[go: up one dir, main page]

JPH0259313B2 - - Google Patents

Info

Publication number
JPH0259313B2
JPH0259313B2 JP15930986A JP15930986A JPH0259313B2 JP H0259313 B2 JPH0259313 B2 JP H0259313B2 JP 15930986 A JP15930986 A JP 15930986A JP 15930986 A JP15930986 A JP 15930986A JP H0259313 B2 JPH0259313 B2 JP H0259313B2
Authority
JP
Japan
Prior art keywords
pressure
chamber
low
communication passage
pressure communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15930986A
Other languages
Japanese (ja)
Other versions
JPS6316186A (en
Inventor
Nobufumi Nakajima
Kenichi Inomata
Shigeru Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP61159309A priority Critical patent/JPS6316186A/en
Priority to EP87304608A priority patent/EP0256624B1/en
Priority to DE8787304608T priority patent/DE3768172D1/en
Priority to KR8705158A priority patent/KR900005720B1/en
Priority to AU73665/87A priority patent/AU574953B2/en
Priority to US07/056,604 priority patent/US4737081A/en
Publication of JPS6316186A publication Critical patent/JPS6316186A/en
Publication of JPH0259313B2 publication Critical patent/JPH0259313B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば自動車用空調装置の冷媒圧縮
機として用いられるベーン型圧縮機に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vane compressor used as a refrigerant compressor for, for example, an automobile air conditioner.

(従来技術及びその問題点) 従来、ベーン型圧縮機の能力を被圧縮ガスの吸
入量の調節によつて制御し得るようにした所謂、
可変容量式ベーン型圧縮機として、実開昭55−
2000号が公知である。
(Prior Art and its Problems) Conventionally, the so-called vane compressor has been designed to control the capacity of a vane compressor by adjusting the suction amount of gas to be compressed.
As a variable capacity vane type compressor, it was developed in 1982.
No. 2000 is publicly known.

斯かる従来のベーン型圧縮機は、シリンダの下
側部分に設けた吸入ポートの側方にエンドプレー
トを通して円弧状のスロツトを穿設し、該スロツ
トにスロツトルプレートを摺動自在に嵌装し、該
スロツトルプレートをスロツト内にて摺動変位さ
せ、その先端で吸入ポートの長さを規制すること
により圧縮開始位置を変化させ、吐出容量を可変
し得る如く構成されている。また、前記スロツト
ルプレートには、軸を介して揺動レバーの一端が
連結され、該揺動レバーは前記エンドプレートに
固着された支持軸に軸支されており、他端に連結
されたアクチユエータが該揺動レバーを回動して
前記スロツトルプレートを摺動変位するようにし
ている。
Such conventional vane type compressors have an arc-shaped slot bored through the end plate on the side of the suction port provided in the lower part of the cylinder, and a throttle plate is slidably fitted into the slot. The throttle plate is slidably displaced within the slot, and the length of the suction port is restricted at the tip thereof, thereby changing the compression start position and varying the discharge capacity. Further, one end of a swinging lever is connected to the throttle plate via a shaft, the swinging lever is pivotally supported by a support shaft fixed to the end plate, and an actuator connected to the other end of the swinging lever is connected to the throttle plate via a shaft. rotates the swing lever to slide the throttle plate.

従つて、駆動手段であるアクチユエータが揺動
レバーを介して吸入ポートの制御部材であるスロ
ツトルプレートを変位させるようにしているた
め、制御部材のヒステリシスが大きく、また加工
及び組立が複雑であるという問題があつた。
Therefore, since the actuator, which is the driving means, displaces the throttle plate, which is the control member of the suction port, through the swing lever, the hysteresis of the control member is large, and the processing and assembly are complicated. There was a problem.

また、上記の制御部材のヒステリシスを少なく
したベーン型圧縮機として、本出願人により特願
昭60−71984号が出願されている。該出願に係る
ベーン型圧縮機は、両端面をサイドブロツクにて
閉塞したカムリングと、該カムリング内に回転自
在に配設されたロータと、該ロータのベーン溝に
摺動自在に嵌装された複数のベーンと、前記一側
のサイドブロツクの吸入ポートに変位自在に取り
付けられた制御部材と、該制御部材を駆動せしめ
る駆動手段とを備え、前記サイドブロツク、ロー
タ及びベーンによつて画成される圧縮室の容積変
動によつて流体の圧縮を行なうようにすると共
に、前記制御部材にて前記吸入ポートの圧縮開始
位置を変化させることにより吐出容量を可変制御
し得るようにしたベーン型圧縮機において、前記
制御部材に被駆動用の歯部を刻設すると共に、該
歯部と噛合する歯部を前記駆動手段の出力軸に設
け、前記制御部材を前記駆動手段により直接駆動
するようにしたものである。
Further, the present applicant has filed Japanese Patent Application No. 1984-71984 for a vane type compressor in which the hysteresis of the control member described above is reduced. The vane type compressor according to the application includes a cam ring whose both end faces are closed with side blocks, a rotor rotatably disposed within the cam ring, and a rotor slidably fitted into a vane groove of the rotor. The rotor is defined by the side block, the rotor, and the vanes, and includes a plurality of vanes, a control member displaceably attached to the suction port of the one side block, and a driving means for driving the control member. A vane type compressor which compresses fluid by changing the volume of a compression chamber, and whose discharge capacity can be variably controlled by changing the compression start position of the suction port using the control member. In this, the control member is provided with teeth for being driven, and teeth that mesh with the teeth are provided on the output shaft of the drive means, so that the control member is directly driven by the drive means. It is something.

しかしながら、このベーン型圧縮機において
は、駆動手段としてステツプモータをハウジング
に内蔵しているので、そのための広い収納スペー
スが必要になると共に構造も複雑となり、且つコ
ストも高くなる等の問題があつた。
However, since this vane type compressor has a step motor built into the housing as a driving means, it requires a large storage space, has a complicated structure, and is expensive. .

(発明の目的) 本発明は上記事情に鑑みてなされてもので、構
造が簡単且つコンパクトでコストが安く、しかも
制御の信頼性が高い可変容量制御機構を備えたベ
ーン型圧縮機を提供することを目的とする。
(Objective of the Invention) The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a vane type compressor equipped with a variable capacity control mechanism that has a simple and compact structure, is low in cost, and has high control reliability. With the goal.

(問題点を解決するための手段) 上述の問題点を解決するため本発明において
は、両側をサイドブロツクにて閉塞したカムリン
グと、該カムリング内に回転自在に配設されたロ
ータと、該ロータのベーン溝に摺動自在に嵌装さ
れたベーンとを備え、前記サイドブロツク、カム
リング、ロータ及びベーンによつて画成される空
隙室の容積変動によつて流体の圧縮を行なうよう
にしたベーン型圧縮機において、前記両サイドブ
ロツクのうちの吸入ポートを有するサイドブロツ
クに設けられたバイパスポートと、前記吸入ポー
トを有するサイドブロツクに設けられ且つ低圧室
側と高圧室側とに連通する圧力作動室と、該圧力
作動室内に該圧力作動室内を前記低圧室側に連通
される第1の室と該低圧室側及び前記高圧室側に
連通される第2の室とに気密に区画する如くして
スライド可能に嵌装された受圧部材を有すると共
に前記バイパスポートの開き角を制御する制御部
材と、該制御部材を前記バイパスポートの開き角
が大きくなる方向に付勢する付勢部材と、前記第
2の室と低圧室側とを連通する低圧連通路と、前
記第2の室と高圧室側とに連通する高圧連通路
と、これら両連通路に跨つて配設されて前記低圧
室側圧力が所定値以上の時、前記低圧連通路を閉
塞すると同時に前記高圧連通路を開口し若しくは
前記低圧連通路を閉塞した後前記高圧連通路を開
口し且つ前記低圧室側圧力が所定値以下の時、前
記低圧連通路を開口すると同時に前記高圧連通路
を閉塞若しくは開口量を絞り若しくは前記高圧連
通路を閉塞した後前記低圧連通路を開口する弁機
構とを具備し、前記第1の室と第2の室との差圧
に応じて前記制御部材が回動して前記バイパスポ
ートの開き角を制御することにより圧縮開始時期
を制御して吐出容量を可変制御し得るようにした
ものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention includes a cam ring whose both sides are closed with side blocks, a rotor rotatably disposed within the cam ring, and a rotor that is rotatably disposed within the cam ring. a vane slidably fitted in a vane groove of the vane, the vane compressing fluid by varying the volume of a cavity defined by the side block, cam ring, rotor, and vane. In the type compressor, a bypass port provided in the side block having the suction port of both the side blocks, and a pressure actuation device provided in the side block having the suction port and communicating with the low pressure chamber side and the high pressure chamber side. a chamber, and the pressure working chamber is airtightly divided into a first chamber communicating with the low pressure chamber side and a second chamber communicating with the low pressure chamber side and the high pressure chamber side. a control member having a pressure receiving member slidably fitted therein and controlling the opening angle of the bypass port; and a biasing member urging the control member in a direction in which the opening angle of the bypass port becomes larger. A low-pressure communication path that communicates between the second chamber and the low-pressure chamber side, a high-pressure communication path that communicates with the second chamber and the high-pressure chamber side, and a high-pressure communication path that is disposed astride both of these communication paths. When the side pressure is above a predetermined value, the low pressure communication passage is closed and at the same time the high pressure communication passage is opened, or after the low pressure communication passage is closed, the high pressure communication passage is opened and the low pressure chamber side pressure is below a predetermined value. a valve mechanism that opens the low-pressure communication passage and simultaneously closes or throttles the opening amount of the high-pressure communication passage, or closes the high-pressure communication passage and then opens the low-pressure communication passage; The control member rotates in accordance with the differential pressure between the bypass port and the second chamber to control the opening angle of the bypass port, thereby controlling the compression start timing and variably controlling the discharge volume. be.

(作用) 圧力作動室の第1の室と第2の室との差圧に応
じて制御部材が回動して吸入ポートの開き角が制
御されることにより圧縮開始時期が制御されて吐
出容量が可変制御される。また、低圧室側圧力が
所定値以下の時第2の室内の圧力が低圧室側へ逃
げると同時に該第2の室内への高圧の流入は遮断
若しくは制限されるので、該第2の室内の圧力が
急速に下がり、吐出容量が即座に下がる。更に、
圧力作動室が高圧を低圧室側に逃がすための通路
の一部を兼ねる。
(Function) The control member rotates according to the differential pressure between the first chamber and the second chamber of the pressure working chamber to control the opening angle of the suction port, thereby controlling the compression start timing and increasing the discharge volume. is variably controlled. Furthermore, when the pressure in the low pressure chamber is below a predetermined value, the pressure in the second chamber escapes to the low pressure chamber and at the same time, the inflow of high pressure into the second chamber is blocked or restricted. The pressure drops quickly and the discharge volume drops immediately. Furthermore,
The pressure working chamber also serves as a part of the passage for releasing high pressure to the low pressure chamber side.

(実施例) 以下、本発明の一実施例を添付図面に基づき説
明する。第1図は本発明のベーン型圧縮機の縦断
面図であり、同図中1はハウジングで一端面が開
口する円筒形のケース2と、該ケース2の一端面
にその開口面を閉塞する如くボルト(図示省略)
にて取り付けたリヤヘツド3とからなる。前記ケ
ース2のフロント側上面には熱媒体である冷媒ガ
スの吐出口4が、また、前記リヤヘツド3の上面
には冷媒ガスの吸入口5がそれぞれ設けられてい
る。これら吐出口4と吸入口5は後述する吐出室
と吸入室にそれぞれ連通されている。
(Example) Hereinafter, an example of the present invention will be described based on the accompanying drawings. FIG. 1 is a longitudinal cross-sectional view of a vane compressor according to the present invention, and in the figure, 1 is a housing, which is a cylindrical case 2 with one end open, and one end of the case 2 that closes the opening. Like bolt (not shown)
It consists of a rear head 3 attached at. A discharge port 4 for refrigerant gas, which is a heat medium, is provided on the front upper surface of the case 2, and an inlet port 5 for refrigerant gas is provided on the upper surface of the rear head 3. The discharge port 4 and the suction port 5 communicate with a discharge chamber and a suction chamber, respectively, which will be described later.

前記ハウジング1の内部にはポンプ本体6が収
納されている。該ポンプ本体6は、カムリング7
と、該カムリング7の両側開口端に該開口面を閉
塞する如く装着したフロントサイドブロツク8、
及びリヤサイドブロツク9と、前記カムリング7
の内部に回転自在に収納した円形状のロータ10
と、該ロータ10の回転軸11とを主要構成要素
としており、該回転軸11は前記両サイドブロツ
ク8,9にそれぞれ設けた軸受12,12に回転
可能に支持されている。
A pump body 6 is housed inside the housing 1. The pump body 6 has a cam ring 7
and front side blocks 8 mounted on both open ends of the cam ring 7 so as to close the opening surfaces.
and rear side block 9, and the cam ring 7.
A circular rotor 10 is rotatably housed inside the rotor 10.
and a rotating shaft 11 of the rotor 10. The rotating shaft 11 is rotatably supported by bearings 12, 12 provided on both side blocks 8, 9, respectively.

前記カムリング7の内周面は第2図に示す如く
楕円形状をなし、該カムリング7の内周面と前記
ロータ10の外周面との間に、周方向に180度偏
位して対称的に空隙室13,13が画成されてい
る。
The inner circumferential surface of the cam ring 7 has an elliptical shape as shown in FIG. Cavity chambers 13, 13 are defined.

前記ロータ10にはその径方向に沿うベーン溝
14が周方向に等間隔を存して複数(例えば5
個)設けられており、これらのベーン溝14内に
ベーン151〜155がそれぞれ放射方向に沿つて
出没自在に嵌装されてい。
The rotor 10 has a plurality of vane grooves 14 (for example, 5 vane grooves 14 arranged at equal intervals in the circumferential direction) along the radial direction of the rotor 10.
Vanes 15 1 to 15 5 are fitted into these vane grooves 14 so as to be freely protrusive and retractable along the radial direction.

前記リヤサイドブロツク9には周方向に180度
偏位して対称的に吸入ポート16,16が設けら
れている(第2図及び第3図参照)。これら吸入
ポート16,16は前記ベーン151〜155によ
つて区分される空隙室13の容積が最大となる位
置に配置されている。前記吸入ポート16,16
は前記リヤサイドブロツク9の厚さ方向に貫通し
ており、これら吸入ポート16を介して、前記リ
ヤヘツド3とリヤサイドブロツク9との間の吸入
室(低圧側室)17と前記空隙室13とが連通さ
れている。
Suction ports 16, 16 are provided in the rear side block 9 symmetrically and offset by 180 degrees in the circumferential direction (see FIGS. 2 and 3). These suction ports 16, 16 are arranged at positions where the volume of the void chamber 13 divided by the vanes 15 1 to 15 5 is maximized. The suction port 16, 16
pass through the rear side block 9 in the thickness direction, and the suction chamber (low pressure side chamber) 17 between the rear head 3 and the rear side block 9 communicates with the void chamber 13 via these suction ports 16. ing.

前記カムリング7の両端周壁には第1図及び第
2図に示すように複数個(例えば5個)の吐出ポ
ート18がそれぞれ設けられており、これら吐出
ポート18を介して前記ケース2の内周面とカム
リング7の外周面との間の吐出室(高圧側室)1
9と前記空隙室13とが連通されている。これら
吐出ポート18には吐出弁20及び吐出弁止め2
1がそれぞれ設けられている。
As shown in FIGS. 1 and 2, a plurality of (for example, five) discharge ports 18 are provided on the circumferential walls at both ends of the cam ring 7, and the inner circumference of the case 2 is provided through these discharge ports 18. Discharge chamber (high pressure side chamber) 1 between the surface and the outer peripheral surface of the cam ring 7
9 and the void chamber 13 are communicated with each other. These discharge ports 18 include a discharge valve 20 and a discharge valve stop 2.
1 is provided for each.

前記リヤサイドブロツク9には、第3図及び第
5図に示すようにその片側(ロータ10側)表面
に環状の凹部22が設けられており、この凹部2
2内に円弧状のバイパスポート23,23が周方
向に180度偏位して対称的に設けられ、これらバ
イパスポート23を介して吸入室17と空隙室1
3とが連通される。更に、この凹部22内には前
記バイパスポート23,23の開き角を制御する
ためのリング状の制御部材24が正逆回転可能に
嵌装されている。該制御部材24の外周縁にはそ
の周方向に180度偏位して対称的に円弧状の切欠
部25,25が設けられている。また、前記制御
部材24の一側面には周方向に180度偏位して対
称的に突片状の受圧部材26,26が一体的に突
設されている。これら受圧部材26,26は、前
記バイパスポート23,23と連続して設けた円
弧状の圧力作動室27,27内にスライド可能に
嵌装されている。これら圧力作動室27内は前記
受圧部材26により第1の室271と第2の室2
2とに2分され、第1の室271は吸入ポート1
6及びバイパスポート23を介して吸入室17
に、第2の室272は低圧連通路28及び高圧連
通路29を介して前記吸入室17及び吐出室19
にそれぞれ連通される。前記一方の第2の室27
と他方の第2の室272とは連通路30を介して
互いに連通されている。該連通路30は第1図及
び第2図に示す如く前記リヤサイドブロツク9の
反ロータ側面中央に突設されたボス部9aにその
中心部を挟んで対称に設けた一対の連通孔30
a,30aと、前記ボス部9aの突出端面と前記
リヤヘツド3の内側面との間に画成された環状空
隙室30bとからなる。前記連通孔30a,30
aの各一端は前記第2の室272,272に、各他
端は前記環状空隙室30bにそれぞれ開口してい
る。
As shown in FIGS. 3 and 5, the rear side block 9 is provided with an annular recess 22 on its one side (rotor 10 side) surface.
2, arc-shaped bypass ports 23, 23 are symmetrically provided with a circumferential offset of 180 degrees, and the suction chamber 17 and the cavity chamber 1 are connected via these bypass ports 23.
3 are communicated. Furthermore, a ring-shaped control member 24 for controlling the opening angle of the bypass ports 23, 23 is fitted in the recess 22 so as to be rotatable in the forward and reverse directions. The outer peripheral edge of the control member 24 is provided with circular arc-shaped notches 25, 25 symmetrically offset by 180 degrees in the circumferential direction. Furthermore, pressure receiving members 26, 26 in the shape of protrusions are integrally provided on one side of the control member 24 and symmetrically offset by 180 degrees in the circumferential direction. These pressure receiving members 26, 26 are slidably fitted into arcuate pressure operating chambers 27, 27 provided continuously with the bypass ports 23, 23. The inside of these pressure working chambers 27 is divided into a first chamber 271 and a second chamber 2 by the pressure receiving member 26.
The first chamber 271 is the suction port 1.
6 and the inhalation chamber 17 via the bypass port 23
The second chamber 27 2 is connected to the suction chamber 17 and the discharge chamber 19 via the low pressure communication passage 28 and the high pressure communication passage 29.
are communicated with each other. The one second chamber 27
2 and the other second chamber 27 2 are communicated with each other via a communication path 30 . As shown in FIGS. 1 and 2, the communication passage 30 includes a pair of communication holes 30 that are formed symmetrically across the center of a boss portion 9a that protrudes from the center of the side surface opposite to the rotor of the rear side block 9.
a, 30a, and an annular cavity 30b defined between the protruding end surface of the boss portion 9a and the inner surface of the rear head 3. The communication holes 30a, 30
One end of each a opens into the second chambers 27 2 and 27 2 , and each other end opens into the annular cavity chamber 30b.

このように連通路30を固定部材であるリヤサ
イドブロツク9に設けたことにより、該連通路3
0を回転部材である制御部材24に設ける場合に
比して、孔加工が容易であり、該孔は両端開放の
ままでよいから、孔加工時の切粉等の異物も確実
に除去でき、信頼性が高いものとなる。(制御部
材24側に連通路を設ける場合は、互いに交差す
る如く斜めにあけた両端開口の2本の孔の各一端
開口部にメクラピンをそれぞれ嵌合する必要があ
るので、切粉の異物が除去し難い。) なお、前記低圧連通路28と高圧連通路29は
前記リヤサイドブロツク9の内部に設けられてい
る。
By providing the communication passage 30 in the rear side block 9, which is a fixed member, the communication passage 30
0 is provided in the control member 24, which is a rotating member, the hole drilling is easier, and since the hole can be left open at both ends, foreign substances such as chips can be reliably removed during hole drilling. It becomes highly reliable. (When providing a communication path on the control member 24 side, it is necessary to fit a blind pin into each one end opening of two holes diagonally opened at both ends so as to intersect with each other, so that foreign substances such as chips Note that the low pressure communication passage 28 and the high pressure communication passage 29 are provided inside the rear side block 9.

前記制御部材24の一側面中央部及び受圧部材
26の両端面に亘つて特殊形状のシール部材31
が装着されている。該シール部材31により第3
図に示す如く前記第1の室271と第2の室272
との間が、また、第3図に示す如く前記制御部材
24の内外周面と前記リヤサイドブロツク9の環
状凹部22の内外周面との間がそれぞれ気密状態
にシールされている。
A specially shaped seal member 31 is provided at the center of one side of the control member 24 and at both end faces of the pressure receiving member 26.
is installed. The third seal member 31
As shown in the figure, the first chamber 27 1 and the second chamber 27 2
Furthermore, as shown in FIG. 3, the inner and outer circumferential surfaces of the control member 24 and the inner and outer circumferential surfaces of the annular recess 22 of the rear side block 9 are hermetically sealed.

前記制御部材24は付勢部材であるコイルばね
32により前記バイパスポート23の開き角を大
きくする方向(第3図中時計方向)に付勢されて
いる。このコイルばね32は前記吸入室17側に
延出している前記リヤサイドブロツク9のボス部
9aの外周側に嵌合されている。このコイルばね
32はその一端が前記ボス部9aに、他端が前記
制御部材24にそれぞれ連結されている。
The control member 24 is biased by a coil spring 32, which is a biasing member, in a direction that increases the opening angle of the bypass port 23 (clockwise in FIG. 3). This coil spring 32 is fitted onto the outer circumferential side of the boss portion 9a of the rear side block 9 that extends toward the suction chamber 17 side. This coil spring 32 has one end connected to the boss portion 9a and the other end connected to the control member 24, respectively.

前記低圧連通路28と高圧連通路29とに跨つ
て弁機構33が設けられている。該弁機構33は
吸入室17側(低圧室側)の圧力に感応して切換
作動するもので、ベローズ34と、スプール弁体
35と、該スプール弁体35を閉弁方向に付勢す
るばね36とからなる。ベローズ34は前記吸入
室17内に位置してその軸線を前記回転軸11の
それと平行にして伸縮可能に配設されている。そ
して、このベローズ34は前記吸入室17側の圧
力が所定値以上の時は縮小し、所定値以下の時は
伸長する。前記スプール弁体35は、前記リヤサ
イドブロツク9に前記低圧連通路28と高圧連通
路29とに直交連通させて設けた嵌装孔37内に
摺動可能に嵌装されている。前記スプール弁体3
5は、その軸方向略中間部より一端側外周面に環
状溝38を有すると共に他端側外周面に該環状溝
38と略同径に設定された小径部39を有してい
る。また、前記スプール弁体35はその内部軸心
に沿つて呼吸用通路40が設けられている。前記
スプール弁体35の一端側内部のばね受段部35
aと前記嵌装孔37の内端面との間に前記コイル
ばね32が嵌装され且つ該スプール弁体35の他
端面は前記ベローズ34の内端面に当接してい
る。そして、前記吸入室17側の圧力が所定値以
上にあつてベローズ34が縮少状態にある時スプ
ール弁体35の環状溝38が高圧連通路29と合
致することにより該高圧連通路29は開口状態と
なると同時に低圧連通路28はスプール弁体35
の周壁により閉塞される。また、前記吸入室17
側の圧力が所定設定値以下にあつてベローズ34
が伸張状態にある時スプール弁体35の環状溝3
8が高圧連通路29と合致せず、該高圧連通路2
9はスプール弁体35の周壁にて閉塞されると同
時に低圧連通路28とスプール弁体35の小径部
39とが合致することにより該低圧連通路28は
開口される。なお、前記スプール弁体35の一端
側(ばね36側)には呼吸用通路40を介して吸
入室17側の圧力が作用すると共に、他端側にも
吸入室17側の圧力が作用するからスプール弁体
35は摺動抵抗のみでヒスが少ない。また、スプ
ール弁体35とベローズ34は互いに分離して只
単に当接しているのみであるから振動等にてこれ
らが破損する恐れはない。
A valve mechanism 33 is provided across the low pressure communication path 28 and the high pressure communication path 29. The valve mechanism 33 switches in response to the pressure on the suction chamber 17 side (low pressure chamber side), and includes a bellows 34, a spool valve body 35, and a spring that biases the spool valve body 35 in the valve closing direction. It consists of 36. The bellows 34 is located within the suction chamber 17 and is extendably and retractably arranged with its axis parallel to that of the rotating shaft 11. The bellows 34 contracts when the pressure on the suction chamber 17 side is above a predetermined value, and expands when it is below a predetermined value. The spool valve body 35 is slidably fitted into a fitting hole 37 provided in the rear side block 9 so as to communicate orthogonally with the low pressure communication passage 28 and the high pressure communication passage 29. The spool valve body 3
5 has an annular groove 38 on the outer circumferential surface on one end side from the substantially intermediate portion in the axial direction, and has a small diameter portion 39 set to approximately the same diameter as the annular groove 38 on the outer circumferential surface on the other end side. Further, the spool valve body 35 is provided with a breathing passage 40 along its internal axis. Spring receiving step portion 35 inside one end side of the spool valve body 35
The coil spring 32 is fitted between a and the inner end surface of the fitting hole 37, and the other end surface of the spool valve body 35 is in contact with the inner end surface of the bellows 34. When the pressure on the suction chamber 17 side is higher than a predetermined value and the bellows 34 is in a contracted state, the annular groove 38 of the spool valve body 35 matches the high pressure communication passage 29, so that the high pressure communication passage 29 is opened. At the same time, the low pressure communication passage 28 is connected to the spool valve body 35.
It is closed by the surrounding wall of. In addition, the suction chamber 17
When the pressure on the side is below a predetermined set value, the bellows 34
When the annular groove 3 of the spool valve body 35 is in the extended state
8 does not match the high pressure communication path 29, and the high pressure communication path 2
9 is closed by the circumferential wall of the spool valve body 35, and at the same time, the low pressure communication passage 28 and the small diameter portion 39 of the spool valve body 35 match, so that the low pressure communication passage 28 is opened. Note that the pressure on the suction chamber 17 side acts on one end side (spring 36 side) of the spool valve body 35 via the breathing passage 40, and the pressure on the suction chamber 17 side acts on the other end side. The spool valve body 35 has only sliding resistance and little hiss. In addition, since the spool valve body 35 and the bellows 34 are separated from each other and merely contact each other, there is no fear that they will be damaged by vibration or the like.

上述の説明では低、高圧連通路28,29が同
時に開閉する場合であつたが、本発明はこれに限
られるものではなく、吸入室17側の圧力が所定
値以上に上昇した時、低圧連通路28を閉塞した
後、高圧連通路29を開口してもよく、また吸入
室17側の圧力が所定値以下に下降した時高圧連
通路29を閉塞した後、連通路28を開口しても
よい。
In the above explanation, the low and high pressure communication passages 28 and 29 are opened and closed at the same time, but the present invention is not limited to this, and when the pressure on the suction chamber 17 side rises above a predetermined value, the low pressure communication passages The high pressure communication passage 29 may be opened after the passage 28 is closed, or the communication passage 28 may be opened after the high pressure communication passage 29 is closed when the pressure on the suction chamber 17 side drops below a predetermined value. good.

次に上記構成になる本発明のベーン型圧縮機の
作動を説明する。回転軸11が車両の機関に関連
して回転されてロータ10が第2図中時計方向に
回転すると、ベーン151〜155が遠心力及びベ
ーン背圧によりベーン溝14から放射方向に突出
し、その先端面がカムリング7の内周面に摺接し
ながら前記ロータ10と一体に回転し、各ベーン
151〜155にて区分された空隙室13の容積を
拡大する吸入行程において、吸入ポート16から
空隙室13内に熱媒体である冷媒ガスを吸入し、
該空隙室13の容積を縮少する圧縮行程で冷媒ガ
スを圧縮し、圧縮行程未期の吐出行程で該圧縮冷
媒ガスの圧力にて吐出弁20が開弁されて、該圧
縮冷媒ガスは吐出ポート18、吐出室19及び吐
出口4を順次介して図示しない空気調和装置の熱
交換回路に供給される。
Next, the operation of the vane compressor of the present invention having the above structure will be explained. When the rotating shaft 11 is rotated in relation to the engine of the vehicle and the rotor 10 rotates clockwise in FIG. 2, the vanes 15 1 to 15 5 protrude radially from the vane groove 14 due to centrifugal force and vane back pressure. The suction port 16 rotates together with the rotor 10 while its tip surface slides on the inner circumferential surface of the cam ring 7, and during the suction stroke in which the volume of the cavity chamber 13 divided by each vane 15 1 to 15 5 is expanded. A refrigerant gas, which is a heat medium, is sucked into the cavity 13 from
The refrigerant gas is compressed in the compression stroke to reduce the volume of the void chamber 13, and the discharge valve 20 is opened by the pressure of the compressed refrigerant gas in the discharge stroke before the compression stroke, and the compressed refrigerant gas is discharged. It is supplied to a heat exchange circuit of an air conditioner (not shown) through the port 18, the discharge chamber 19, and the discharge port 4 in this order.

このような圧縮機の作動時において低圧側であ
る吸入室17内の圧力が吸入ポート16を介して
両方の圧力作動室27,27の第1の室271
271内に導入され、また高圧側である吐出室1
9内の圧力が高圧連通路29を介して両方の圧力
作動室27,27の第2の室272,272内に導
入される。従つて、第1の室271内の圧力とコ
イルばね32の付勢力との和の力(制御部材24
をバイパスポート23の開き角が大きくなる方向
に押圧する力、即ち第3図中時計方向へ回動させ
る力)と第2の室272内の圧力(制御部材24
をバイパスポート23の開き角が小さくなる方向
に押圧する力、即ち第3図中反時計方向へ回動さ
せる力)との差圧に応じて制御部材24が回動し
て、前記バイパスポート23の開き角を制御する
ことにより圧縮開始時期を制御して吐出容量を制
御するものである。
During operation of such a compressor, the pressure in the suction chamber 17, which is on the low pressure side, is transferred to the first chamber 27 1 of both pressure working chambers 27, 27 through the suction port 16.
27 1 and is also on the high pressure side
9 is introduced into the second chambers 27 2 , 27 2 of both pressure working chambers 27 , 27 via the high pressure communication passage 29 . Therefore, the force of the sum of the pressure in the first chamber 27 1 and the biasing force of the coil spring 32 (control member 24
The pressure in the second chamber 272 (the force that presses the bypass port 23 in the direction that increases its opening angle, that is, the force that rotates it clockwise in FIG. 3) and the pressure in the second chamber 272 (the control member 24
The control member 24 rotates in response to the differential pressure between the bypass port 23 and the force that presses the bypass port 23 in a direction that reduces its opening angle, that is, the force that rotates the bypass port 23 counterclockwise in FIG. By controlling the opening angle of the cylinder, the compression start timing is controlled and the discharge capacity is controlled.

即ち、上記圧縮機の低速運転時においては吸入
室17内の冷媒ガスの圧力(吸入圧力)が比較的
高いため、弁機構33のベローズ34は縮小し、
スプール弁体35が高圧連通路29を開口すると
同時に低圧連通路28を閉塞した状態(第6図の
状態)にあり、第2の室272内へ吐出室19内
の圧力が供給され、該第2の室272内の圧力が、
第1の室271内の圧力とコイルばね32の付勢
力との和の力に打ち勝つて、制御部材24は第3
図中反時計方向への回動限界位置に回動保持さ
れ、該制御部材24により第3図中実線で示す如
くバイパスポート23全体が閉塞される(開き角
はゼロ)。従つて、吸入ポート16から空隙室1
3内に送られた冷媒ガスの総てが圧縮されて吐出
されるため、圧縮機の吐出容量が最大となり全稼
動状態となる。
That is, when the compressor is operated at low speed, the pressure of the refrigerant gas in the suction chamber 17 (suction pressure) is relatively high, so the bellows 34 of the valve mechanism 33 contracts.
The spool valve body 35 opens the high-pressure communication passage 29 and simultaneously closes the low-pressure communication passage 28 (the state shown in FIG. 6), and the pressure in the discharge chamber 19 is supplied to the second chamber 272. The pressure inside the second chamber 272 is
Overcoming the force of the sum of the pressure in the first chamber 271 and the biasing force of the coil spring 32, the control member 24
The bypass port 23 is held at the rotation limit position in the counterclockwise direction in the figure, and the entire bypass port 23 is closed by the control member 24 as shown by the solid line in FIG. 3 (the opening angle is zero). Therefore, from the suction port 16 to the cavity chamber 1
Since all of the refrigerant gas sent into the compressor 3 is compressed and discharged, the discharge capacity of the compressor becomes maximum and becomes fully operational.

次いで、圧縮機が高速運転状態になると、吸入
室17内の吸入圧が低下するため、弁機構33の
ベローズ34が膨張してスプール弁体35をばね
36の付勢力に抗して押圧するため低圧連通路2
8が開口すると同時に高圧連通路29が閉塞する
(第7図の状態)。これにより、第2の室272
への吐出室19内の圧力供給は停止されると同時
に第2の室272内の圧力が低圧連通路28を介
して低圧側である吸入室17内へリークするため
該第2の室272内の圧力が急速に低下し、その
結果、制御部材24が第3図中時計方向に即座に
回動し、該制御部材24の切欠部25がバイパス
ポート23と合致することにより、第3図中二点
鎖線で示す如く該バイパスポート23が開口す
る。従つて、吸入ポート16から空隙室13内に
送られた冷媒ガスがバイパスポート23を通つて
吸入室17へリークするためそのバイパスポート
23が開口した分だけ圧縮開始時期が遅くなり、
空隙室13内の冷媒ガスの圧縮量が減少するた
め、圧縮機の吐出容量が減少し一部稼動状態とな
る。
Next, when the compressor enters a high-speed operation state, the suction pressure in the suction chamber 17 decreases, so the bellows 34 of the valve mechanism 33 expands and presses the spool valve body 35 against the biasing force of the spring 36. Low pressure communication path 2
At the same time as 8 opens, the high pressure communication path 29 is closed (the state shown in FIG. 7). As a result, the pressure supply in the discharge chamber 19 to the second chamber 27 2 is stopped, and at the same time, the pressure in the second chamber 27 2 is transferred to the suction chamber 17 on the low pressure side via the low pressure communication path 28. As a result, the pressure in the second chamber 272 rapidly decreases, and as a result, the control member 24 immediately rotates clockwise in FIG. By matching with the port 23, the bypass port 23 opens as shown by the two-dot chain line in FIG. Therefore, the refrigerant gas sent into the cavity 13 from the suction port 16 leaks into the suction chamber 17 through the bypass port 23, so the compression start time is delayed by the amount that the bypass port 23 is opened.
Since the amount of compressed refrigerant gas in the void chamber 13 decreases, the discharge capacity of the compressor decreases and the compressor becomes partially operational.

なお、上記バイパスポート23の開き角は、第
1の室271内の圧力とばね32との和の力と、
第2の室272内の圧力とが釣り合うところで決
まるものであり、低圧側である吸入室17内の圧
力(吸入圧)の変化に応じて制御部材24の回動
位置が連続的に変化するので圧縮機の連続的な可
変容量制御が可能である。また、第2の室272
に吐出室19の圧力、即ち吐出圧力を導入するよ
うにしたが、これに限らずベーン151〜155
突出方向に押圧すべく作用する圧力、即ちベーン
背圧を導入するようにしてもよい。
The opening angle of the bypass port 23 is determined by the sum of the pressure in the first chamber 27 1 and the force of the spring 32;
It is determined when the pressure in the second chamber 272 is balanced, and the rotational position of the control member 24 changes continuously according to changes in the pressure (suction pressure) in the suction chamber 17, which is the low pressure side. Therefore, continuous variable capacity control of the compressor is possible. Also, the second chamber 27 2
Although the pressure in the discharge chamber 19, that is, the discharge pressure, is introduced, the present invention is not limited to this, and the pressure that acts to press the vanes 151 to 155 in the projecting direction, that is, the vane back pressure may also be introduced. good.

また、吸入室17側の圧力が所定値以下の時高
圧連通路29を閉塞するようにしたがこれに限ら
ず、該高圧連通路29の開口量を絞るようにして
もよい。
Further, although the high pressure communication passage 29 is closed when the pressure on the suction chamber 17 side is below a predetermined value, the present invention is not limited to this, and the opening amount of the high pressure communication passage 29 may be reduced.

(発明の効果) 以上詳述した如く本発明のベーン型圧縮機は、
両側をサイドブロツクにて閉塞したカムリング
と、該カムリング内に回転自在に配設されたロー
タと、該ロータのベーン溝に摺動自在に嵌装され
たベーンとを備え、前記サイドブロツク、カムリ
ング、ロータ及びベーンによつて画成される空隙
室の容積変動によつて流体の圧縮を行なうように
したベーン型圧縮機において、前記両サイドブロ
ツクのうちの吸入ポートを有するサイドブロツク
に設けられたバイパスポートと、前記吸入ポート
を有するサイドブロツクに設けられ且つ低圧室側
と高圧室側とに連通する圧力作動室と、該圧力作
動室内に該圧力作動室内を前記低圧室側に連通さ
れる第1の室と該低圧室側及び前記高圧室側に連
通される第2の室とに気密に区画する如くしてス
ライド可能に嵌装された受圧部材を有すると共に
前記バイパスポートの開き角を制御する制御部材
と、該制御部材を前記バイパスポートの開き角が
大きくなる方向に付勢する付勢部材と、前記第2
の室と低圧室側とを連通する低圧連通路と、前記
第2の室と高圧室側とを連通する高圧連通路と、
これら両連通路に跨つて配設されて前記低圧室側
圧力が所定値以上の時、前記低圧連通路を閉塞す
ると同時に前記高圧連通路を開口し若しくは前記
低圧連通路を閉塞した後前記高圧連通路を開口し
且つ前記低圧室側圧力が所定値以下の時、前記低
圧連通路を開口すると同時に前記高圧連通路を閉
塞若しくは開口量を絞り若しくは前記高圧連通路
を閉塞した後前記低圧連通路を開口する弁機構と
を具備し、前記第1の室と第2の室との差圧に応
じて前記制御部材が回動して前記バイパスポート
の開き角を制御することにより圧縮開始時期を制
御して吐出容量を可変制御し得るようにしたこと
を特徴とするものである。
(Effects of the Invention) As detailed above, the vane compressor of the present invention has the following features:
A cam ring with both sides closed by side blocks, a rotor rotatably disposed within the cam ring, and a vane slidably fitted in a vane groove of the rotor, the side block, the cam ring, In a vane compressor that compresses fluid by changing the volume of a cavity defined by a rotor and vanes, a bypass provided in one of the two side blocks having a suction port is provided. a pressure working chamber provided in the side block having the suction port and communicating with the low pressure chamber side and the high pressure chamber side, and a first pressure working chamber within the pressure working chamber communicating with the low pressure chamber side. and a second chamber communicating with the low pressure chamber side and the high pressure chamber side, and a pressure receiving member slidably fitted so as to airtightly partition the chamber, and the opening angle of the bypass port is controlled. a control member; a biasing member that biases the control member in a direction in which the opening angle of the bypass port becomes larger;
a low-pressure communication path that communicates the second chamber with the low-pressure chamber side; a high-pressure communication path that communicates the second chamber with the high-pressure chamber side;
When the pressure on the low pressure chamber side is higher than a predetermined value by straddling both of these communication passages, the high pressure communication passage is closed simultaneously and the high pressure communication passage is opened, or after the low pressure communication passage is closed, the high pressure communication passage is closed. When the passage is opened and the pressure on the low pressure chamber side is below a predetermined value, the low pressure communication passage is opened and at the same time the high pressure communication passage is closed or the opening amount is throttled, or the high pressure communication passage is closed and then the low pressure communication passage is closed. and a valve mechanism that opens, and the control member rotates according to the pressure difference between the first chamber and the second chamber to control the opening angle of the bypass port, thereby controlling the compression start timing. This is characterized in that the discharge volume can be variably controlled.

従つて、圧縮機の圧力を利用して制御部材を制
御動作させるから可変容量制御機構の構造が簡単
で且つコンバクトとなり、その組立も容易でコス
トも安い。しかも吐出容量が大なる時から小なる
状態に切り換わる時は、第2の室内への高圧の供
給が停止されると同時に該第2の室内の圧力が低
圧室側へ逃げるので応答性がよく制御性が向上し
信頼性も高い。更に、圧力作動室は高圧を低圧側
に逃がすための通路の一部を兼ねるのでスペース
の有効利用を図ることができ、特にスペース的に
制約を受けるこの種の圧縮機としてより一層、可
変容量制御機構のコンパクト化が図れる。
Therefore, since the pressure of the compressor is used to control the control member, the structure of the variable displacement control mechanism is simple and compact, and its assembly is easy and inexpensive. Moreover, when the discharge capacity changes from large to small, the supply of high pressure to the second chamber is stopped and at the same time the pressure in the second chamber escapes to the low pressure chamber, resulting in good responsiveness. Improved controllability and high reliability. Furthermore, since the pressure working chamber also serves as a part of the passage for releasing high pressure to the low pressure side, space can be used effectively, making variable displacement control even more effective for this type of compressor, which is particularly space-constrained. The mechanism can be made more compact.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明のベーン型圧縮機の一実施例を示
し、第1図はベーン型圧縮機の縦断面図、第2図
は第1図の−線に沿う断面図、第3図は第1
図の−線に沿う断面図、第4図は第1図の
−線に沿う断面図、第5図は要部の分解斜視
図、第6図は全稼動状態における弁機構部分の拡
大断面図、第7図は一部稼動状態における第6図
と同状の拡大断面図である。 7……カムリング、8……フロントサイドブロ
ツク、9、……リヤサイドブロツク、10……ロ
ータ、13……空隙室、14……ベーン溝、15
〜155……ベーン、16……吸入ポート、17
……吸入室(低圧側室)、19……吐出室(高圧
側室)、23……バイパスポート、24……制御
部材、26……受圧部材、27……圧力作動室、
271……第1の室、272……第2の室、28…
…低圧連通路、29……高圧連通路、32……コ
イルばね(付勢部材)、33……弁機構。
The drawings show one embodiment of the vane type compressor of the present invention, FIG. 1 is a longitudinal sectional view of the vane type compressor, FIG. 2 is a sectional view taken along the line - in FIG. 1, and FIG.
4 is a sectional view taken along the - line in Figure 1, Figure 5 is an exploded perspective view of the main parts, and Figure 6 is an enlarged sectional view of the valve mechanism part in the fully operating state. , FIG. 7 is an enlarged sectional view similar to FIG. 6 in a partially operating state. 7...Cam ring, 8...Front side block, 9...Rear side block, 10...Rotor, 13...Gap chamber, 14...Vane groove, 15
1 ~ 15 5 ... Vane, 16 ... Suction port, 17
... Suction chamber (low pressure side chamber), 19 ... Discharge chamber (high pressure side chamber), 23 ... Bypass port, 24 ... Control member, 26 ... Pressure receiving member, 27 ... Pressure operation chamber,
27 1 ...first chamber, 27 2 ...second chamber, 28...
...Low pressure communication path, 29...High pressure communication path, 32...Coil spring (biasing member), 33...Valve mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 両側をサイドブロツクにて閉塞したカムリン
グと、該カムリング内に回転自在に配設されたロ
ータと、該ロータのベーン溝に摺動自在に嵌装さ
れたベーンとを備え、前記サイドブロツク、カム
リング、ロータ及びベーンによつて画成される空
隙室の容積変動によつて流体の圧縮を行なうよう
にしたベーン型圧縮機において、前記両サイドブ
ロツクのうちの吸入ポートを有するサイドブロツ
クに設けられたバイパスポートと、前記吸入ポー
トを有するサイドブロツクに設けられ且つ低圧室
側と高圧室側とに連通する圧力作動室と、該圧力
作動室内に該圧力作動室内を前記低圧室側に連通
される第1の室と該低圧室側及び前記高圧室側に
連通される第2の室とに気密に区画する如くして
スライド可能に嵌装された受圧部材を有すると共
に前記バイパスポートの開き角を制御する制御部
材と、該制御部材を前記バイパスポートの開き角
が大きくなる方向に付勢する付勢部材と、前記第
2の室と低圧室側とを連通する低圧連通路と、前
記第2の室と高圧室側とを連通する高圧連通路
と、これら両連通路に跨つて配設されて前記低圧
室側圧力が所定値以上の時、前記低圧連通路を閉
塞すると同時に前記高圧連通路を開口し若しくは
前記低圧連通路を閉塞した後前記高圧連通路を開
口し且つ前記低圧室側圧力が所定値以下の時、前
記低圧連通路を開口すると同時に前記高圧連通路
を閉塞若しくは開口量を絞り若しくは前記高圧連
通路を閉塞した後前記低圧連通路を開口する弁機
構とを具備し、前記第1の室と第2の室との差圧
に応じて前記制御部材が回動して前記バイパスポ
ートの開き角を制御することにより圧縮開始時期
を制御して吐出容量を可変制御し得るようにした
ことを特徴とするベーン型圧縮機。
1. A cam ring with both sides closed by side blocks, a rotor rotatably disposed within the cam ring, and a vane slidably fitted into a vane groove of the rotor, the side blocks and cam ring In a vane type compressor that compresses fluid by changing the volume of a cavity defined by a rotor and a vane, a compressor is provided in the side block having the suction port of both the side blocks. a bypass port, a pressure working chamber provided in the side block having the suction port and communicating with the low pressure chamber side and the high pressure chamber side, and a pressure working chamber in the pressure working chamber communicating with the low pressure chamber side. A pressure receiving member is slidably fitted to airtightly partition the first chamber and a second chamber communicating with the low pressure chamber side and the high pressure chamber side, and controls the opening angle of the bypass port. a control member that biases the control member in a direction in which the opening angle of the bypass port becomes larger; a low-pressure communication path that communicates the second chamber with the low-pressure chamber side; A high-pressure communication path that communicates between the chamber and the high-pressure chamber side, and a high-pressure communication path that is disposed across both of these communication paths to close the low-pressure communication path and simultaneously close the high-pressure communication path when the pressure on the low-pressure chamber side is higher than a predetermined value. When the high-pressure communication passage is opened or the low-pressure communication passage is closed after the low-pressure communication passage is opened and the pressure on the low-pressure chamber side is below a predetermined value, the low-pressure communication passage is opened and at the same time the high-pressure communication passage is closed or the opening amount is throttled. Alternatively, the control member may include a valve mechanism that opens the low pressure communication passage after closing the high pressure communication passage, and the control member rotates according to the pressure difference between the first chamber and the second chamber to close the bypass. A vane type compressor characterized in that the discharge capacity can be variably controlled by controlling the compression start timing by controlling the opening angle of the port.
JP61159309A 1986-07-07 1986-07-07 Vane type compressor Granted JPS6316186A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61159309A JPS6316186A (en) 1986-07-07 1986-07-07 Vane type compressor
EP87304608A EP0256624B1 (en) 1986-07-07 1987-05-22 Variable capacity vane compressor
DE8787304608T DE3768172D1 (en) 1986-07-07 1987-05-22 SLIDE VALVE COMPRESSOR WITH VARIABLE FLOW RATE.
KR8705158A KR900005720B1 (en) 1986-07-07 1987-05-25 Variable capacity vane compressor
AU73665/87A AU574953B2 (en) 1986-07-07 1987-05-28 Variable capacity vane compressor
US07/056,604 US4737081A (en) 1986-07-07 1987-05-29 Variable capacity vane compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61159309A JPS6316186A (en) 1986-07-07 1986-07-07 Vane type compressor

Publications (2)

Publication Number Publication Date
JPS6316186A JPS6316186A (en) 1988-01-23
JPH0259313B2 true JPH0259313B2 (en) 1990-12-12

Family

ID=15690983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61159309A Granted JPS6316186A (en) 1986-07-07 1986-07-07 Vane type compressor

Country Status (1)

Country Link
JP (1) JPS6316186A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442555Y2 (en) * 1988-10-31 1992-10-07

Also Published As

Publication number Publication date
JPS6316186A (en) 1988-01-23

Similar Documents

Publication Publication Date Title
JPS6220688A (en) Vane type compressor
US5993177A (en) Scroll type compressor with improved variable displacement mechanism
EP0256624B1 (en) Variable capacity vane compressor
US5336058A (en) Scroll-type compressor with variable displacement mechanism
JPS62129593A (en) Vane type compressor
JPS6255487A (en) Variable displacement vane type compressor
JP2545780B2 (en) Scroll type compressor
JPH0511233B2 (en)
JPH0259313B2 (en)
JPH0433995B2 (en)
JPS63186982A (en) Vane type compressor
JPH0229265Y2 (en)
JPH0772553B2 (en) Vane compressor
JPH0258479B2 (en)
JPS6316188A (en) Vane type compressor
JPH0258478B2 (en)
JPH0610474B2 (en) Vane compressor
JPH055271Y2 (en)
JPH066952B2 (en) Open / close valve mechanism of variable displacement compressor
JPH0419397B2 (en)
JPH0421033Y2 (en)
JPS6235089A (en) Vane type compressor
JP2754400B2 (en) Variable displacement compressor
JP2577800Y2 (en) Variable capacity vane compressor
JPS6217388A (en) Vane type compressor