 (en) | Alignment of optical components in an optical subassembly | |
JPH0784135A (en) | Production of hybrid type optical integrated circuit | |
JP4024483B2 (en) | Semiconductor laser device | |
JPH0262955B2 (en) |