JPH0260072A - Alkaline storage battery - Google Patents
Alkaline storage batteryInfo
- Publication number
- JPH0260072A JPH0260072A JP63210534A JP21053488A JPH0260072A JP H0260072 A JPH0260072 A JP H0260072A JP 63210534 A JP63210534 A JP 63210534A JP 21053488 A JP21053488 A JP 21053488A JP H0260072 A JPH0260072 A JP H0260072A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- active material
- substrate
- welded
- paste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title claims abstract description 18
- 239000011149 active material Substances 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 238000003466 welding Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 9
- 239000011148 porous material Substances 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 20
- 229910052759 nickel Inorganic materials 0.000 abstract description 10
- 238000007789 sealing Methods 0.000 abstract description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 abstract description 2
- 239000002390 adhesive tape Substances 0.000 abstract description 2
- 229910052793 cadmium Inorganic materials 0.000 abstract description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 abstract description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 abstract description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 abstract description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000003792 electrolyte Substances 0.000 abstract 1
- 238000007599 discharging Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical group [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
- H01M6/06—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
- H01M6/10—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/28—Construction or manufacture
- H01M10/286—Cells or batteries with wound or folded electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はニッケルカドミウム電池、水素吸蔵合金を負極
とするニッケル水素電池等のアルカリ蓄電池に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to alkaline storage batteries such as nickel-cadmium batteries and nickel-metal hydride batteries having a hydrogen storage alloy as a negative electrode.
従来、アルカリ蓄電池の集電方法としては、般用途には
正極がタブ集電と負極が缶への圧接によるものが主流で
あるが、急速充電、急速放電用途にはセパレータを介し
て正負電極を捲回または積層して電極群を形成した後、
上下方向から2枚の集電板を当てがい溶接数イ」シてそ
れぞれ正負電極の集電部とする方式が主流になりつつあ
る。Conventionally, the mainstream current collection method for alkaline storage batteries for general use has been to collect the positive electrode with a tab and the negative electrode with pressure contact to the can, but for rapid charging and rapid discharging applications, the positive and negative electrodes are connected through a separator. After winding or laminating to form an electrode group,
A method is becoming mainstream in which two current collector plates are welded several times from above and below to form current collectors for positive and negative electrodes, respectively.
方これに用いられる電(※の方式としては従来焼結式が
主流であったが、近年低コスト、高容量を目的として、
三次元網状多孔体を基板とし、これに活物質を充填した
ペースト式電極が開発され、部実用化されている。Traditionally, the sintering method was the mainstream method used for this purpose, but in recent years, with the aim of lower cost and higher capacity,
A paste-type electrode using a three-dimensional network porous material as a substrate and filling it with an active material has been developed and is now in practical use.
三次元網状多孔体を基板とするペースト式電極は、本来
持つ低コスト、高容量という利点に加えて急速充電、急
速放電の性能にも長所を有している。Paste electrodes using a three-dimensional porous network as a substrate have the inherent advantages of low cost and high capacity, as well as rapid charging and discharging performance.
しかしこの種の電極と電極群形成後上下方向から集電板
を溶接取付する方法とを組合せて使用しようとすると短
絡という不具合が生じる。それは三次元網状多孔体を基
板とするペースト式電極においては、充放電の繰返しの
間に基板から活物質か脱落しやすい傾向にあるためでお
る。上記集電方法においては、正負電極の集電板か他の
電極と触れ合わぬ様に互いの電極をずらして捲回または
積層しているが、その差はわずか実際の電池で1〜数m
程度であり、もし電極基板から活物質が脱落した場合、
脱落した活物質がデンドライト状に基板端部に成長し、
容易に対極の集電板と接触短絡を生じる。対極が電池缶
内圧接による集電を行っている場合は、缶底に絶縁板を
あらかじめ挿入することによってこの種の不具合を防ぐ
ことが可能であるが、集電板による集電方式の場合は、
電極と対極集電板の間に絶縁板を挿入することは、その
構造上極めて困難であり、これらの事情が三次元網状多
孔体を基板とするペースト式電極と集電板による集電方
式とを組合せたアルカリ蓄電池の実用化を阻害してきた
。However, if this type of electrode is used in combination with a method in which current collector plates are welded and attached from above and below after the electrode group is formed, a short circuit will occur. This is because in a paste type electrode having a three-dimensional network porous material as a substrate, the active material tends to fall off from the substrate during repeated charging and discharging. In the above current collection method, the positive and negative electrodes are wound or stacked with their current collecting plates offset from each other so that they do not touch other electrodes, but the difference is only 1 to several meters in actual batteries.
If the active material falls off from the electrode substrate,
The fallen active material grows like a dendrite on the edge of the substrate.
Easily causes contact short circuit with the current collector plate of the counter electrode. If the counter electrode collects current by pressure welding inside the battery can, it is possible to prevent this type of problem by inserting an insulating plate into the bottom of the can in advance, but in the case of current collection using a current collector plate, ,
Inserting an insulating plate between the electrode and the counter electrode current collector plate is extremely difficult due to its structure, and these circumstances led to a combination of a paste-type electrode using a three-dimensional network porous material as a substrate and a current collection method using a current collector plate. This has hindered the practical application of alkaline storage batteries.
本発明は上記従来の課題を解決するためになされたもの
で、急速充放電性能、寿命性能に優れ、かつ低コストで
高容量のアルカリ蓄電池を提供しようとするものである
。The present invention has been made in order to solve the above-mentioned conventional problems, and aims to provide an alkaline storage battery that has excellent rapid charging and discharging performance and long life performance, and has a high capacity at low cost.
本発明は三次元網状多孔体を基板としたペースト式N極
を対極とセパレータを介して捲回または積層して電極群
を形成した後、集電板を上下方向から溶接取付して集電
を行う方式のアルカリ蓄電池において、三次元網状多孔
体を基板としたペースト式電極が対極の集電板に近接し
ている電極端部に電極とばぼ同厚で活物質が充填されて
いない無地部を有していることを特徴とするアルカリ蓄
電池である。In the present invention, after forming an electrode group by winding or stacking a paste-type N electrode with a three-dimensional network porous material as a substrate via a counter electrode and a separator, current collector plates are welded and attached from above and below to collect current. In this type of alkaline storage battery, a paste-type electrode with a three-dimensional porous network substrate as a substrate has a plain part, which is not filled with active material and has almost the same thickness as the electrode, at the end of the electrode that is close to the current collector plate of the counter electrode. This is an alkaline storage battery characterized by having:
上記三次元網状多孔体としては、例えばスポンジ状ニッ
ケル、フェルト状ニッケル、ニッケル類繊維の焼結体等
を挙げることができる。基板中に充填する活物質として
は、正極の場合は水酸化ニッケル、負極の場合は酸化カ
ドミウム、水素吸蔵合金の粉末をペースト状にしたもの
が用いられる。Examples of the three-dimensional network porous body include sponge-like nickel, felt-like nickel, and sintered bodies of nickel fibers. The active material to be filled in the substrate is nickel hydroxide for the positive electrode, cadmium oxide for the negative electrode, or a paste of hydrogen storage alloy powder.
電極群の形成は電池の形状によってその方法が異なり主
に円筒形電池の場合は捲回により、また角形電池の場合
には積層によって行われる。無地部の巾は最低1/11
111程度必要であるが大きすぎるとその分活物質の充
填量が減少する。また、高さは電極とほぼ同じ厚さでセ
パレータに触れ脱落活物質を通さないようにしている。The method for forming the electrode group differs depending on the shape of the battery, and is mainly performed by winding in the case of a cylindrical battery, and by lamination in the case of a prismatic battery. The width of the plain area is at least 1/11
Approximately 111 is necessary, but if it is too large, the amount of active material filled will decrease accordingly. In addition, the height is approximately the same thickness as the electrode, so that it touches the separator and does not allow the fallen active material to pass through.
三次元網状多孔体基板よりの活物質の脱落で特に問題と
なるのは対極の集電板と近接した電極端部におりる脱落
であり、他の部分においては直接的にこの種の不具合の
原因とはなり得ない。よって端部におけるデンドライト
状活物質の脱落を防ぐことで解決が可能となる。本発明
においては、端部に電極とほぼ同厚で活物質が充填され
ていない無地部を設けることにより、充放電の繰り返し
によって通常であれば基板から脱落するべき活物質が無
地部により押えられているので基板内に保持され、すな
わち対極の集電板と活物質との′fri絡を有効に防止
することが可能となる。基板無地部に脱落活物質を保持
させたことは、短絡を防ぐばかりでなく、脱落による容
量低下をも防止する効果がある。A particular problem with the active material falling off from the three-dimensional network porous substrate is the falling off at the end of the electrode near the current collector plate of the counter electrode, and this type of failure is directly caused in other parts. It cannot be the cause. Therefore, the problem can be solved by preventing the dendrite-like active material from falling off at the ends. In the present invention, by providing a plain portion at the end that is approximately the same thickness as the electrode and is not filled with active material, the active material that would normally fall off from the substrate due to repeated charging and discharging is suppressed by the plain portion. Since it is held within the substrate, it is possible to effectively prevent 'fri' contact between the current collector plate of the counter electrode and the active material. Retaining the fallen active material in the uncoated area of the substrate not only prevents short circuits but also prevents a decrease in capacity due to falling off.
(実施例〕
以下、本発明の効果を詳細に説明する。第1図において
、基板となる三次元網状多孔体としては、ニッケル短m
維の焼結体を用いた、この基板上で集電板溶接部1aま
たは無地部1Cとなる部分にあらかじめ粘着テープによ
りマスキングを施した。これに水酸化ニッケル85手量
部、コバル[・粉末10重量部、水酸化コバルト5重足
部からなる活物質を、水とカルボキシメチルセルローズ
でペースト状にしたものを充填したのら、屹燥、加圧、
裁断を経て充填部1bを形成し、ペースト式ニッケル極
1を作成した。なお、正極集電板4との溶接部1aには
テープ状のニッケルを溶接取付した。第2図において、
このペースト状ニッケル極1と同じ11]の焼結式カド
ミウム極2をセパレータ3を介して互いに2rIunず
らして捲回し電極群を形成したのち、下方向から負極集
電板5を当てかい溶接取付しその後電池缶7に挿入し溶
接し、注液、封口板6での溶接封口を経て、本発明のS
Cサイズのアルカリ蓄電池Aを作成した。なお比較例と
して、基板であるニッケル短1tft1の焼結体上の無
地部となる部分にマスキングを施さず、活物質ペースト
を充填した以外は実施例と同じ方法でアルカリ蓄電池B
を各50ケづつ作成し、これら蓄電池に対し、1c・1
50%充電/lc放電からなるサイクル充放電試験を行
なった。(Example) The effects of the present invention will be explained in detail below.In Fig. 1, as a three-dimensional network porous body serving as a substrate, nickel short m
On this substrate using a sintered body of fiber, a portion that would become the welded portion 1a of the current collector plate or the uncoated portion 1C was masked in advance with adhesive tape. This was filled with an active material consisting of 85 parts by weight of nickel hydroxide, 10 parts by weight of cobal powder, and 5 parts by weight of cobalt hydroxide, made into a paste with water and carboxymethyl cellulose, and then dried. ,Pressurization,
A filling portion 1b was formed through cutting, and a paste-type nickel electrode 1 was created. Note that tape-shaped nickel was welded to the welded portion 1a with the positive electrode current collector plate 4. In Figure 2,
Sintered cadmium electrodes 2 of the same size as this paste-like nickel electrode 1 are shifted by 2rIun from each other through a separator 3 to form a wound electrode group, and then a negative electrode current collector plate 5 is attached from below by welding. After that, it is inserted into the battery can 7 and welded, and through injection of liquid and welding sealing with the sealing plate 6, the S
A C size alkaline storage battery A was created. As a comparative example, an alkaline storage battery B was prepared in the same manner as in the example except that the uncoated portion on the sintered body of 1 tft 1 nickel short substrate was filled with active material paste without masking.
50 each, and for these storage batteries, 1c・1
A cyclic charge/discharge test consisting of 50% charge/LC discharge was conducted.
その結果を第3図に示す。比較例による電池Bが25〜
100サイクルの間に全て内部短絡を起こしたのに対し
、本発明による電池Aは200サイクルの充放電後も初
期とほぼ同じ放電容量を保っている。The results are shown in FIG. Battery B according to the comparative example is 25~
While all internal short circuits occurred during 100 cycles, battery A according to the present invention maintained almost the same discharge capacity as the initial stage even after 200 cycles of charging and discharging.
以上詳述した如く、本発明の対極の集電板に近接した端
部に活物質が充填されていない無地部を有するペースト
式電極を用いたアルカリ蓄電池は、充放電の繰返しによ
る短絡のない優れたものであり、その工業的価値は大で
ある。As detailed above, the alkaline storage battery of the present invention using a paste-type electrode having a plain portion not filled with active material at the end close to the current collector plate of the counter electrode has the advantage of not causing short circuits due to repeated charging and discharging. It has great industrial value.
第1図は本発明の実施例におけるペースト式ニッケル正
極の正面図、第2図は同アルカリ蓄電池の縦断面図であ
る。
第3図は実施例および比較例によるアルカリ蓄電池の充
放電サイクルに伴なう放電容量の変化図である。Aは本
発明の実施例電池、Bは従来の比較例電池である。FIG. 1 is a front view of a paste-type nickel positive electrode according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of the same alkaline storage battery. FIG. 3 is a diagram showing changes in discharge capacity of alkaline storage batteries according to Examples and Comparative Examples as the alkaline storage batteries undergo charge/discharge cycles. A is an example battery of the present invention, and B is a conventional comparative example battery.
Claims (1)
セパレータを介して捲回または積層して電極群を形成し
た後、集電板を上下方向から溶接取付して集電を行う方
式のアルカリ蓄電池において、該ペースト式電極が、対
極の集電板に近接している電極端部に活物質が充填され
ていない無地部を有していることを特徴とするアルカリ
蓄電池。An alkaline method in which current is collected by welding a current collector plate from above and below after forming an electrode group by winding or stacking a paste electrode with a three-dimensional network porous material as a substrate via a counter electrode and a separator. 1. An alkaline storage battery characterized in that the paste type electrode has a plain portion not filled with an active material at an end of the electrode close to a current collector plate of a counter electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63210534A JPH0260072A (en) | 1988-08-26 | 1988-08-26 | Alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63210534A JPH0260072A (en) | 1988-08-26 | 1988-08-26 | Alkaline storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0260072A true JPH0260072A (en) | 1990-02-28 |
Family
ID=16590953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63210534A Pending JPH0260072A (en) | 1988-08-26 | 1988-08-26 | Alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0260072A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0651453A1 (en) * | 1993-10-25 | 1995-05-03 | Hydro-Quebec | Electrochemical cell for lithium-polymer electrolyte batteries |
EP0917221A1 (en) * | 1997-11-18 | 1999-05-19 | SANYO ELECTRIC Co., Ltd. | Cylindrical alkaline storage battery and manufacturing method of the same |
JP2001297755A (en) * | 2000-04-14 | 2001-10-26 | Matsushita Electric Ind Co Ltd | Electrode and combination method |
JP2008218234A (en) * | 2007-03-05 | 2008-09-18 | Toyota Motor Corp | Battery, vehicle equipped with this battery, and battery-equipped equipment equipped with this battery |
US20200185755A1 (en) | 2009-02-09 | 2020-06-11 | Varta Microbattery Gmbh | Button cells and method of producing same |
US10804506B2 (en) | 2009-06-18 | 2020-10-13 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
-
1988
- 1988-08-26 JP JP63210534A patent/JPH0260072A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0651453A1 (en) * | 1993-10-25 | 1995-05-03 | Hydro-Quebec | Electrochemical cell for lithium-polymer electrolyte batteries |
EP0917221A1 (en) * | 1997-11-18 | 1999-05-19 | SANYO ELECTRIC Co., Ltd. | Cylindrical alkaline storage battery and manufacturing method of the same |
JP2001297755A (en) * | 2000-04-14 | 2001-10-26 | Matsushita Electric Ind Co Ltd | Electrode and combination method |
JP2008218234A (en) * | 2007-03-05 | 2008-09-18 | Toyota Motor Corp | Battery, vehicle equipped with this battery, and battery-equipped equipment equipped with this battery |
US11233264B2 (en) | 2009-02-09 | 2022-01-25 | Varta Microbattery Gmbh | Button cells and method of producing same |
US20200185755A1 (en) | 2009-02-09 | 2020-06-11 | Varta Microbattery Gmbh | Button cells and method of producing same |
US12206063B2 (en) | 2009-02-09 | 2025-01-21 | Varta Microbattery Gmbh | Button cells and method of producing same |
US11024869B2 (en) | 2009-02-09 | 2021-06-01 | Varta Microbattery Gmbh | Button cells and method of producing same |
US11791493B2 (en) | 2009-02-09 | 2023-10-17 | Varta Microbattery Gmbh | Button cells and method of producing same |
US11276875B2 (en) | 2009-02-09 | 2022-03-15 | Varta Microbattery Gmbh | Button cells and method of producing same |
US11258092B2 (en) | 2009-02-09 | 2022-02-22 | Varta Microbattery Gmbh | Button cells and method of producing same |
US11233265B2 (en) | 2009-02-09 | 2022-01-25 | Varta Microbattery Gmbh | Button cells and method of producing same |
US10804506B2 (en) | 2009-06-18 | 2020-10-13 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11217844B2 (en) | 2009-06-18 | 2022-01-04 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11158896B2 (en) | 2009-06-18 | 2021-10-26 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11024905B2 (en) | 2009-06-18 | 2021-06-01 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11024904B2 (en) | 2009-06-18 | 2021-06-01 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11024906B2 (en) | 2009-06-18 | 2021-06-01 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11362384B2 (en) | 2009-06-18 | 2022-06-14 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11362385B2 (en) | 2009-06-18 | 2022-06-14 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11791512B2 (en) | 2009-06-18 | 2023-10-17 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11024907B1 (en) | 2009-06-18 | 2021-06-01 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US10971776B2 (en) | 2009-06-18 | 2021-04-06 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11149914A (en) | Cylindrical alkaline storage battery employing non-sintered electrode and its manufacture | |
JPH0260072A (en) | Alkaline storage battery | |
US4383015A (en) | Iron-silver battery having a shunt electrode | |
JPH01187760A (en) | Cylindrical alkaline zinc storage battery | |
JPH01227363A (en) | Secondary battery and its electrode | |
KR100634227B1 (en) | Alkaline storage battery | |
US6653023B1 (en) | Rectangular battery | |
JP2001143712A (en) | Cylindrical secondary battery | |
JP3893856B2 (en) | Square alkaline storage battery | |
JP2884570B2 (en) | Sealed alkaline secondary battery | |
JP3182790B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JP2982630B2 (en) | Lead storage battery | |
US20070077489A1 (en) | Positive electrode for an alkaline battery | |
US5656396A (en) | Alkaline storage battery | |
JP3332139B2 (en) | Sealed alkaline storage battery | |
CN111357134B (en) | Electrode with multiple arrays of current collectors | |
JPH06215796A (en) | Cylindrical nickel-hydrogen storage battery | |
JPH05151990A (en) | Chemical formation method for sealed type nickel-hydrogen storage battery | |
JPH0272564A (en) | Alkaline storage battery | |
JP3625731B2 (en) | Square battery | |
JP2988974B2 (en) | Prismatic nickel-metal hydride storage battery | |
JP2001283902A (en) | Alkaline battery | |
JP3504303B2 (en) | Cylindrical alkaline secondary battery | |
JP2966434B2 (en) | Sealed nickel-metal hydride secondary battery | |
JPH06295727A (en) | Sealed alkaline storage battery |