[go: up one dir, main page]

JPH0262132A - Transmission power control method in satellite communication - Google Patents

Transmission power control method in satellite communication

Info

Publication number
JPH0262132A
JPH0262132A JP63213195A JP21319588A JPH0262132A JP H0262132 A JPH0262132 A JP H0262132A JP 63213195 A JP63213195 A JP 63213195A JP 21319588 A JP21319588 A JP 21319588A JP H0262132 A JPH0262132 A JP H0262132A
Authority
JP
Japan
Prior art keywords
pilot signal
stations
station
satellite
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63213195A
Other languages
Japanese (ja)
Inventor
Ichiro Ayukawa
鮎川 一朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63213195A priority Critical patent/JPH0262132A/en
Publication of JPH0262132A publication Critical patent/JPH0262132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To unify a satellite arrival electric power by providing plural pilot signal transmitting stations, transmitting a single frequency different from the frequency used by a satellite communication with time division and variably controlling a transmitting electric power in accordance with the minimum attenuation quantity of plural pilot signals. CONSTITUTION:Pilot signal transmitting stations 71-7m mutually transmit the pilot signal of a single frequency different from the frequency used by the communication between earth stations 61-6n with time division. A detecting means 8i of an earth station compares an adjoining receiving pilot signal level which the same number as the transmitting stations 71-7m and detects the minimum attenuating quantity. A control means 9 controls the transmitting electric power in accordance with the minimum attenuating quantity. By the constitution, even in the satellite communication system not having a beacon transmitting function, the attenuating quantity of the uplink due to the rainfall, etc., is detected and the satellite arrival electric power can be constantly controlled.

Description

【発明の詳細な説明】 (概要〕 衛星到達電力を一定に保ち衛星の中継器に悪影響を与え
ることなく回線不稼動率を減少させる送信電力制御方式
に関し、 ビーコン信号を用いなくとも、ハードウェア規模をあま
り増大させることなく地球局の送信電力を衛星に一定電
力で到達するように制御することを目的とし、 111′i星を中継局として多数の地球局間で無線通信
を行なう衛星通信において、首記衛星通信で用いる周波
数とは異なる単一周波数のパイロット信号を互いに時分
割的に送信する複数のパイロ・ント信号送信局を設【ノ
ると共に、前記パイロット信号を順次受信し、そのうち
前記パイロット信号送信局と同じ数の隣り合う受信パイ
ロット信号を夫々レベル比較して最も小さい減衰fuを
検出する検出手段と、該検出手段により検出された最小
減衰量に応じて送信電力を可変制御する制御手段とを前
記地球局の夫々に設けるよう構成する。
[Detailed Description of the Invention] (Summary) Regarding a transmission power control method that keeps the power arriving at a satellite constant and reduces line downtime without adversely affecting satellite repeaters, it is possible to reduce the hardware scale without using beacon signals. The purpose of this satellite communication is to control the transmission power of the earth station so that it reaches the satellite at a constant power without increasing the power too much. A plurality of pilot signal transmitting stations are installed that time-divisionally transmit pilot signals of a single frequency different from the frequency used in the satellite communication mentioned above, and the pilot signal transmission stations are sequentially received, and one of the pilot signals is Detection means for detecting the smallest attenuation fu by comparing the levels of the same number of adjacent received pilot signals as signal transmitting stations, and control means for variably controlling transmission power according to the minimum attenuation detected by the detection means. and are provided at each of the earth stations.

〔産業上の利用分野〕[Industrial application field]

本発明は衛星通信における送信電力制御方式に係り、特
に衛星到達電力を一定に保ち、衛星の中継器にR影響を
与えることなく回線不稼動率を減少させる送信電力制御
方式に関する。
The present invention relates to a transmission power control system in satellite communications, and particularly to a transmission power control system that maintains the power arriving at a satellite constant and reduces line unavailability without affecting the satellite repeater.

一つの衛星を中継局として多数の地球局間の通信を行な
う衛星通信においては、地球局から送信する電力が主と
して降雨により減哀し、甚だしい場合は通信不能となる
In satellite communications, in which communication is performed between a large number of earth stations using one satellite as a relay station, the power transmitted from the earth station is reduced mainly due to rainfall, and in severe cases, communication becomes impossible.

このため、衛星通信においては降雨による減衰量を何ら
かの方法で知り、その減衰量分だけ地球局の送信七カを
増加することにより、回線不稼動率を減少させることが
必要となる。但し、ダウンリンクの降雨をも補償して送
信電力を増加すると、衛星中継器には晴天時以上の電力
が入力され衛星中継器に悪影響を与えることがありうる
。そこで通常、アップリンクの降雨のみを補償するよう
に送信電力を制御する。
For this reason, in satellite communications, it is necessary to know the amount of attenuation due to rain by some method, and increase the transmit power of the earth station by the amount of attenuation, thereby reducing the line downtime. However, if the transmission power is increased by compensating for rain on the downlink, more power than on a clear day will be input to the satellite repeater, which may have an adverse effect on the satellite repeater. Therefore, transmission power is usually controlled to compensate only for uplink rain.

〔従来の技術〕 第6図は従来の衛星通信における送信電力制御方式の一
例の構成を示す。同図中、1は衛星、2は地球局で、地
球局2は衛星1を中継局として他の地球局(図示せず)
と通信を行なう。
[Prior Art] FIG. 6 shows the configuration of an example of a transmission power control system in conventional satellite communication. In the figure, 1 is a satellite, 2 is an earth station, and earth station 2 uses satellite 1 as a relay station to communicate with other earth stations (not shown).
communicate with.

ここで、従来はWI星1が地球局2ヘビ一コン信号を送
信し、これを地球局2が受信してビーコン信号のレベル
又はC/N (搬送波対雑音比)を測定し、これにより
降雨3によるダウンリンクの減衰量を測定する。地球局
2はこのダウンリンクの減衰量からアップリンクの減衰
量を推定し、これに基づき送信電力を増加して送信を行
なう。
Conventionally, WI star 1 transmits a beacon signal to earth station 2, and earth station 2 receives this and measures the level or C/N (carrier-to-noise ratio) of the beacon signal. Measure the downlink attenuation due to 3. The earth station 2 estimates the uplink attenuation amount from this downlink attenuation amount, increases the transmission power based on this, and performs transmission.

このようにして、衛星1への到達電力は降雨3があって
も晴天時と同じとなり、回線不稼動率を大幅に小とする
In this way, even if there is rain 3, the power reaching the satellite 1 is the same as when it is a sunny day, and the line downtime rate is significantly reduced.

この従来方式は方式的に簡単で、ハードウェア規模もか
なり小さいため有効である。
This conventional method is effective because it is simple and the hardware scale is quite small.

(発明が解決しようとする課題) しかるに、上記の従来方式は、衛星1にビーコン信号送
信機能が必要であるため、ビーコン信号送信機能を持た
ない衛星に対しては適用できないという欠点があった。
(Problem to be Solved by the Invention) However, the above conventional method requires the satellite 1 to have a beacon signal transmission function, and therefore has the drawback that it cannot be applied to a satellite that does not have a beacon signal transmission function.

本発明は上記の点に鑑みてなされたもので、ビーコン信
号を用いなくても、ハードウェア規模をあまり増大させ
ることなく地球局の送信電力を衛星に一定電力で到達す
るように制御できる衛星通信における送信電力制御方式
を提供することを目的とする。
The present invention has been made in view of the above points, and is a satellite communication system that enables the transmission power of an earth station to be controlled so that it reaches the satellite at a constant power level without using beacon signals or without significantly increasing the hardware scale. The purpose of this study is to provide a transmission power control method for

〔課題を解決するための手段〕[Means to solve the problem]

上記目的達成のため、本発明は第1図に示す如き構成と
したものである。第1図において、5は衛星、61〜6
nは多数の地球局で、これらよりなる衛星通信方式にお
いて、本発明はパイロット信号送信局71〜7TT+を
設けると共に、地球局61〜61の夫々に検出手段81
〜8nと制御手段91〜9Tlとを設けたものである。
In order to achieve the above object, the present invention has a configuration as shown in FIG. In Figure 1, 5 is a satellite, 61-6
n is a large number of earth stations, and in a satellite communication system consisting of these, the present invention provides pilot signal transmitting stations 71 to 7TT+, and detecting means 81 to each of the earth stations 61 to 61.
-8n and control means 91-9Tl are provided.

パイロット信号送信局7+〜7mは地球局6〜6T1間
の通信で使用すφ周波数とは異なる単一周波数のパイロ
ット信号を互いに時分割的に送信する。
The pilot signal transmitting stations 7+ to 7m time-divisionally transmit pilot signals having a single frequency different from the φ frequency used for communication between the earth stations 6 to 6T1.

また検出手段81〜8nはパイロット信号送信局71〜
7mと同じ数の隣り合う受信パイロン1−信号をレベル
比較して最も小さい減衰量を検出する。
Further, the detection means 81 to 8n are the pilot signal transmitting stations 71 to 8n.
The smallest attenuation amount is detected by comparing the levels of the same number of adjacent reception pylon 1 signals as 7m.

更に制御手段91〜91は最小減衰量に応じて送信電力
を制御する。
Further, the control means 91 to 91 control the transmission power according to the minimum attenuation amount.

〔作用〕[Effect]

衛星からビーコンを出す代りにパイロット信号送信局を
1局設けて、そのパイロット信号をビーコン信号の代り
に用いることがまず考えられる。
Instead of sending out a beacon from a satellite, one idea would be to provide one pilot signal transmitting station and use that pilot signal instead of the beacon signal.

しかし、これだけではパイロット信号送信局に降る雨に
よって地球局では晴天であるにも拘らずに減衰して受信
され、一方、パイロット信号送信局では晴天であるにも
拘らず地球局で雨が降っているときには同様に受信パイ
ロン1〜信号が減衰するから、送信を行なうとする地球
局ではどちら側に雨が降っているかの区別ができない。
However, with this alone, the rain falling at the pilot signal transmitting station causes the earth station to receive an attenuated signal even though it is a clear day. Since the signal from the receiving pylon 1 is similarly attenuated when the rain is falling, the earth station that is transmitting cannot tell which side it is raining on.

このため、パイロット信号送信局に雨が降っているどき
も送信電力を上げてしまい、昂星5に悪影響を与える。
For this reason, even when it is raining at the pilot signal transmitting station, the transmission power is increased, which adversely affects the Gongsei 5.

そこで、パイロット信号送信局71〜7mを第1図に示
す如く複数局地理的に離して設けて、それらのパイロッ
ト信号を受信し、それらの受信パイロット信号レベルを
比較し、そのうち最も減衰量の小さい各受信パイロット
信号レベルに基づいて送信電力を制御する。
Therefore, as shown in Fig. 1, multiple pilot signal transmitting stations 71 to 7m are provided geographically apart from each other, and their pilot signals are received, and their received pilot signal levels are compared. Control transmit power based on each received pilot signal level.

パイロット信号送信局71〜7mのすべてに同時に雨が
降る確率は極めて小であり、殆どゼロである。ここで、
パイロット信号送信局71〜7m及び任意の地球局61
のいずれもが晴天下にあるときは検出手段81で検出さ
れるすべての受信パイロット信号の減衰値はゼロである
ので、制御手段91にはこれに基づき所定の送信電力゛
で送信を行なう。
The probability that it will rain at all of the pilot signal transmitting stations 71 to 7m at the same time is extremely small, almost zero. here,
Pilot signal transmitting station 71-7m and any earth station 61
When all of the received pilot signals are under clear skies, the attenuation values of all received pilot signals detected by the detection means 81 are zero, so the control means 91 performs transmission at a predetermined transmission power based on this.

次に、地球局61のみに雨が降っており、バイロフト信
号送信局71〜7mではすべて晴天のときは、検出手段
81で検出されるすべての受信パイロット信号の減衰量
は同一であり、かつ、降雨量に応じた成る減衰量となる
ので、制御手段9はこの減衰量を補正するように前記所
定の送信電力よりも大なる電力で送信を行なうよう制御
する。
Next, when it is raining only at the earth station 61 and it is clear weather at all of the biloft signal transmitting stations 71 to 7m, the attenuation amount of all received pilot signals detected by the detection means 81 is the same, and Since the amount of attenuation depends on the amount of rainfall, the control means 9 controls the transmission to be performed with a power greater than the predetermined transmission power so as to correct this amount of attenuation.

次に地球局61とパイロット信号送信局71〜7ynの
うち(m−1)局以下の局に夫々用が降っていたときは
、雨が降っていないパイロット信号送信局からの受信パ
イロット信号だけが地球局61の降雨による減衰を正し
く示しており、この受信パイロット信号の減衰量は最小
となるので、検出手段81はこの最小減衰量を検出する
。制御手段91はこの最小減衰間がゼロになるように送
信電力を制御する。
Next, when the earth station 61 and pilot signal transmitting stations 71 to 7yn (m-1) or lower stations are raining, only the received pilot signal from the pilot signal transmitting station that is not raining will be received. This correctly indicates the attenuation due to rain at the earth station 61, and since the amount of attenuation of this received pilot signal is the minimum, the detection means 81 detects this minimum amount of attenuation. The control means 91 controls the transmission power so that this minimum attenuation becomes zero.

他の地球局62〜6nについても上記と同様の動作を行
なう。なお、制御手段91〜9ηは検出手段81〜81
の検出最小減衰量がダウンリンクの減衰量を示している
ので、アップリンクの減衰量を推定して送信電力の制御
を行なう。
The same operation as above is performed for the other earth stations 62 to 6n. Note that the control means 91 to 9η are the detection means 81 to 81.
Since the detected minimum attenuation amount indicates the downlink attenuation amount, the uplink attenuation amount is estimated and the transmission power is controlled.

また、地球局61〜6nに雨が降っていないが、パイロ
ット信号送信局71〜7mのうち(m−1)局以上の局
に雨が降っている場合には、受信パイ[」ット信号レベ
ルのうち減衰量最小の受信パイロット信号は雨が降って
いないパイロット信号送信局からのものであり、その減
衰用は前記したすべての局が晴天時と同じゼロであるか
ら、送信電力を上げてしまうことはなく、衛星5への悪
影響はない。
In addition, if it is not raining at the earth stations 61 to 6n, but it is raining to (m-1) or more of the pilot signal transmitting stations 71 to 7m, the received pilot signal The received pilot signal with the least amount of attenuation among the levels is from a pilot signal transmitting station when it is not raining, and the attenuation for all the stations mentioned above is zero, which is the same as when it is sunny, so increase the transmit power. It will not be stored away, and there will be no negative impact on Satellite 5.

ところで、上記のパイロット信号送信局71〜7mの送
信パイロット信号をすべて異ならせると、周波数的にも
電力的にも不利となる。そこで、本発明では降雨は時間
的に急激には変化しないという経験則に基づいてパイロ
ット信号周波数は単一周波数のみとし、それを時分割で
送信する。この場合、検出手段81〜8Tlでは受信パ
イロット信号がどこのパイロット信号送信局から送信さ
れたものかはわからないが、パイロットイを号送信局7
1〜7mと同じ数である隣り合うm個の受信パイロット
信号はパイロット信号送信局71〜7mから各々送イR
されたパイロット信号であることがら、これらの中から
最小減資hIを検出する。
By the way, if the pilot signals transmitted by the pilot signal transmitting stations 71 to 7m are all different from each other, it will be disadvantageous in terms of both frequency and power. Therefore, in the present invention, based on the empirical rule that rainfall does not change rapidly over time, the pilot signal frequency is set to only a single frequency, and it is transmitted in a time-division manner. In this case, the detection means 81 to 8Tl do not know from which pilot signal transmitting station the received pilot signal was transmitted, but the pilot signal is detected by the pilot signal transmitting station 7.
Adjacent m received pilot signals, which are the same number as 1 to 7m, are transmitted from the pilot signal transmitting stations 71 to 7m, respectively.
The minimum capital reduction hI is detected from among these pilot signals.

このようにして、本発明によれば、ビーコン送信機能を
持たない衛星を用いた衛星通信においても、パイロット
信号を用いて地球局の降雨などによるアップリンクの減
衰1を知ることができる。
In this way, according to the present invention, even in satellite communication using a satellite without a beacon transmission function, uplink attenuation 1 due to rain or the like at the earth station can be known using the pilot signal.

〔実施例〕〔Example〕

第2図は本発明方式の一実施例の構成図を示す。 FIG. 2 shows a configuration diagram of an embodiment of the system of the present invention.

同図中、第1図と同一構成部分には同一符号を付しであ
る。第2図において、6は地球局61〜6nのうちの任
意の一局(以下、これを便宜上0局という)、71及び
72はm=2の場合の前記パイロット信号送信局(以下
、これらを便宜上A局及び8周という)である。A局7
1と8局72とは夫々交互に同一周波数のパイロット信
号を送信する。
In the figure, the same components as in FIG. 1 are given the same reference numerals. In FIG. 2, 6 is any one of the earth stations 61 to 6n (hereinafter referred to as station 0 for convenience), and 71 and 72 are the pilot signal transmitting stations when m=2 (hereinafter these are referred to as station 0). For convenience, it will be referred to as station A and 8 rounds). A station 7
Stations 1 and 8 72 each alternately transmit pilot signals of the same frequency.

第3図(A>はA局7Iの送信パイロット信号のタイミ
ングを模式的に示しており、A局7I独自のタイマによ
り期間TAパイロット信号が送信された侵、期間SA送
信停止されることを繰り返される。その周期(TA +
SA )は例えば数秒程度である。
Fig. 3 (A> schematically shows the timing of the transmission pilot signal of the A station 7I, and the timer unique to the A station 7I repeats that the period TA pilot signal is transmitted and the period SA transmission is stopped. The period (TA +
SA ) is, for example, about several seconds.

一方、8局72は第3図(B)に模式的に示す如く、A
局71の送信パイロット信号を受信し、ガードタイムΔ
B後、期間Ta  (=T^)パイロット信号を送信し
、その後期間Ss  (=SA)パイロット信号の送信
を停止することを繰り返す。
On the other hand, as schematically shown in FIG. 3(B), the 8th station 72 is
The transmission pilot signal of station 71 is received, and the guard time Δ
After B, transmitting a pilot signal for a period Ta (=T^) and then stopping transmitting a pilot signal for a period Ss (=SA) is repeated.

なお、第3図(B)中、τは衛星5を介して送受信され
ることによる遅延時間を示す。ΔBの時間は8局72独
自のタイマで問題ない。
Note that in FIG. 3(B), τ indicates a delay time due to transmission and reception via the satellite 5. There is no problem with the time ΔB using a timer unique to the 8th station 72.

このように、A局71と8局72との送信タイミングは
衛星遅延などの充分なガードタイムさえ取っていれば、
厳密な同期をとる必要はない。
In this way, the transmission timing between the A station 71 and the 8th station 72 can be set as long as there is sufficient guard time such as satellite delay.
There is no need for strict synchronization.

更に簡単化した方法では、−度タイミングを取った後は
8局72独自のタイマで期間To送信、期間SB送信停
止を繰り返し、適当な時期に定期的にタイミングを補正
するだけでもよい。
In a more simplified method, after obtaining the - degree timing, the eight stations 72 may use their own timer to repeat period To transmission and period SB transmission stop, and periodically correct the timing at appropriate times.

このように時分割的に送信されたパイロット信号は第2
図に示すように、衛星5で中継されて0局6により受信
される。この0局6の受信パイロット信号は第3図(C
)に模式的に示す如くになるが、相隣る2つの受信パイ
ロット信号の一方がA局71からのものであり、他方が
8局72からのものである。
The pilot signal transmitted in a time-division manner in this way is
As shown in the figure, the signal is relayed by satellite 5 and received by station 0 6. This received pilot signal of station 0 6 is shown in Fig. 3 (C
), one of the two adjacent received pilot signals is from station A 71, and the other is from station 8 72.

いま、この相隣る2つの受信パイロット信号のうち、一
方の受信パイロット信号のレベル(受信電力)PAが第
4図(A)に実線■で示す如く変化し、他方の受信パイ
ロット信号のレベル(受信電力)Paが同図(A)に破
線■で示す如く変化したものとする。この場合、第4図
(A)にα及びγで示した減1ffiは、他方の受信パ
イロット信号の減衰量よりも小であり、この減衰量α、
γはA局7I及び8局72のいずれか一方と(0局6に
夫々雨が降っているために生じた減衰量のうち、雨が降
っていない方のパイロット信号送信局からの受信パイロ
ット信号の減衰量を示している。従って、このときは第
4図(B)に示す如く、0局6はα、γに対応した送信
電力で送信を行なう。
Now, among these two adjacent received pilot signals, the level (received power) PA of one received pilot signal changes as shown by the solid line ■ in FIG. 4(A), and the level (received power) of the other received pilot signal It is assumed that the received power) Pa changes as shown by the broken line ■ in FIG. In this case, the attenuation 1ffi shown by α and γ in FIG. 4(A) is smaller than the attenuation amount of the other received pilot signal, and this attenuation amount α,
γ is the received pilot signal from the pilot signal transmitting station that is not raining among the attenuation caused by raining at either station A 7I or station 8 72 (0 station 6). Therefore, at this time, as shown in FIG. 4(B), station 0 6 transmits with transmission power corresponding to α and γ.

また、上記の受信パイロット信号PA及びPBの両方が
、第4図(A)に示す如く同じ減衰イβであるときは、
A局7Iと8局72の両方に同時に雨が降っているか、
又は0局6だけに雨が降っているかのいずれかの場合で
ある。しかしA局71と8局72とは同時に雨が降らな
いような位置に互いに地理的に離して設置されているか
ら、上記の場合は0局6だけに雨が降っていると見做せ
る。
Furthermore, when both the above received pilot signals PA and PB have the same attenuation β as shown in FIG. 4(A),
Is it raining at both A station 7I and 8 station 72 at the same time?
Or, it is raining only at station 0 and 6. However, since the A station 71 and the 8th station 72 are located geographically apart from each other so that it does not rain at the same time, it can be assumed that only the 0th station 6 is raining in the above case.

そこで、この場合は第4図(B)にβで示す如く、0局
6は減衰量βを補償する分だけ送信電力を増加させて送
信を行なう。
Therefore, in this case, as shown by β in FIG. 4(B), station 0 6 transmits by increasing its transmission power by an amount that compensates for the attenuation amount β.

次に上記の地球局(0局)6の一実施例の構成について
第5図と共に説明する。同図中、8は検出手段、9は制
御手段で、第1図の検出手段81〜8n、制御手段91
〜9Tlのうちの任意の−の検出手段及び制御手段を示
す。第5図にJ3いて、地球局が受信した信号中から弁
別分離された受信パイロット信号が入力端子11よりキ
ャリアレベル検出器12及びC/N測定回路13に夫々
供給される。
Next, the configuration of one embodiment of the earth station (0 station) 6 will be described with reference to FIG. 5. In the figure, 8 is a detection means, 9 is a control means, and the detection means 81 to 8n and the control means 91 in FIG.
The detection means and control means for any one of ~9Tl are shown. At J3 in FIG. 5, the received pilot signal that has been discriminated and separated from the signals received by the earth station is supplied from the input terminal 11 to the carrier level detector 12 and the C/N measurement circuit 13, respectively.

C/N測定回路13は受信パイロット信号のC/N比か
らその減衰m(晴天時をげ口とする)を測定し、その測
定結果をバッフ?14及び15へ順次に供給する。一方
、キャリアレベル検出器12は受信パイロット信号の有
無をそのキャリアレベルから検出し、受信パイロット信
号が入力される毎にバッファ14及び15へ検出信号を
出力し、その蓄積内容を更新する。
The C/N measuring circuit 13 measures the attenuation m (assuming it is a sunny day) from the C/N ratio of the received pilot signal, and uses the measurement result as a buffer? 14 and 15 sequentially. On the other hand, carrier level detector 12 detects the presence or absence of a received pilot signal from its carrier level, outputs a detection signal to buffers 14 and 15 every time a received pilot signal is input, and updates the stored contents.

従って、バッファ14には現時点の受信パイロット信号
の減衰mが蓄積され、バッファ15にはそれより一つ前
の受信パイロット信号の減衰量が蓄積されることになる
。このバッファ14及び15の再蓄積信号(減衰量)は
比較器16に供給され、ここで値が小さい方(すなわち
減衰量が少ない方〉が選択される。
Therefore, the buffer 14 stores the attenuation m of the received pilot signal at the current time, and the buffer 15 stores the attenuation amount of the previous received pilot signal. The re-accumulated signals (attenuation amounts) of the buffers 14 and 15 are supplied to a comparator 16, where the one with the smaller value (ie, the one with the smaller attenuation amount) is selected.

比較器16の出力信号はダウンリンクの減衰量なのでア
ップリンク減衰量推定器17を通してアップリンクの減
衰量を推定、換篩しハイパワーアンプ(HPA)18へ
供給され、ここでその利得を可変制御する。これにより
、HPA18より取り出され、アンテナを介して衛星5
へ送信される電波の送信電力は、相隣る2つの受信パイ
ロット信号のうち、減衰量の少ない方の減衰量分く実際
にはこれはダウンリンクの減衰量なのでこれからアップ
リンクの減衰量を推定した分)だけ増加される。これに
より、0局6における天候に関係なく常に略一定の衛星
到達電力を確保できる。
Since the output signal of the comparator 16 is the amount of downlink attenuation, the amount of uplink attenuation is estimated through the uplink attenuation amount estimator 17, sieved, and supplied to the high power amplifier (HPA) 18, where the gain is variably controlled. do. As a result, it is taken out from the HPA 18 and sent to the satellite 5 via the antenna.
The transmission power of the radio waves transmitted to the 2-bit is equal to the attenuation of the smaller attenuation of the two adjacent received pilot signals.Actually, this is the downlink attenuation, so estimate the uplink attenuation from this. amount). Thereby, it is possible to always ensure a substantially constant power reaching the satellite regardless of the weather at the 0 station 6.

かかる構成の0局6はパイロット信号周波数が単一で、
しかも時間的に連続する相隣る2つの受信パイロット信
号の減衰量を比較するだけであるから、ハードウェア規
模が小さくて済む。
Station 0 6 with such a configuration has a single pilot signal frequency,
Moreover, since only the attenuation amounts of two temporally consecutive received pilot signals are compared, the hardware scale can be small.

一方、前記8局72は受信、送信機能共に必要なため、
通信用地球局で代用できる。また、A局71はパイロッ
ト信号の送信だけできればよく、変調も必要ないため、
ハードウェア規模は極めて小さくて済み、設置場所とし
て降雨の少ない場所をかなり自由に選ぶことが可能であ
る。
On the other hand, since the eight stations 72 require both reception and transmission functions,
It can be replaced by a communications earth station. In addition, since the A station 71 only needs to transmit the pilot signal and does not need modulation,
The scale of the hardware is extremely small, and it is possible to select a location with little rainfall as the installation location.

なお、本発明は上記の実施例に限定されるものではなく
、パイロット信号送信局は3局以上設けてもよい。この
場合は設置したパイロット信号送信局に同時に雨が降る
確率は局数が増えるほど飛躍的に小さくなる。しかし、
パイロット信号送信局は2局だけでも送信機能だけを備
えたパイロット信号送信局の設置場所の自由度が高いた
め、実用上は2局だけで充分である。
Note that the present invention is not limited to the above embodiment, and three or more pilot signal transmitting stations may be provided. In this case, the probability that it will rain simultaneously at the installed pilot signal transmitting stations decreases dramatically as the number of stations increases. but,
Even if there are only two pilot signal transmitting stations, there is a high degree of freedom in the installation location of the pilot signal transmitting station having only a transmitting function, so in practice, only two pilot signal transmitting stations are sufficient.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、通信に用いる送受信機と
同じ送受信機を用いてパイロット信号を送信し、そのパ
イロット信号を用いて地球局の時雨などによるアップリ
ンクの減衰量を知ることができるため、ビーコン送信機
能を持たない衛星を用いた衛星通信方式や偏波などの問
題でビーコン受信が困難な地球局を用いた衛星通信方式
においても、アップリンクの減衰量を検出して衛星ff
1lJ達電力を一定に保つ送信電力制御ができ、またパ
イロット信号は単一周波数で、時分割的に送信している
ので、地球局の送信電力制御のためのハードウェア規模
を小さく抑えることができる等の特長を有するものであ
る。
As described above, according to the present invention, a pilot signal is transmitted using the same transceiver as that used for communication, and the amount of uplink attenuation due to rain, etc. at the earth station can be determined using the pilot signal. Therefore, even in satellite communication systems that use satellites that do not have a beacon transmission function, or satellite communication systems that use earth stations where beacon reception is difficult due to problems such as polarization, uplink attenuation can be detected and the satellite ff
The transmission power can be controlled to keep the 1lJ power constant, and the pilot signal is transmitted on a single frequency in a time-division manner, so the hardware scale for controlling the earth station's transmission power can be kept small. It has the following features.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理構成図、 第2図は本発明方式の一実施例の構成図、第3図は各地
球局の送受信パイロット信号のタイミング説明図、 第4図はパイロット受信電力と0局送信電力との関係を
示す図、 第5図は地球局の一実施例のブロック図、第6図は従来
方式の一例の説明図である。 本丸明の厘理構べ図 ;1リ 薯 図 図において、 5は衛星、 6.61〜6nは地球局、 71〜7mはパイロット信号送信局、 8.81〜81は検出手段、 9.91へ・91は制御手段 を示す。 7釘監 本も咽ガ入の一欠犯イ列の講へ図 第2図 オ隻云+p更 地球局の一笑方也イ列のフ゛口・ツク図真5 図 −C!)−衛1 鑓孫局 堤東ガ式の一例の託明図
Figure 1 is a diagram showing the principle of the present invention; Figure 2 is a diagram showing the configuration of an embodiment of the method of the present invention; Figure 3 is an explanatory diagram of the timing of transmitting and receiving pilot signals from each earth station; Figure 4 is a diagram showing the pilot received power and FIG. 5 is a block diagram of an embodiment of the earth station, and FIG. 6 is an explanatory diagram of an example of the conventional system. Akira Honmaru's construction diagram; 1. In the diagram, 5 is the satellite, 6.61 to 6n are the earth stations, 71 to 7m are the pilot signal transmitting stations, 8.81 to 81 are the detection means, 9.91 91 indicates control means. 7-nail inspector also goes to lecture on the series of missing criminals in the throat Figure 2 Ohsenun+p Furthermore, the earth station's Ichishoya series of pictures and illustrations 5 Figure-C! ) - Ei 1 An example of oracle drawing of Yarisonkyokutsutsutsumi Toga style

Claims (1)

【特許請求の範囲】[Claims] 衛星(5)を中継局として多数の地球局(6_1〜6_
n)間で無線通信を行なう衛星通信において、前記衛星
通信で用いる周波数とは異なる単一周波数のパイロット
信号を互いに時分割的に送信する複数のパイロット信号
送信局(7_1〜7_m)を設けると共に、前記パイロ
ット信号を順次受信し、そのうち前記パイロット信号送
信局(7_1〜7_m)と同じ数の隣り合う受信パイロ
ット信号を夫々レベル比較して最も小さい減衰量を検出
する検出手段(8_1〜8_n)と、該検出手段(8_
1〜8_n)により検出された最小減衰量に応じて送信
電力を可変制御する制御手段(9_1〜9_n)とを前
記地球局(6_1〜6_n)の夫々に設けたことを特徴
とする衛星通信における送信電力制御方式。
A large number of earth stations (6_1 to 6_
n) In satellite communication that performs wireless communication between satellites, a plurality of pilot signal transmitting stations (7_1 to 7_m) are provided that time-divisionally transmit pilot signals of a single frequency different from the frequency used in the satellite communication, and Detection means (8_1 to 8_n) that sequentially receives the pilot signals and compares the levels of the same number of adjacent received pilot signals as the pilot signal transmitting stations (7_1 to 7_m) to detect the smallest amount of attenuation; The detection means (8_
A satellite communication system characterized in that each of the earth stations (6_1 to 6_n) is provided with a control means (9_1 to 9_n) that variably controls transmission power according to the minimum attenuation detected by the earth stations (6_1 to 6_n). Transmission power control method.
JP63213195A 1988-08-26 1988-08-26 Transmission power control method in satellite communication Pending JPH0262132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63213195A JPH0262132A (en) 1988-08-26 1988-08-26 Transmission power control method in satellite communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63213195A JPH0262132A (en) 1988-08-26 1988-08-26 Transmission power control method in satellite communication

Publications (1)

Publication Number Publication Date
JPH0262132A true JPH0262132A (en) 1990-03-02

Family

ID=16635111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63213195A Pending JPH0262132A (en) 1988-08-26 1988-08-26 Transmission power control method in satellite communication

Country Status (1)

Country Link
JP (1) JPH0262132A (en)

Similar Documents

Publication Publication Date Title
EP2148543B1 (en) Apparatus for adaptive closed loop power control using open loop measurements
EP0606272B1 (en) Simulcast synchronization and equalization system and method therefor
EP1002379B1 (en) Method and apparatus for predictive parameter control with loop delay
US5245634A (en) Base-site synchronization in a communication system
KR100506579B1 (en) Determination of frequency in communication system
US5402424A (en) Synchronization of clocks in a satellite communication network by preassigning constants to stations of the network
US7062224B2 (en) Method and system for identifying and monitoring repeater traffic in a code division multiple access system
US6219528B1 (en) Dynamic power control with adaptive reference level
EP0749252A2 (en) Adjustment of transmission times in a multipoint transmission system
MXPA01002265A (en) Method of and apparatus for time synchronisation in a communication system.
EP1771954B1 (en) Leader-follower power control
US6763006B1 (en) Method and apparatus for controlling uplink transmission power within a satellite communication system
JPH0262132A (en) Transmission power control method in satellite communication
EP1085676B1 (en) Method of controlling power in a point to multipoint communication network and system for carrying out said method
FI105302B (en) Amplifier control device for use in receiving information signals
EP0790715B1 (en) Method and apparatus for power regulation in a satellite telecommunications network with at least two satellites in view
RU2742947C1 (en) Digital on-board communication means
JPS6322743B2 (en)
JP2842596B2 (en) Earth station transmission power control method
JPS63173426A (en) Transmission power control equipment
JPS5810937A (en) Transmission power controlling system for earth station of satellite communication
JPH0612885B2 (en) TDMA transmission synchronization control method
JPH0666719B2 (en) Transmission power control device for satellite communication earth station
JPH025631A (en) Transmission power control system for satellite communication
Ali et al. Doppler based multiple access (DBMA): a novel flow control mechanism for LEO satellite systems