[go: up one dir, main page]

JPH0259674A - Current-voltage measuring instrument - Google Patents

Current-voltage measuring instrument

Info

Publication number
JPH0259674A
JPH0259674A JP63209409A JP20940988A JPH0259674A JP H0259674 A JPH0259674 A JP H0259674A JP 63209409 A JP63209409 A JP 63209409A JP 20940988 A JP20940988 A JP 20940988A JP H0259674 A JPH0259674 A JP H0259674A
Authority
JP
Japan
Prior art keywords
light
optical fiber
receiving
sensor section
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63209409A
Other languages
Japanese (ja)
Inventor
Takashi Nakajima
高 中嶋
Mitsuo Matsumoto
光雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63209409A priority Critical patent/JPH0259674A/en
Publication of JPH0259674A publication Critical patent/JPH0259674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To reduce the loss of an optical power with high precision and to easily and exactly perform assembling by making a core diameter and the numbers of aperture of light receiving side optical fiber larger than those of light transmitting side. CONSTITUTION:The light from a light source 10 is allowed to pass by a sensor part 15 consisting of a polarizer 3, Faraday element 4 and analyser 5 through a light transmitting side optical fiber 16 and light transmitting side lens 12. The light is then converged at a light receiving side lens 13 and made incident on a light receiving side optical fiber 17, and thereafter, received at a detector 7. At this time, by making the core diameter and the number of aperture of the light receiving side optical fiber 17 larger than those of the light transmission side optical fiber 16, it is possible to reduce the loss of the optical power even if the optical fiber 17 slightly deviates in the direction of an optical axis or a fiber terminal surface tilts slightly.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は光ファイバを信号伝送路として使った光学的な
電流、電圧測定装置に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an optical current and voltage measuring device using an optical fiber as a signal transmission path.

(従来の技術) 近年、光学的に電流、電圧等を測定する手段が種々研究
されて来ている。通常このような光学的に電流を測定す
る手段としては原理的にファラデー効果が利用され、同
じく電圧を測定する手段としてはポッケルス効果が利用
されている。
(Prior Art) In recent years, various methods of optically measuring current, voltage, etc. have been studied. Normally, the Faraday effect is used in principle as a means for optically measuring current, and the Pockels effect is similarly used as a means for measuring voltage.

以下では主にファラデー効果を使った光学的な電流測定
装置を例として説明する。
In the following, an optical current measuring device that mainly uses the Faraday effect will be explained as an example.

ここで、ファラデー効果とは磁界中に設置された磁気光
学素子(以下ファラデー素子と称する)に磁界と同方向
に直線偏光を透過させると、その光の偏波面が磁界の強
さに比例しθだけ回転する現象である。今磁界の強さを
H1ファラデー素子の磁界方向の長さをし、とすると偏
波面の回転角θは θ−■・H−L        ・・・■となる。ここ
でVはベルデ定数と呼ばれ、ファラデー素子の材料によ
って決まる値である。
Here, the Faraday effect is when linearly polarized light is transmitted through a magneto-optical element (hereinafter referred to as a Faraday element) placed in a magnetic field in the same direction as the magnetic field, the polarization plane of the light is proportional to the strength of the magnetic field and θ This is a phenomenon in which the object rotates. Now, if the strength of the magnetic field is the length of the H1 Faraday element in the magnetic field direction, then the rotation angle θ of the plane of polarization is θ-■·HL...■. Here, V is called the Verdet constant, and is a value determined by the material of the Faraday element.

第3図はファラデー効果を使った電流測定装置を示す構
成図であり、発光ダイオード、レーザダイオード等より
なる光源1、空間伝送路2、偏光子3、ファラデー素子
4、検光子5、空間伝送路6、検出器7よりなっている
。検出器7はホトダイオード等の受光素子8および光−
電気変換器9より成っている。
FIG. 3 is a configuration diagram showing a current measuring device using the Faraday effect, which includes a light source 1 consisting of a light emitting diode, a laser diode, etc., a spatial transmission path 2, a polarizer 3, a Faraday element 4, an analyzer 5, and a spatial transmission path. 6. It consists of a detector 7. The detector 7 includes a light-receiving element 8 such as a photodiode, and a light-receiving element 8 such as a photodiode.
It consists of an electrical converter 9.

り作られる磁界中に設置されたファラデー素子4を通過
後の式で示したθだけ偏波面がファラデー回転する。こ
の回転角θを検光子5、検出器7で検出することにより
磁界の強さ、即ち電流値を測定することができる。
After passing through the Faraday element 4 installed in the magnetic field created by the polarization, the plane of polarization undergoes Faraday rotation by θ shown by the equation. By detecting this rotation angle θ using the analyzer 5 and the detector 7, the strength of the magnetic field, that is, the current value can be measured.

しかしこのような構成では次のような欠点がおる。すな
わち光が亭冊≠空間伝送路2,6を通るため直進しかせ
ず、従って光路を曲げるには多数の反射鏡を使用しなけ
ればならない。ところが多数の反射鏡から成る光路は地
震等により光軸が曲がることがあり測定精度が大幅に低
下し実用的でない。
However, such a configuration has the following drawbacks. In other words, since the light passes through the space transmission paths 2 and 6, it can only travel straight, and therefore a large number of reflecting mirrors must be used to bend the optical path. However, in an optical path consisting of a large number of reflecting mirrors, the optical axis may be bent due to earthquakes, etc., resulting in a significant decrease in measurement accuracy, making it impractical.

上記欠点を解決しようとして従来の特開昭56−677
64 @に示されるようなものが考えられている。
In an attempt to solve the above drawbacks, the conventional Japanese Patent Application Laid-Open No. 56-677
64 Something like the one shown in @ is being considered.

その構成を第4図に示す。第3図と同一部品は同一記号
で示す。
Its configuration is shown in FIG. Parts that are the same as in Figure 3 are indicated by the same symbols.

第4図は円偏光に近い光源10、送受光側光ファイバ1
1.14、送光側レンズ12、受光側レンズ13、それ
に偏光子3、ファラデー素子4、検光子5から成るセン
サー部15、及び検出器7より構成されている。このよ
うにすると、光源10とセンサー部15およびセンサー
部15と検出器7の間を光ファイバ11.14を信号伝
送路として連結しているため、地震その他の撮動にて光
軸は変動することがないので安定かつ確実な測定ができ
るとしている。
Figure 4 shows a light source 10 that is close to circularly polarized light, and an optical fiber 1 on the transmitting and receiving side.
1.14, a light transmitting lens 12, a light receiving lens 13, a sensor section 15 consisting of a polarizer 3, a Faraday element 4, and an analyzer 5, and a detector 7. In this way, since the optical fiber 11.14 is connected between the light source 10 and the sensor section 15 and between the sensor section 15 and the detector 7 as a signal transmission path, the optical axis will fluctuate during earthquake or other imaging. This makes it possible to perform stable and reliable measurements.

(発明が解決しようとする問題点) しかしながら第4図の構成には次の問題点がある。すな
わち送光側光ファイバ11と受光側光ファイバ14に同
一種類の光ファイバを使っていたため、送光側光ファイ
バ11から出射された光線は角度θ0で広がり送光側レ
ンズ12に入射し、平行光線となり、偏光子3、ファラ
デー素子4、検光子5よりなるセンサー部15を通過し
たのち受光側レンズ13で集光され受光側光ファイバ1
4に至る。なおθCはファイバの開口数(NA>より決
まる固有の値でおり NA=  sinθc        ””■の関係が
ある。
(Problems to be Solved by the Invention) However, the configuration shown in FIG. 4 has the following problems. In other words, since the same type of optical fiber was used for the transmitting side optical fiber 11 and the receiving side optical fiber 14, the light beam emitted from the transmitting side optical fiber 11 spreads at an angle θ0, enters the transmitting side lens 12, and becomes parallel. After passing through the sensor unit 15 consisting of a polarizer 3, a Faraday element 4, and an analyzer 5, the light is focused by a light-receiving lens 13 and sent to a light-receiving optical fiber 1.
4. Note that θC is a unique value determined by the numerical aperture (NA>) of the fiber, and there is a relationship of NA=sinθc ””■.

第4図において送光側レンズ12と受光側レンズ13の
焦点距11fは等しいとし、光フアイバ端面のフレネル
反射損失を無視したとすると、受光側レンズ13を通過
した光パワーが100%受光側光ファイバ14に入射で
きる受光側レンズ13と受光側光ファイバ端面距離はf
−工からfの範囲である。ここで工は であり、φCは受光側光ファイバのコア径である。
In FIG. 4, assuming that the focal lengths 11f of the transmitting lens 12 and the receiving lens 13 are equal, and if Fresnel reflection loss at the end face of the optical fiber is ignored, the optical power passing through the receiving lens 13 is 100% of the receiving side light. The distance between the light-receiving side lens 13 and the end face of the light-receiving side optical fiber that can enter the fiber 14 is f.
It ranges from -f to f. Here, φC is the core diameter of the light-receiving optical fiber.

すなわち工は受光側光ファイバの光軸方向許容すれ寸法
でおる。例えばコア径=50朗、クラツド径=125/
j/ff、NA=0.2の一般的な光ファイバを使った
場合工〜122朗となる。ずなわち受光側レンズ13を
通過した光パワーを100%受光側光ファイバ14に入
射するには受光側レンズ13と受光側光ファイバ−14
端面の距離を122−以下の精度で調整する必要があり
むずかしい作業となる。
In other words, the distance is determined by the allowable clearance dimension in the optical axis direction of the light-receiving optical fiber. For example, core diameter = 50 mm, clad diameter = 125/
If a general optical fiber with j/ff and NA=0.2 is used, the cost will be ~122 ro. In other words, in order to input 100% of the optical power that has passed through the light-receiving lens 13 into the light-receiving optical fiber 14, the light-receiving lens 13 and the light-receiving optical fiber 14 are required.
This is a difficult task as it is necessary to adjust the distance between the end faces with an accuracy of 122 mm or less.

また第5図に示すごとく受光側光ファイバ14のレンズ
側端面が光軸に対しθだけ傾くと受光側レンズ13から
出射した光のうち一部は出射ファイバ端面に対する入射
角がθ+θCとなり入射の臨界角θQを越えてしまい入
らないことになる。すなわち受光側光ファイバ14が光
軸に対しわずかでも傾けば光パワー損失を生じることに
なる。
Furthermore, as shown in FIG. 5, when the lens-side end face of the light-receiving optical fiber 14 is tilted by θ with respect to the optical axis, a portion of the light emitted from the light-receiving lens 13 has an incident angle of θ+θC with respect to the output fiber end face, and the incident criticality is reached. It will exceed the angle θQ and will not enter. That is, if the receiving optical fiber 14 is even slightly tilted with respect to the optical axis, optical power loss will occur.

以上述べた如〈従来の光による測定装置は受光側光ファ
イバ14が光軸方向にわずかにずれたりあるいはファイ
バ端面がわずかに傾いても大きな光パワー損失を生ずる
ものでおった。
As described above, in the conventional optical measuring apparatus, even if the receiving optical fiber 14 is slightly displaced in the optical axis direction or the fiber end face is slightly tilted, a large optical power loss occurs.

光パワー損失が大きいということは検出器7内のホトダ
イオード8で受ける先位が少なくなることである。従っ
て光−電気変換器の信号も小さく電気的ノイズの影響を
受けやすく、測定精度が低下する恐れがあった。
A large optical power loss means that the photodiode 8 in the detector 7 receives less light. Therefore, the signal from the optical-to-electrical converter is also small and susceptible to electrical noise, which may reduce measurement accuracy.

本発明の目的は組立てが容易に且つ精確に行え、光パワ
ー損失が少なくかつ高精度な光ファイバを使った光学的
な電流、電圧測定装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical current/voltage measurement device using an optical fiber that can be assembled easily and accurately, has low optical power loss, and has high precision.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の電流、電圧測定装置は光源、送光側光ファイバ
、送光側レンズ、偏光子、ファラデー素子、検光子等か
らなるセンサー部、受光側レンズ、受光側光ファイバよ
りなり、前記受光側光ファイバは送光側光ファイバに比
ベコア径が大きくかつ開口数が大きくなるよう構成した
ことを特徴としたものでおる。
(Means for Solving the Problems) The current and voltage measuring device of the present invention includes a light source, a light transmitting optical fiber, a light transmitting lens, a polarizer, a Faraday element, an analyzer, etc., a sensor section, a light receiving lens, It consists of a light-receiving optical fiber, and the light-receiving optical fiber is configured to have a larger core diameter and a larger numerical aperture than the light-transmitting optical fiber.

(作 用) 本発明によれば送光側光ファイバから出た光は送光側レ
ンズにより平行光線となり、偏光子、ファラデー素子、
検光子等からなるセンサー部を通過したのち受光側レン
ズで集光され受光側光ファイバに入射する。
(Function) According to the present invention, the light emitted from the light transmitting side optical fiber becomes parallel light beams by the light transmitting side lens, and the polarizer, Faraday element,
After passing through a sensor section consisting of an analyzer, etc., the light is focused by a light-receiving lens and enters an optical fiber on the light-receiving side.

受光側光ファイバのコア径を送光側光ファイバのコア径
に比べ大きくすることにより、受光側光ファイバの光軸
方向許容ずれ寸法を大きくできる。
By making the core diameter of the light-receiving optical fiber larger than the core diameter of the light-transmitting optical fiber, the permissible deviation in the optical axis direction of the light-receiving optical fiber can be increased.

また受光側光ファイバの開口数を大きくすることにより
ファイバ端面がある程度傾いても光パワー損失がなく光
をファイバに入射できる。
Furthermore, by increasing the numerical aperture of the light-receiving optical fiber, light can be input into the fiber without optical power loss even if the fiber end face is tilted to some extent.

(実施例) 以下本発明の一実施例を第1図により説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

第1図において10は光源、16は送光側光ファイバ、
17は受光側光ファイバ、12は送光側レンズ、13は
受光側レンズ、15は送光側レンズ12と受光側レンズ
との間に配置された偏光子3、ファラデー素子4、検光
子5よりなるセンサー部で被測定導体により作られる磁
界中に配置されている。7は受光素子、光−電気変換器
よりなる検出器である。ここで受光側光ファイバ17の
コア径および開口数は送光側光ファイバ16に比べ大き
く選ぶものとする。
In FIG. 1, 10 is a light source, 16 is a light transmitting side optical fiber,
17 is an optical fiber on the light receiving side, 12 is a light transmitting side lens, 13 is a light receiving side lens, and 15 is a polarizer 3, a Faraday element 4, and an analyzer 5 arranged between the light transmitting side lens 12 and the light receiving side lens. The sensor part is placed in the magnetic field created by the conductor to be measured. 7 is a detector consisting of a light receiving element and a photo-electrical converter. Here, the core diameter and numerical aperture of the light-receiving optical fiber 17 are selected to be larger than those of the light-transmitting optical fiber 16.

このように構成すると受光側光ファイバ17のコア径を
送光側光ファイバ16のコア径のm倍とすると、■式よ
り送・受光側光ファイバのコア径が同じ場合に比べ光軸
方向許容ずれ寸法工はm倍となる。
With this configuration, if the core diameter of the light-receiving optical fiber 17 is made m times the core diameter of the light-transmitting optical fiber 16, then from formula The offset dimension will be multiplied by m.

ざらに光軸と直角な方向の許容ずれ寸法ンも大きくなる
。例えば受光側光フアイバ17端面が受光側レンズ13
から焦点距離fの位置におるとすると、受光側光ファイ
バ17の一コア径が送光側光ファイバのコア径がm倍な
ら、送、受光側光ファイバ16゜17のコア径が同じ場
合に比べ、光軸と直角な方向の許容ずれ寸法ンはm倍と
なる。
The permissible deviation dimension in the direction perpendicular to the optical axis also increases. For example, the end face of the optical fiber 17 on the light receiving side is the lens 13 on the light receiving side.
If the core diameter of the receiving optical fiber 17 is m times the core diameter of the transmitting optical fiber, then if the core diameters of the transmitting and receiving optical fibers 16 and 17 are the same, then In comparison, the allowable deviation dimension in the direction perpendicular to the optical axis is multiplied by m.

また送光側光ファイバ16の開口数をNA、受光側光フ
ァイバ17の開口数をn−NAとすると受光側光ファイ
バ17への入射光の臨界角はに倍となる。
Further, if the numerical aperture of the light-transmitting optical fiber 16 is NA and the numerical aperture of the light-receiving optical fiber 17 is n-NA, the critical angle of light incident on the light-receiving optical fiber 17 is doubled.

ここでkは(イ)式で示される。Here, k is expressed by equation (a).

光側光ファイバ17の開口数を0.5、送受光レンズ1
2、13は焦点距離がそれぞれ5でかつファイバ端面よ
りfの距離におかれているものとするとファイバの許容
傾きΔθは Δθ=  5in−1(0,5) −5in−1(0,
2) ’P18.5°・・・0となる。
The numerical aperture of the optical fiber 17 on the light side is 0.5, and the transmitting/receiving lens 1
Assuming that 2 and 13 each have a focal length of 5 and are placed at a distance f from the fiber end face, the allowable inclination Δθ of the fiber is Δθ = 5in-1 (0, 5) - 5in-1 (0,
2) 'P18.5°...becomes 0.

従って本構成によれば光軸方向、光軸と直角な方向への
許容ずれ寸法、おるいは許8傾きを大きくでき、組立が
容易となり振動にも強くなる。また光損失も少なくでき
る。
Therefore, according to this configuration, the permissible deviation dimension or inclination in the direction of the optical axis or in the direction perpendicular to the optical axis can be increased, making assembly easier and resistant to vibration. Also, optical loss can be reduced.

他の実施例を第2図に示す。第2図は電圧測定の場合の
装置を示す構成図でおり、第1図に比ベセンサー部15
の内部が異なっているだけでおる。
Another embodiment is shown in FIG. FIG. 2 is a block diagram showing the device for voltage measurement, and FIG. 1 shows the comparison sensor section 15.
The only difference is inside.

すなわち第2図のセンサー部15は偏光子3.1/すな
わちある程度受光側光フアイバ17端面が光軸に対し傾
いても光パワー損失なく光を受光できる。
That is, the sensor unit 15 in FIG. 2 can receive light without loss of optical power even if the polarizer 3.1/that is, the end face of the light-receiving optical fiber 17 is tilted to some extent with respect to the optical axis.

例えば送光側光ファイバ16の開口数を0.2、受れて
いる。
For example, the numerical aperture of the light transmitting side optical fiber 16 is 0.2.

本構成の電圧測定装置も前記実施例と同じ作用、効果を
もつことは言うまでもない。
It goes without saying that the voltage measuring device having this configuration also has the same functions and effects as those of the above embodiment.

〔発明の効果〕〔Effect of the invention〕

磁気光学素子または電気光学結晶より成るセンサー部と
、前記センサー部からの光を受ける検出器と、光源から
の光をセンサー部に導く送光側光ファイバと、送光側光
ファイバとセンサー部との間に配置された送光側レンズ
と、センサー部からの光を検出器に導く受光側光ファイ
バと、受光側光ファイバとセンサー部との間に配置され
た受光側レンズとより成る電流、電圧測定装置において
、受光側光ファイバのコア径および開口数を送光側光フ
ァイバのコア径および開口数より大きくしたので受光側
ファイバの光軸方向許容ずれ1法、光軸と直角な方向の
許容ずれ寸法、許容傾きを大きくとれ、従って組立も容
易となり振動にも強くなる。また光パワー損失を少なく
できることから検出器内のフォトダイオードに入射する
光パワーが大きくなり光−電気変換後の信号も大きくな
りよって電気的ノイズの影響も受けにくくなり、安定で
測定精度が向上した電流、電圧測定装置を得ることがで
きる。
A sensor section made of a magneto-optical element or an electro-optic crystal, a detector that receives light from the sensor section, a light transmission side optical fiber that guides the light from the light source to the sensor section, and the light transmission side optical fiber and the sensor section. A current consisting of a light transmitting side lens disposed between the light transmitting side lens, a light receiving side optical fiber guiding the light from the sensor section to the detector, and a light receiving side lens disposed between the light receiving side optical fiber and the sensor section; In the voltage measuring device, the core diameter and numerical aperture of the receiving optical fiber were made larger than the core diameter and numerical aperture of the transmitting optical fiber, so the permissible deviation in the optical axis direction of the receiving fiber was The allowable deviation dimension and allowable inclination can be increased, making assembly easier and resistant to vibration. In addition, since optical power loss can be reduced, the optical power incident on the photodiode in the detector is increased, and the signal after optical-to-electrical conversion is also increased, making it less susceptible to electrical noise and improving stability and measurement accuracy. Current and voltage measuring devices can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による電流、電圧測定装置の
構成図、第2図は本発明の他の実施例を示す構成図、第
3図および第4図は従来の電流、電圧測定装置を示す構
成図、第5図は第4図の一部拡大図でおる。 10・・・光源        3・・・偏光子12・
・・送光側レンズ    4・・・ファラデー素子13
・・・受光側レンズ    5・・・検光子15・・・
センサー部     18・・・1/4波長板16・・
・送光側光ファイバ  19・・・電気光学結晶17・
・・受光側光ファイバ 代理人 弁理士 則 近 憲 佑 同 二1−÷臨→−−文 第子丸 健 第 3 図 ノ5 第  2 図 第5図
Fig. 1 is a block diagram of a current/voltage measuring device according to an embodiment of the present invention, Fig. 2 is a block diagram showing another embodiment of the present invention, and Figs. 3 and 4 are conventional current/voltage measurement devices. FIG. 5, a block diagram showing the apparatus, is a partially enlarged view of FIG. 4. 10... Light source 3... Polarizer 12.
...Light transmitting side lens 4...Faraday element 13
...Lens on the light receiving side 5...Analyzer 15...
Sensor part 18...1/4 wavelength plate 16...
・Light sending side optical fiber 19... Electro-optic crystal 17・
...Receiving side optical fiber agent Patent attorney Nori Ken Chika Yudoji 1-÷Rin→--Bundai Shimaru Kendai 3 Figure 5 Figure 2 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 光源と、被測定電流または電圧により作られる磁界また
は電界中に置かれた磁気光学素子または電気光学結晶よ
り成るセンサー部と、前記センサー部からの光を受ける
検出器と、光源からの光をセンサー部に導く送光側光フ
ァイバと、送光側光ファイバとセンサー部との間に配置
された送光側レンズと、センサー部からの光を検出器に
導く受光側光ファイバと、受光側光ファイバとセンサー
部との間に配置された受光側レンズとより成る電流、電
圧測定装置において、受光側光ファイバのコア径および
開口数を送光側光ファイバのコア径および開口数より大
きくしたことを特徴とする電流、電圧測定装置。
A light source, a sensor section made of a magneto-optical element or an electro-optic crystal placed in a magnetic field or electric field created by a current or voltage to be measured, a detector that receives light from the sensor section, and a sensor that receives light from the light source. a light transmitting side optical fiber that guides the light from the sensor to the detector, a light transmitting side lens placed between the light transmitting side optical fiber and the sensor section, a light receiving side optical fiber that guides the light from the sensor section to the detector, and a light receiving side optical fiber that guides the light from the sensor section to the detector. In a current and voltage measuring device consisting of a light-receiving lens placed between a fiber and a sensor section, the core diameter and numerical aperture of the light-receiving optical fiber are made larger than the core diameter and numerical aperture of the light-transmitting optical fiber. A current and voltage measuring device featuring:
JP63209409A 1988-08-25 1988-08-25 Current-voltage measuring instrument Pending JPH0259674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63209409A JPH0259674A (en) 1988-08-25 1988-08-25 Current-voltage measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63209409A JPH0259674A (en) 1988-08-25 1988-08-25 Current-voltage measuring instrument

Publications (1)

Publication Number Publication Date
JPH0259674A true JPH0259674A (en) 1990-02-28

Family

ID=16572404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63209409A Pending JPH0259674A (en) 1988-08-25 1988-08-25 Current-voltage measuring instrument

Country Status (1)

Country Link
JP (1) JPH0259674A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198768A (en) * 1986-02-27 1987-09-02 Matsushita Electric Ind Co Ltd Optical fiber type voltage sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198768A (en) * 1986-02-27 1987-09-02 Matsushita Electric Ind Co Ltd Optical fiber type voltage sensor

Similar Documents

Publication Publication Date Title
JP4108040B2 (en) Current measuring device
US4584470A (en) Single-polarization fiber optics magnetic sensor
US5844410A (en) Device for optically measuring physical quantity in power equipment and method of manufacturing the same
JP2527965B2 (en) Voltage detector
US6654518B1 (en) Tap output collimator
EP0774669B1 (en) Optical fiber magnetic-field sensor
EP0823638B1 (en) Optical current measurement
JPH0259674A (en) Current-voltage measuring instrument
WO1994000768A1 (en) Optical current sensor
US6404503B1 (en) Apparatus with a retracing optical circuit for the measurement of physical quantities having high rejection of environmental noise
JP2010014579A (en) Optical sensor and measuring system using the same
JPH0464030B2 (en)
JPH05264689A (en) Optical magnetic field sensor
JPH01292263A (en) Optical fiber current measuring apparatus
JPH0695049A (en) Magneto-optical field sensor
JPH0639341Y2 (en) Optical electric field detector
JPH11352055A (en) Optical liquid refractive index measuring apparatus
CN119805669A (en) Fiber Optic Devices and Measurement Systems
JP2004069710A (en) Optical application measuring apparatus and optical application electric current measuring apparatus
JPS60244865A (en) Detecting device for electric field and magnetic field
JPH08285898A (en) Optical fiber type sensor
JPH09269339A (en) Optical-fiber current measuring apparatus
JPH03189612A (en) Optical collimator and optical sensor using this collimator
JP2004045397A (en) Optical applied measuring device and optical applied current measuring device
JPH055054B2 (en)