JPH0260272B2 - - Google Patents
Info
- Publication number
- JPH0260272B2 JPH0260272B2 JP59173130A JP17313084A JPH0260272B2 JP H0260272 B2 JPH0260272 B2 JP H0260272B2 JP 59173130 A JP59173130 A JP 59173130A JP 17313084 A JP17313084 A JP 17313084A JP H0260272 B2 JPH0260272 B2 JP H0260272B2
- Authority
- JP
- Japan
- Prior art keywords
- output
- phase
- phase shifter
- element antenna
- specific element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 4
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 2
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/02—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
- G01S3/14—Systems for determining direction or deviation from predetermined direction
- G01S3/16—Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived sequentially from receiving antennas or antenna systems having differently-oriented directivity characteristics or from an antenna system having periodically-varied orientation of directivity characteristic
- G01S3/22—Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived sequentially from receiving antennas or antenna systems having differently-oriented directivity characteristics or from an antenna system having periodically-varied orientation of directivity characteristic derived from different combinations of signals from separate antennas, e.g. comparing sum with difference
- G01S3/24—Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived sequentially from receiving antennas or antenna systems having differently-oriented directivity characteristics or from an antenna system having periodically-varied orientation of directivity characteristic derived from different combinations of signals from separate antennas, e.g. comparing sum with difference the separate antennas comprising one directional antenna and one non-directional antenna, e.g. combination of loop and open antennas producing a reversed cardioid directivity characteristic
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、複数の素子アンテナを線状に配列
した方探装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a direction finding device in which a plurality of element antennas are arranged in a line.
従来、この種の装置として第1図に示すものが
あつた。この装置は、和ビームによる粗測方探
と、2ビームの振幅比較による精測方探とを実行
するものである。
Conventionally, there has been a device of this type as shown in FIG. This device performs a rough square search using a sum beam and a fine square search using an amplitude comparison of two beams.
n個の素子アンテナ1a〜1nは互に間隔dを
もつて線状に配列され、アンテナ開口を形成する
とともに、素子数n/2個ずつの開口面A及び開口
面Bの2グループに分割される。開口面A及びB
を構成する素子アンテナ1a〜1g(g=n/2)及
び1h〜1n(h=n/2+1)の出力は、それぞれ
の移相器2a〜2g及び2h〜2nを介してそれ
ぞれのグループに対応する分配器3a及び3bに
接続されている。分配器3aの出力は90゜ハイブ
リツド6の入力端子6aに接続され、分配器3b
の出力は90゜移相器5を介して90゜ハイブリツド6
の入力端子6bに接続される。90゜ハイブリツド
6の出力端子は信号処理器71の入力端子7a及
び7bに接続されている。 The n element antennas 1a to 1n are arranged linearly with an interval d from each other to form an antenna aperture, and are divided into two groups, an aperture surface A and an aperture surface B, each having n/2 elements. Ru. Opening planes A and B
The outputs of the element antennas 1a to 1g (g=n/2) and 1h to 1n (h=n/2+1) that constitute the correspond to the respective groups via respective phase shifters 2a to 2g and 2h to 2n. are connected to distributors 3a and 3b. The output of the distributor 3a is connected to the input terminal 6a of the 90° hybrid 6, and the output of the distributor 3b is connected to the input terminal 6a of the 90° hybrid 6.
The output of 90° hybrid 6 is passed through 90° phase shifter 5
is connected to the input terminal 6b of. The output terminals of the 90° hybrid 6 are connected to input terminals 7a and 7b of a signal processor 71.
次に動作について説明する。 Next, the operation will be explained.
まず、i番目の移相器2i(i=1…n)の位
相φiが
φi=(i−1)2πd/λsinθ(i=1,2,…n)…
(1)
と設定されているものとする。ここでλは波長、
θは方位角である。90゜移相器5の移相量を90゜に
設定し、方位θから電波が到来する場合には、入
力端子7bには、分配器3aからの出力と、90゜
移相器5を介する分配器3bとからの出力を、即
ち開口面A及び開口面Bによる受信波を同相で合
成した和ビームが出力される。この和ビームは方
位角を横軸にとつて示すと、第2図に示すような
レベルを有する。 First, the phase φ i of the i-th phase shifter 2i (i=1...n) is φ i =(i-1)2πd/λsinθ(i=1, 2,...n)...
(1). Here λ is the wavelength,
θ is the azimuth angle. When the phase shift amount of the 90° phase shifter 5 is set to 90° and a radio wave arrives from the direction θ, the input terminal 7b receives the output from the distributor 3a and the output via the 90° phase shifter 5. A sum beam is output by combining the output from the distributor 3b, that is, the waves received by the aperture surface A and the aperture surface B in the same phase. This sum beam has a level as shown in FIG. 2 when the azimuth is plotted on the horizontal axis.
次に90゜移相器5の移相量を0゜に設定し、90゜ハ
イブリツド6の入力端子6aと6bとの間の相対
的な位相差が+90゜のときは入力端子7aに、ま
た入力端子6aと6bとの間の相対的な位相差が
−90゜のときは入力端子7bに、開口面A及び開
口面Bからの受信波が合成されて導出される。し
たがつて、入力端子7a,7bから見たビームノ
ーズの方位角θa,θbはそれぞれ
θa=sin-1(sinθ+λ/2nd) …(2)
θb=sin-1(sinθ−λ/2πd) …(3)
となる。 Next, the phase shift amount of the 90° phase shifter 5 is set to 0°, and when the relative phase difference between the input terminals 6a and 6b of the 90° hybrid 6 is +90°, the phase shift amount of the 90° phase shifter 5 is set to 0°. When the relative phase difference between input terminals 6a and 6b is -90°, the received waves from aperture surface A and aperture surface B are combined and derived to input terminal 7b. Therefore, the azimuth angles θ a and θ b of the beam nose as seen from the input terminals 7 a and 7 b are respectively θ a = sin -1 (sin θ + λ/2nd) ...(2) θ b = sin -1 (sin θ - λ/ 2πd) …(3).
即ち、第2図に示すように和ビームの方向θに
比べてθaは左方向に、θbは右方向にそれぞれ|θa
−θ|,|θb−θ|だけずれたLビーム、Rビー
ムとなり、両ビームのクロス点は概ね和ビームの
方向θと一致したものとなる。 That is, as shown in Figure 2, compared to the direction θ of the sum beam, θ a is to the left, and θ b is to the right, |θ a
The L and R beams are shifted by −θ|, |θ b −θ|, and the cross point of both beams approximately coincides with the direction θ of the sum beam.
次に方位探知を行う手順を第3図により説明す
る。まず、第3図aに示す粗測を行なうため90゜
移相器5の移相量を90゜に設定し、各移相器2a
〜2nの位相を変化させながら和ビームを方位θ
−側から方位θ+側に順次走査する。この間に入
力端子7bでの受信電力が最大となる方位θtを知
り、これを目標の概略方位とする。このときのi
番目の移相器2iの位相φiは、
φi=(i−1)2πd/λsinθt(i=1,2…n)…(
4)
となつている。 Next, the procedure for detecting the direction will be explained with reference to FIG. First, in order to perform the rough measurement shown in Fig. 3a, the phase shift amount of the 90° phase shifter 5 is set to 90°, and
While changing the phase of ~2n, move the sum beam to the azimuth θ.
Scanning is performed sequentially from the − side to the azimuth θ+ side. During this time, the direction θ t at which the received power at the input terminal 7b is maximum is known, and this is taken as the approximate direction of the target. i at this time
The phase φ i of the th phase shifter 2i is φ i =(i−1)2πd/λsinθ t (i=1, 2...n)...(
4) It is becoming.
次に、第3図bに示す精測を行なうため、90゜
移相器5の位相を0゜に設定し、入力端子7a及び
7bでそれぞれθtのRビーム、θtのLビームを受
信できるようにし、両入力端子7a及び7bの受
信電力差Δにより、信号処理器71は真の方位
(目標方位)θt′を算出する。 Next, in order to perform the precise measurement shown in Figure 3b, the phase of the 90° phase shifter 5 is set to 0°, and the input terminals 7a and 7b receive the R beam at θ t and the L beam at θ t , respectively. The signal processor 71 calculates the true bearing (target bearing) θ t ' based on the received power difference Δ between both input terminals 7a and 7b.
しかし、方向θtには方位θtの和ビームばかりで
なく、方位θ−からθ+の間に種々の和ビームの
サイドローブが存在する。このサイドローブのう
ち最も高いレベルのサイドローブを持つビームに
よる和ビームの方向がθeであり、θtの和ビームと
θeの和ビームのレベル差がLであるとすると、方
位θeからθtまでビームを走査する時間内で目標か
らの到達電波の時間変動幅がLよりも大きい場合
には、方位θtの和ビームによる受信電力より方位
θeのサイドローブによる受信電力が大きいという
状況が生じ、方位θeに偽方位を生じることにな
る。 However, in the direction θ t , there are not only the sum beam of the azimuth θ t but also various side lobes of the sum beam between the azimuths θ− and θ+. If the direction of the sum beam of the beam with the highest side lobe among these side lobes is θ e , and the level difference between the sum beam of θ t and the sum beam of θ e is L, then from the direction θ e If the time fluctuation width of the radio waves arriving from the target is larger than L within the time it takes to scan the beam up to θ t , it is said that the received power due to the side lobe in the azimuth θ e is greater than the received power due to the sum beam in the azimuth θ t . A situation arises that results in a false orientation in the orientation θ e .
従来の方探装置は、以上のように構成されてい
るので、特に目標のサイドローブを探知しようと
する場合には、到達レベルの時間変動がアレーア
ンテナのサイドローブ比よりも大きくなる状況が
ひんぱんに発生し、粗測時に偽方位の出る確率が
非常に高いため、2ビーム精測系の存在価値があ
まりないという欠点があつた。 Conventional direction finding devices are configured as described above, so especially when trying to detect the side lobes of a target, there are often situations where the time variation in the arrival level is larger than the side lobe ratio of the array antenna. The disadvantage is that the two-beam precision measurement system has little value because the probability of a false heading occurring during rough measurement is extremely high.
この発明は、上記のような従来のものの欠点を
除去するためになされたもので、素子アンテナの
うちの1個と移相器との間、及びハイブリツドの
出力端子部に切換スイツチを付加し、和ビームに
よる粗測方探時は切換スイツチにより素子アンテ
ナのうちの1個の出力を選択し、この1個の出力
と残りの素子アンテナによる和ビームとを信号処
理器で比較することにより、偽方位発生確率を減
らし、2ビームによる精測方探の有用性を十分に
発揮させることのできる高精度な方探装置を提供
するものである。
This invention was made in order to eliminate the drawbacks of the conventional antennas as described above, and a changeover switch is added between one of the element antennas and the phase shifter and at the output terminal of the hybrid. When performing rough measurement using the sum beam, select the output of one of the element antennas using the switch, and compare the output of this one with the sum beam from the remaining element antennas using a signal processor to detect false signals. It is an object of the present invention to provide a highly accurate direction finding device that can reduce the probability of direction occurrence and fully utilize the usefulness of precise direction finding using two beams.
〔発明の実施例〕
以下、この発明の一実施例を図について説明す
る。第4図において、8は切換スイツチであり、
その端子COMが素子アンテナ1aに、端子NO
が移相器2aに、端子NCが給電線9及び減衰器
10aを介して切換スイツチ11の端子NCに接
続されている。また、切換スイツチ11の端子
NOは減衰器10bを介して90゜ハイブリツド6の
一方の出力端子に接続されており、端子COMが
信号処理器7の入力端子7aに接続されている。
さらに、90゜ハイブリツド6の他方の出力端子と
信号処理器7の入力端子7bとの間には減衰器1
0cが挿入される。[Embodiment of the Invention] An embodiment of the invention will be described below with reference to the drawings. In FIG. 4, 8 is a changeover switch;
The terminal COM is connected to the element antenna 1a, and the terminal NO
is connected to the phase shifter 2a, and the terminal NC is connected to the terminal NC of the changeover switch 11 via the power supply line 9 and the attenuator 10a. In addition, the terminal of the changeover switch 11
NO is connected to one output terminal of the 90° hybrid 6 via an attenuator 10b, and the terminal COM is connected to the input terminal 7a of the signal processor 7.
Furthermore, an attenuator 1 is connected between the other output terminal of the 90° hybrid 6 and the input terminal 7b of the signal processor 7.
0c is inserted.
次に動作について第5図を用いて説明する。 Next, the operation will be explained using FIG. 5.
和ビームによる粗測方探時は、切換スイツチ8
及び11の端子COMをいずれも図示位置の端子
NC側に倒す。これにより、入力端子7aには素
子アンテナ1aのみによる素子ビームが現われ、
他方の入力端子7bには素子アンテナ1b〜素子
アンテナ1nによる(n−1)素子のアレーパタ
ーンの和ビームが現われる。この和ビームの包絡
線及びサイドローブの包絡線は概ね素子ビームに
沿つた形となる。したがつて、第5図に示すよう
に、素子ビームの包絡線とサイドローブの包絡線
とのレベル差δは方位にあまり依存せず、ほぼ一
定値となる。さらに、各入力端子7a,7bには
減衰器10a,10b,10cが接続されている
ので、レベル差δは減衰器10aと減衰器10c
の減衰量を選択することにより、最適値に設定す
ることができる。 When using the sum beam for coarse measurement, select switch 8.
and 11 terminals COM at the positions shown in the figure.
Turn to NC side. As a result, an element beam generated only by the element antenna 1a appears at the input terminal 7a,
A sum beam of an array pattern of (n-1) elements formed by the element antennas 1b to 1n appears at the other input terminal 7b. The envelope of this sum beam and the envelope of the side lobes have a shape roughly along the element beam. Therefore, as shown in FIG. 5, the level difference δ between the envelope of the element beam and the envelope of the side lobe does not depend much on the orientation and is a substantially constant value. Furthermore, since attenuators 10a, 10b, and 10c are connected to each input terminal 7a and 7b, the level difference δ is between attenuator 10a and attenuator 10c.
By selecting the amount of attenuation, the optimum value can be set.
信号処理器7はアンテナ1aの素子ビームによ
る受信レベル、即ち入力端子7aの受信レベル
と、和ビームによる受信レベル即ち入力端子7b
の受信レベルとを比較し、前者より後者の方が低
い場合はデータは無効とする。 The signal processor 7 receives the reception level of the element beam of the antenna 1a, that is, the reception level of the input terminal 7a, and the reception level of the sum beam, that is, the reception level of the input terminal 7b.
If the latter is lower than the former, the data is invalid.
つまり、双方の受信レベルを比較し、前者より
後者の方が低レベルである場合には、偽方位であ
るため、この時のデータは無効として廃棄し、和
ビームによる受信レベルの方が高くなる方位が見
つかるまで走査を継続する。なお、入力端子7b
には、和ビームのサイドローブのみでなくメイン
ローブを含めた和ビームによる受信レベルが方位
に応じて入力端子7bに入力される。 In other words, compare the reception levels of both sides, and if the latter is lower than the former, it is a false heading, and the data at this time is discarded as invalid, and the reception level of the sum beam is higher. Continue scanning until the bearing is found. In addition, the input terminal 7b
In this case, the reception level of the sum beam including not only the side lobes of the sum beam but also the main lobe is inputted to the input terminal 7b according to the direction.
素子ビームとサイドローブとのレベル差δは目
標からの到達電力レベルが時間変動しても、常に
一定値のレベル差δに保たれるから、サイドロー
ブによる受信電波が有効データとなることはな
く、全て棄却され、従来の装置で見られた偽方位
の発生はなくなる。そして、概略方位が見つかる
と、切換スイツチ8,11をともにNO側に切換
えて、従来の場合と同様に精測方探を行う。 The level difference δ between the element beam and the side lobe is always maintained at a constant level difference δ even if the power level arriving from the target varies over time, so the received radio waves due to the side lobe will never become valid data. , are all rejected, eliminating the occurrence of false orientations seen in conventional devices. When the approximate direction is found, both the changeover switches 8 and 11 are switched to the NO side, and precise direction finding is performed as in the conventional case.
さらに、前記したように、レベル差δは方位角
が変わつてもほぼ一定値δであるから、最適値の
設定が容易であり、またサイドローブキヤンセラ
ー回路としての後段の信号処理器7の構成も単純
なものとなるので、処理の高速化が可能となり、
2ビームによる精測方探との組み合わせで高性能
の方探装置が実現できる。 Furthermore, as described above, since the level difference δ is a substantially constant value δ even when the azimuth changes, it is easy to set the optimum value, and the configuration of the subsequent signal processor 7 as a sidelobe canceller circuit is easy. Since it is also simple, processing speed can be increased,
A high-performance direction finding device can be realized by combining this method with a precision direction finding system using two beams.
なお、上記実施例では素子アンテナ1aのビー
ムをサイドローブキヤンセラーとして使用してい
るが、他の素子アンテナであつてもよい。また、
第6図に示すように、切換スイツチ8の代わりに
方向性結合器12を素子アンテナ1aと移相器2
aとの間に接続し、素子アンテナ1aの素子ビー
ムを別個の入力端子7cに入力して振幅比較させ
るようにしてもよい。この場合には、粗測方探の
方法は上記実施例の場合と同様であり(もちろ
ん、この場合にはスイツチ切換動作はない。)、精
測方探は従来の場合と同様に実行される。 In the above embodiment, the beam of the element antenna 1a is used as a sidelobe canceller, but other element antennas may be used. Also,
As shown in FIG. 6, instead of the changeover switch 8, a directional coupler 12 is connected to the element antenna 1a and the phase shifter 2.
a, and the element beam of the element antenna 1a may be input to a separate input terminal 7c for amplitude comparison. In this case, the coarse square search method is the same as in the above embodiment (of course, there is no switch switching operation in this case), and the fine square search is performed in the same way as in the conventional case. .
〔発明の効果〕
以上のように、この発明によれば、アレーアン
テナを構成している素子アンテナのビームを切換
使用できる方式とし、特定の素子アンテナによる
ビームと残りの素子アンテナによる和ビームとを
比較するように方探装置を構成したので、処理が
容易で高確度の粗方位探知を行うことができ、2
ビーム精測方探系の存在を有意たらしめる高性能
の方探装置が得られる効果がある。[Effects of the Invention] As described above, according to the present invention, the beams of the element antennas constituting the array antenna can be switched and used, and the beam from a specific element antenna and the sum beam from the remaining element antennas can be used. Since the direction finding device was configured for comparison, it is possible to perform coarse direction finding with ease of processing and high accuracy.
This has the effect of providing a high-performance direction finding device that makes the existence of a beam precision direction finding system significant.
第1図は従来の方探装置のブロツク図、第2図
は和ビーム、Rビーム及びLビームの図、第3図
は従来の方探装置による方探手順を説明する図、
第4図はこの発明の一実施例による方探装置のブ
ロツク図、第5図はこの発明の一実施例による方
探装置の方探手順を説明する図、第6図はこの発
明の他の実施例のブロツク図である。
1a,1b〜1n……素子アンテナ、2a,2
b〜2n……移相器(第1の移相器)、3a,3
b……分配器、5……90゜移相器(第2の移相
器)、6……90゜ハイブリツド、7……信号処理
器、8,11……切換スイツチ、10a,10
b,10c……減衰器、12……方向性結合器。
なお、図中、同一符号は同一、又は相当部分を示
す。
Fig. 1 is a block diagram of a conventional direction finding device, Fig. 2 is a diagram of the sum beam, R beam, and L beam, and Fig. 3 is a diagram explaining the direction finding procedure by the conventional direction finding device.
FIG. 4 is a block diagram of a direction finding device according to an embodiment of the present invention, FIG. 5 is a diagram explaining the direction finding procedure of the direction finding device according to an embodiment of the present invention, and FIG. FIG. 2 is a block diagram of an embodiment. 1a, 1b to 1n...element antenna, 2a, 2
b~2n...phase shifter (first phase shifter), 3a, 3
b...Distributor, 5...90° phase shifter (second phase shifter), 6...90° hybrid, 7... Signal processor, 8, 11... Changeover switch, 10a, 10
b, 10c...attenuator, 12...directional coupler.
In addition, in the figures, the same reference numerals indicate the same or equivalent parts.
Claims (1)
記各素子アンテナの出力をそれぞれ導入した複数
の第1の移相器と、上記各移相器の出力を2グル
ープに分けて導入する第1及び第2の分配器と、
上記第1の分配器の出力の位相を予め定めた位相
だけ移相する第2の移相器と、上記第2の移相器
の出力及び上記第2の分配器の出力とを導入した
ハイブリツドとを備え、和ビームを用いて受信波
の概略方位を定める粗測方探と2ビームの振幅比
較により真の方位を定める精測方探とを実行する
方探装置において、上記粗測方探を実行する場合
に上記複数の素子アンテナのうちの特定の素子ア
ンテナとこの特定の素子アンテナに対応した上記
第1の移相器との間の接続を切離す第1のスイツ
チと、この第1のスイツチにより上記特定の素子
アンテナと上記第1の移相器との間の接続が切離
されたときに上記第1のスイツチを介して導入し
た上記特定の素子アンテナの出力と上記ハイブリ
ツドの一方の出力端子とを切換えて上記特定の素
子アンテナの出力を出力する第2のスイツチと、
上記第1の移相器の位相を変化させつつこの第2
のスイツチを介して導入した上記特定の素子アン
テナの出力と上記ハイブリツドの他方の出力端子
を介して導入した、上記特定の素子アンテナ以外
の上記複数の素子アンテナによる和ビームの出力
とを比較して、上記特定の素子アンテナの出力よ
りも上記和ビームの出力の方が低い場合に偽方位
と判定するとともに、上記特定の素子アンテナの
出力よりも上記和ビームの出力の方が高い場合に
上記概略方位と判定し、概略方位が検出された後
に、上記第1のスイツチの切換えにより上記特定
の素子アンテナを上記第1の移相器に接続させる
とともに上記第2のスイツチを上記ハイブリツド
側に切換えて上記精測方探を実行する信号処理器
とを備えたことを特徴とする方探装置。 2 線状に配列された複数の素子アンテナと、上
記各素子アンテナの出力をそれぞれ導入した複数
の第1の移相器と、上記各移相器の出力を2グル
ープに分けて導入する第1及び第2の分配器と、
上記第1の分配器の出力の位相を予め定めた位相
だけ移相する第2の移相器と、上記第2の移相器
の出力及び上記第2の分配器の出力とを導入した
ハイブリツドとを備え、和ビームを用いて受信波
の概略方位を定める粗測方探と2ビームの振幅比
較により真の方位を定める精測方探とを実行する
方探装置において、上記複数の素子アンテナのう
ちの特定の素子アンテナとこの特定の素子アンテ
ナに対応した上記第1の移相器との間に設けら
れ、粗測方探時に上記特定の素子アンテナの出力
を外部へ導く方向性結合器と、上記第1の移相器
の位相を変化させつつこの方向性結合器の外部に
導かれた上記特定の素子アンテナの出力と上記ハ
イブリツドの出力端子を介して導入した上記特定
の素子アンテナ以外の上記複数の素子アンテナに
よる和ビームの出力とを比較して、上記特定の素
子アンテナの出力よりも上記和ビームの出力の方
が低い場合に偽方位と判定するとともに、上記特
定の素子アンテナの出力よりも上記和ビームの出
力の方が高い場合に上記概略方位と判定し、概略
方位が検出された後に、上記方向性結合器および
上記第1の移相器を介して入力された上記特定の
素子アンテナの出力を含む上記第1の分配器の出
力と位相が0゜とされた上記第2の移相器を経た上
記第2の分配器の出力とを導入して上記ハイブリ
ツドが出力した上記2つのグループの位相差が±
90゜となつている合成波の振幅の差にもとづいて
真の方位を定める上記精測方探を実行する信号処
理器とを備えたことを特徴とする方探装置。[Claims] 1. A plurality of linearly arranged element antennas, a plurality of first phase shifters into which the outputs of the respective element antennas are introduced, and the outputs of the respective phase shifters are divided into two groups. first and second distributors introduced separately;
A second phase shifter that shifts the phase of the output of the first distributor by a predetermined phase, and an output of the second phase shifter and an output of the second distributor are introduced. In a direction finding device that performs a coarse direction search that determines the approximate direction of a received wave using a sum beam and a precise direction search that determines the true direction by comparing the amplitudes of two beams, the coarse direction search described above a first switch that disconnects a specific element antenna among the plurality of element antennas and the first phase shifter corresponding to the specific element antenna when performing the above; When the connection between the specific element antenna and the first phase shifter is disconnected by the switch, the output of the specific element antenna introduced via the first switch and one of the hybrid a second switch that outputs the output of the specific element antenna by switching between the output terminal of the antenna and the output terminal of the antenna;
This second phase shifter is changed while changing the phase of the first phase shifter.
Compare the output of the specific element antenna introduced through the switch with the output of the sum beam from the plurality of element antennas other than the specific element antenna introduced through the other output terminal of the hybrid. If the output of the sum beam is lower than the output of the specific element antenna, it is determined to be a false orientation, and if the output of the sum beam is higher than the output of the specific element antenna, the above outline is determined. After determining the direction and detecting the general direction, the first switch is switched to connect the specific element antenna to the first phase shifter, and the second switch is switched to the hybrid side. A direction finding device comprising: a signal processor that executes the precise direction finding. 2. A plurality of linearly arranged element antennas, a plurality of first phase shifters into which the outputs of each of the above-mentioned element antennas are introduced, and a first phase shifter into which the outputs of each of the above-mentioned phase shifters are divided into two groups and introduced. and a second distributor;
A second phase shifter that shifts the phase of the output of the first distributor by a predetermined phase, and an output of the second phase shifter and an output of the second distributor are introduced. In the direction finding device, which performs a coarse direction finding that determines the approximate direction of a received wave using a sum beam and a precise direction finding that determines the true direction by comparing the amplitudes of two beams, the plurality of element antennas described above. a directional coupler that is provided between a specific element antenna and the first phase shifter corresponding to the specific element antenna, and guides the output of the specific element antenna to the outside during a rough direction search; and the output of the specific element antenna led to the outside of this directional coupler while changing the phase of the first phase shifter, and other than the specific element antenna introduced through the output terminal of the hybrid. The output of the sum beam from the plurality of element antennas is compared, and if the output of the sum beam is lower than the output of the specific element antenna, it is determined to be a false orientation, and the direction of the specific element antenna is determined to be false. When the output of the sum beam is higher than the output, the general direction is determined, and after the general direction is detected, the specified direction is inputted through the directional coupler and the first phase shifter. The output of the first divider containing the output of the element antenna and the output of the second divider which passed through the second phase shifter whose phase was set to 0° were introduced, and the hybrid outputted. The phase difference between the above two groups is ±
A direction finding device characterized by comprising: a signal processor that executes the precise direction finding described above to determine the true direction based on the difference in the amplitude of the composite wave having an angle of 90 degrees.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59173130A JPS6151582A (en) | 1984-08-22 | 1984-08-22 | Direction searching device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59173130A JPS6151582A (en) | 1984-08-22 | 1984-08-22 | Direction searching device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6151582A JPS6151582A (en) | 1986-03-14 |
JPH0260272B2 true JPH0260272B2 (en) | 1990-12-14 |
Family
ID=15954676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59173130A Granted JPS6151582A (en) | 1984-08-22 | 1984-08-22 | Direction searching device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6151582A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2575134Y2 (en) * | 1993-07-22 | 1998-06-25 | 株式会社光電製作所 | Wireless direction finder |
-
1984
- 1984-08-22 JP JP59173130A patent/JPS6151582A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6151582A (en) | 1986-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5767814A (en) | Mast mounted omnidirectional phase/phase direction-finding antenna system | |
US5359329A (en) | Jammer reference target measurement system | |
US3946395A (en) | Radio direction finding apparatus | |
US7038620B1 (en) | Warped plane phased array monopulse radar antenna | |
US5943011A (en) | Antenna array using simplified beam forming network | |
US3864683A (en) | Arrangement for an automatic resetting system for microwave antennas | |
JPH0130112B2 (en) | ||
US6535180B1 (en) | Antenna receiving system and method | |
JPH0260272B2 (en) | ||
JP3249049B2 (en) | Polarization measurement device | |
US4578679A (en) | Method and apparatus for obtaining antenna tracking signals | |
US3346861A (en) | Sum-difference feed network | |
US4334225A (en) | Antenna system for locating a microwave signal source | |
JP2550707B2 (en) | Phased array radar | |
JPH05180923A (en) | Direction finder | |
US5051753A (en) | Array antenna system with direction finding capability | |
JPS5946565A (en) | Bearing detector | |
JPH0540465Y2 (en) | ||
JPS5992369A (en) | Direction finder | |
EP0141886B1 (en) | Monopulse detection systems | |
JP2732302B2 (en) | Radio direction measurement antenna system | |
JPH0372950B2 (en) | ||
JPH0784025A (en) | Receiver | |
RU2037839C1 (en) | Device for measuring angles of elevation of low-height targets | |
JPH0563749B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |