[go: up one dir, main page]

JPH025836B2 - - Google Patents

Info

Publication number
JPH025836B2
JPH025836B2 JP18776683A JP18776683A JPH025836B2 JP H025836 B2 JPH025836 B2 JP H025836B2 JP 18776683 A JP18776683 A JP 18776683A JP 18776683 A JP18776683 A JP 18776683A JP H025836 B2 JPH025836 B2 JP H025836B2
Authority
JP
Japan
Prior art keywords
pores
magnetic metal
oxide film
anodic oxide
aluminum material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18776683A
Other languages
Japanese (ja)
Other versions
JPS6082694A (en
Inventor
Koichi Yoshida
Yoshio Hirayama
Takashi Kajama
Yasuo Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP18776683A priority Critical patent/JPS6082694A/en
Priority to DE19843421442 priority patent/DE3421442A1/en
Priority to US06/618,512 priority patent/US4548682A/en
Priority to GB08414656A priority patent/GB2142043B/en
Priority to IT21347/84A priority patent/IT1174167B/en
Priority to NL8401849A priority patent/NL8401849A/en
Priority to FR8409271A priority patent/FR2548813A1/en
Publication of JPS6082694A publication Critical patent/JPS6082694A/en
Publication of JPH025836B2 publication Critical patent/JPH025836B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Electrochemical Coating By Surface Reaction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルミニウムまたはアルミニウム合金
材に陽極酸化処理を施し、生成した陽極酸化皮膜
の微細孔を酸またはアルカリ浴中に浸漬してその
皮膜の一部を化学的に溶解し、孔径を拡大し、し
かる後に磁性金属を充填し、さらにその表面を物
理的に研削、研摩等を施して高密度磁気記録用の
材料を製造する方法に関するものである。 アルミニウムまたはアルミニウム合金材(以下
アルミニウム材と称する)に陽極酸化処理を施
し、得られた陽極酸化皮膜に無数に生成している
細孔中に磁性金属を種々の方法で充填して、磁性
皮膜をつくり、これを磁気記録材として使用する
ことはすでに公知である。 この方法によつてつくられた磁気記録材の著し
い特徴は、磁性体が陽極酸化皮膜面に垂直な細孔
中に入つているため、いわゆる「垂直磁化特性」
を示すことであり、従来の一般的な磁性材を基板
表面に塗布した水平磁化方式の磁気記録材に比較
して記録密度を飛躍的に増大させることができる
ことである。 しかして、このような陽極酸化皮膜細孔に磁性
材を充填して得られる磁性皮膜を磁気記録材とし
て用いる場合に、形成された陽極酸化皮膜面を物
理的に研削、研摩することによつて十分な平滑面
とすること、および磁気ヘツドを接触型、浮上型
の何れに使用する場合においても、ヘツドによる
破壊がなく、且つ十分な磁化特性を得るために研
摩後の皮膜厚が少くとも2μm以上であること、ま
たその磁化特性がヘツドの種類に応じた適切な値
を採ることができ、しかもその特性が材料の全面
に亘つて可及的に均質であること等が望まれる。 しかしながら、従来から行われているような一
般的な陽極酸化処理条件によつて得られた陽極酸
化皮膜においては細孔の孔径が小さいため抗磁力
(Hc)が高すぎ、記録再生ができなかつたり、出
力が小さすぎる等の磁気記録材としての磁気特性
が適正とならないという問題点があつた。 この陽極酸化皮膜における細孔径は処理にあた
つて使用される電解浴の種類によつて大きく変化
することが知られており、例えば処理浴として最
も一般的な硫酸浴を用いた場合には生成する皮膜
の細孔径は100〜200Åであるのに対し、リン酸浴
の場合は約500〜1000Åであつて、細孔径に関す
る限りリン酸浴を使用すれば孔径は十分であるが
リン酸単味の浴によつて形成される皮膜は膜質が
脆弱となり易く、たかだか2μm程度の膜厚の皮膜
しか得られなかつた。 一方、硫酸、蓚酸、スルホサリチル酸またはこ
れらの酸を主体とする浴を使用して電解処理して
得られた陽極酸化皮膜は膜質が堅固で且つ十分な
膜厚の皮膜が得られるものの、細孔の孔径が小さ
いため、二次処理によつて細孔径の拡大を行なう
必要があつた。 そこで、本発明者らは特願昭58−103978号にお
いて提案したごとく、陽極酸化皮膜の細孔拡大法
として一般的な処理浴を用いて陽極酸化処理を施
したアルミニウム材を酸またはアルカリ浴中に浸
漬することによつて化学的に皮膜の一部、即ち細
孔壁を溶解するときは細孔の上部から底部に亘つ
てほゞ一様に細孔の拡大を行ない得ること、また
このようにして化学的な溶解による細孔拡大法を
採るときは、溶解条件を適宜制御することによつ
て細孔径を比較的自由に制御しうることを見出し
出願した。 しかしながら、上記のように拡大した細孔に磁
性金属を析出させて磁気記録媒体としたとき、磁
性金属の析出量が微視的に不均一になることが多
く、高密度磁気記録用媒体として用いる出力が不
均一となりエラーの原因となるので、微視的にも
均一な金属充填が必要である。 そのため、本発明者らはさらに詳細なる検討を
行なつて上記の問題点を克服したものである。 即ち本発明はアルミニウム材に陽極酸化処理を
施して得られた陽極酸化皮膜の細孔に磁性金属を
充填して、高密度磁気記録用アルミニウム材を得
るに際し、先づアルミニウム材に厚さ4μm以上の
陽極酸化皮膜を形成した後、これを酸またはアル
カリ浴中に浸漬して陽極酸化皮膜の一部を化学的
に溶解することによつて陽極酸化皮膜における細
孔を300Å乃至1400Åの範囲の任意の孔径に拡大
し、磁性金属イオンを含む浴中において電解処理
を施して、上記細孔中に磁性金属を析出させた
後、表面の陽極酸化皮膜層を研削、研摩して細孔
中に析出した磁性金属を上記陽極酸化皮膜の表面
に露出させることを特徴としている。 次に、本発明方法を更に、具体的に添付図面に
ついて説明する。 第1図は本発明方法の工程を示す概略的模式図
である。 本発明に用いるアルミニウム材1は、特にその
種類を限定するものではないが、陽極酸化皮膜が
良くかかる材質、例えば、純アルミニウム系、5
系、6系等が好ましい。陽極酸化処
理の電解浴は、硫酸、蓚酸、クロム酸若くはこれ
らの酸を主体とした浴、又は、スルホサルチル酸
等の有機酸に無機酸を添加した浴を用いることが
でき、また、燐酸ナトリウム等を主成分としたア
ルカリ浴を用いることも可能である。 これら浴の組成と浴温度を適宜選択し、0.1〜
2.0A/dm2の電流密度、5〜20Vの電圧で陽極酸
化処理を行い、次工程で磁性金属の析出、充填が
行い易く、又、後述するようにアルミニウム材と
の関係で、研削、研摩後に少くとも2μm程度以上
の膜厚を保てるように、多孔質層2とバリヤー層
3から成る陽極酸化皮膜4の膜厚を4μm以上に生
成させる。化学的溶解後の状態を第1図イに示
す。 なお、4μm程度以下の膜厚では磁性金属が局部
的にも均一に析出し難く、即ち、一部で磁性金属
が皮膜4の表面に出ると、そこに電流が集中して
他の部分の析出が阻害され、磁性金属が細孔5の
充分上まで充填しなくなる問題が生ずる。 次に、第1図ロのように、陽極酸化処理後の細
孔5の壁を化学的に溶解して孔径を拡大する。孔
径は、抗磁力を左右するため、この処理を厳密に
行うことによつて、定量的に抗磁力を制御するこ
とが可能となる。 この化学的溶解に用いる浴は、リン酸、クロム
酸、硫酸、蓚酸若くはこれらの2種以上を成分と
する酸性浴、又は、カ性ソーダ、カ性カリの希薄
溶液やリン酸三ナトリウム溶液等のアルカリ性浴
で、温度は、通常常温乃至50℃程度が好ましい。
温度や酸若しくはアルカリ濃度が高いと、溶解が
速すぎて細孔径が不均一となり易く、皮膜4を必
要以上に劣化させるおそれがある。また、溶解の
時間は、陽極酸化処理の孔径を得ようとする望ま
しい孔径にもよるが、5〜30分、好ましくは10〜
20分に収めると制御し易い。かくすることによ
り、細孔径を300〜1400Å、好ましくは、400〜
1000Åにする。 なお、酸またはアルカリで細孔5を拡大する
と、その際細孔底のバリヤー層3は、化学的溶解
処理のため、その厚さが不均一になり、このまゝ
では均斉な磁性金属の析出を得ることができな
い。そこでバリヤー層調整のための処理を行うこ
とが好ましい。そのための通電処理は、前記化学
的溶解処理に用いた浴中で行うことができる。こ
の際、電圧は高すぎると、バリヤー層3が厚くな
りすぎて次の磁性金属の析出が行われにくく、ま
た、電圧が低くすぎるとバリヤー層3が薄くなり
すぎて磁性金属析出工程で皮膜の部分的破壊が生
じたりするため、直流では5〜25V、好ましくは
10〜20V程度がよく、また、交流では6〜20V、
好ましくは10〜17V程度がよい。なお通電時間
は、電流が安定するまで通常3〜10分を要する。
かくすることにより、100〜400Åの均一な厚さの
バリヤー層を得ることができる。 次に、前記したように細孔の拡大、またはさら
にバリヤー層の調整をしたアルミニウム材は、
Fe,Co,Ni等の磁性金属イオンを含む水溶性
塩、即ち、硫酸塩、スルフアミン酸塩等を含み、
更に電解析出を容易にするために電解されること
のない硫酸マグネシウム等の支持電解質を加えた
浴中に浸漬し、グラフアイト、ステンレス等の不
溶性の対極との間に直流(アルミニウム材が陰
極)、交流或いはこれらを重畳した電流等を通じ
て細孔中に磁性金属を析出、充填させる。 その際、直流の場合、電流密度は0.05〜1.5A/
dm2、交流の場合、10〜20Vが好ましい。 しかしながら、細孔中に析出した磁性金属は第
1図ハに模式的に示すように隣接する細孔5間で
も充填された磁性金属6の高さlが異なるため磁
性金属6の充填量が異なり、個々の充填金属柱の
磁化特性が異なる原因となる。 そこで、本発明においては、上記の傾向を避け
るため、さらに第1図ニのように陽極酸化皮膜4
の表面を物理的に削除する。削除する量は充填磁
性金属柱lの最小高さl minか、或いはそれよ
り10%程度少ない高さで、この削除後の金属柱高
さをl2とする。またl2は多孔質層2の厚さの50〜
80%程度なので、多孔質層2の削除量はその表面
から40〜60%行なうことが望ましく、これによつ
て充填磁性金属の上面すべては陽極酸化皮膜表面
に露出することになる。この結果、磁性金属柱高
さがほゞ一定に揃うので、個々の磁性金属の磁化
特性がほゞ均一化し、エンベロープ−磁気記録媒
体に記録されている交流信号の再生出力を時間軸
を短縮してチヤートに記録して得られる帯状の再
生出力図形−も良好となり、高密度が達成され
る。 即ち、第2図にエンベロープを示すが、本発明
のように陽極酸化皮膜表面を、磁性金属充填後に
削つたものは第2図ロのように良好であるのに対
し、第2図イのように該皮膜表面を削らなかつた
場合では、媒体の磁気特性が不均一であつたり、
また、媒体とヘツドの距離が一様でなく、エンベ
ロープが悪い。 以上のように本発明によれば、アルミニウム材
の表面に施された均一厚さの陽極酸化皮膜の各細
孔に磁性金属柱を細孔の深さと同じの高さで、し
かも磁性金属柱はいずれもほゞ同じ高さで充填さ
れた磁気記録用の材料を得ることができる。 その際、充填磁性金属にもよるが、例えば、
Feの場合、磁性金属柱の直径をD、高さをl2とす
れば(円柱と仮定して)l2/D>10であれば垂直
磁化特性を示し、また、Coの場合ではl2/D>20
であれば同様である。しかし垂直磁化特性を上げ
ようとDを小さくすると抗磁力が大きくなり過
ぎ、強力な磁気ヘツドを必要とする等の難点が生
じる。 なお、本発明は必ずしも垂直磁化特性をねらつ
ただけでなく、l2/D>10で垂直磁化特性を示さ
ない金属に対しては水平磁化特性を活用すること
もでき、塗布法等による従来の水平磁化に比べ十
分な高密度を達成できる。 以上得られた磁性皮膜は、水洗、乾燥して仕上
がりとすることもできるが、防食処理として常法
で熱水封孔するか、或いは乾式表面処理、例えば
酸化珪素のスパツタリング等で、表面に極く薄い
保護のためのコーテイングをすることもできる。 以下本発明の実施例を述べる。 実施例 1 JIS A5086のアルミニウムのドーナツ板(5
1/4インチ径、2mm厚さ)を下記の条件で処理し
振動式磁化測定装置により、静的磁化特性を求
め、さらに再生出力のエンベロープを求めたとこ
ろ第1表のような結果を得た。但し、バリヤー層
の調整は化学的溶解処理浴中で行ない、磁性金属
の析出、充填は硫酸第1鉄120g/、硫酸マグ
ネシウム70g/、クエン酸20g/なる浴中で
浴温30℃とし、且つグラフアイトを対極として交
流60Hz、15V、15分間通電して行つた。磁性金属
の充填後の陽極酸化皮膜は高純度(99.99%)の
アルミナ砥粒(粒径1μm)を用い、15分間バフ式
ポリツシヤーで研摩され、平均表面アラサRmax
=0.04μmを得た。 なお、比較のため物理的削除をしない場合(No.
4)及び化学的溶解処理を行なわない場合(No.
5)の測定値も第1表に掲げる。 同表から分かるように、物理的な研摩、研削等
を行なわないと動的磁化特性にバラツキを生じ磁
気記録用の材料として使用できない。
The present invention applies anodizing treatment to aluminum or aluminum alloy material, immerses the fine pores of the produced anodized film in an acid or alkaline bath to chemically dissolve a part of the film, and enlarges the pore diameter. The present invention relates to a method of manufacturing a material for high-density magnetic recording by filling the material with a magnetic metal and then physically grinding, polishing, etc. the surface of the material. Aluminum or aluminum alloy material (hereinafter referred to as aluminum material) is anodized, and the countless pores formed in the resulting anodic oxide film are filled with magnetic metal using various methods to form a magnetic film. It is already known to produce magnetic recording materials and use them as magnetic recording materials. A remarkable feature of the magnetic recording material made by this method is that the magnetic material is contained in pores perpendicular to the surface of the anodic oxide film, resulting in the so-called "perpendicular magnetization characteristic."
This means that the recording density can be dramatically increased compared to a conventional horizontal magnetization type magnetic recording material in which a general magnetic material is coated on the substrate surface. However, when a magnetic film obtained by filling the pores of such an anodized film with a magnetic material is used as a magnetic recording material, it is difficult to physically grind and polish the surface of the formed anodic oxide film. The surface must be sufficiently smooth, and the film thickness after polishing must be at least 2 μm in order to avoid damage caused by the head and to obtain sufficient magnetization characteristics, regardless of whether the magnetic head is used as a contact or floating type. It is desirable that the magnetization characteristics be able to take an appropriate value depending on the type of head, and that the characteristics be as uniform as possible over the entire surface of the material. However, in the anodic oxide film obtained under conventional anodizing treatment conditions, the pore diameter is small, so the coercive force (Hc) is too high, making recording and reproducing impossible. However, there were problems in that the magnetic properties as a magnetic recording material were not appropriate, such as the output being too small. It is known that the pore size in this anodic oxide film varies greatly depending on the type of electrolytic bath used during treatment. For example, when a sulfuric acid bath, which is the most common treatment bath, The pore diameter of the coating film is 100 to 200 Å, whereas in the case of a phosphoric acid bath, it is approximately 500 to 1000 Å. The film formed by this bath tends to be brittle, and a film with a thickness of about 2 μm at most can only be obtained. On the other hand, the anodic oxide film obtained by electrolytic treatment using sulfuric acid, oxalic acid, sulfosalicylic acid, or a bath mainly composed of these acids has a strong film quality and a film of sufficient thickness, but the pores are small. Since the pore size of the pore size was small, it was necessary to expand the pore size through secondary treatment. Therefore, as proposed by the present inventors in Japanese Patent Application No. 103978/1983, an aluminum material that has been anodized using a general treatment bath is placed in an acid or alkaline bath as a method for enlarging the pores of an anodized film. When a part of the film, that is, the pore wall, is chemically dissolved by dipping in The patent application was filed after discovering that when a pore enlargement method using chemical dissolution is employed, the pore diameter can be controlled relatively freely by appropriately controlling the dissolution conditions. However, when a magnetic metal is precipitated into the enlarged pores as described above to produce a magnetic recording medium, the amount of precipitated magnetic metal is often microscopically non-uniform, and therefore it is not used as a high-density magnetic recording medium. A microscopically uniform metal filling is required since the output may be non-uniform and cause errors. Therefore, the present inventors conducted more detailed studies and overcame the above problems. That is, in the present invention, when obtaining an aluminum material for high-density magnetic recording by filling the pores of an anodized film obtained by anodizing an aluminum material with a magnetic metal, the aluminum material is first coated with a thickness of 4 μm or more. After forming an anodic oxide film, this is immersed in an acid or alkali bath to chemically dissolve a portion of the anodic oxide film to form pores in the range of 300 Å to 1400 Å. After enlarging the pores to a diameter of The magnetic metal is exposed on the surface of the anodic oxide film. Next, the method of the present invention will be explained in more detail with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing the steps of the method of the present invention. The aluminum material 1 used in the present invention is not particularly limited in type, but may be made of a material that is often coated with an anodic oxide film, such as pure aluminum, 5
Series, 6 series, etc. are preferred. As the electrolytic bath for anodizing treatment, a bath mainly containing sulfuric acid, oxalic acid, chromic acid, or these acids, or a bath containing an organic acid such as sulfosalcylic acid to which an inorganic acid is added can be used. It is also possible to use an alkaline bath containing etc. as the main ingredients. The composition and bath temperature of these baths are selected appropriately, and 0.1~
Anodizing is performed at a current density of 2.0 A/dm 2 and a voltage of 5 to 20 V, which facilitates the precipitation and filling of magnetic metal in the next process, and also allows for grinding and polishing in relation to the aluminum material, as described later. The anodic oxide film 4 consisting of the porous layer 2 and the barrier layer 3 is formed to have a thickness of 4 μm or more so that the film thickness can be maintained at least about 2 μm or more later. The state after chemical dissolution is shown in Figure 1A. Note that with a film thickness of about 4 μm or less, it is difficult for the magnetic metal to precipitate locally and uniformly. In other words, if the magnetic metal comes out on the surface of the film 4 in one part, the current will concentrate there and cause precipitation in other parts. This results in a problem that the magnetic metal is not filled sufficiently above the pores 5. Next, as shown in FIG. 1B, the walls of the pores 5 after the anodizing treatment are chemically dissolved to enlarge the pore diameter. Since the pore diameter affects the coercive force, by strictly performing this process, it becomes possible to quantitatively control the coercive force. The bath used for this chemical dissolution is an acid bath containing phosphoric acid, chromic acid, sulfuric acid, oxalic acid, or two or more of these, or a dilute solution of caustic soda, caustic potash, or trisodium phosphate solution. An alkaline bath such as the above is preferably used, and the temperature is usually room temperature to about 50°C.
If the temperature or acid or alkali concentration is high, the dissolution is too fast and the pore diameter tends to become non-uniform, which may cause the film 4 to deteriorate more than necessary. The dissolution time is 5 to 30 minutes, preferably 10 to 30 minutes, depending on the desired pore size for anodizing.
It is easier to control if you keep it within 20 minutes. By doing so, the pore diameter can be adjusted to 300 to 1400 Å, preferably 400 to 1400 Å.
Make it 1000Å. Note that when the pores 5 are enlarged with acid or alkali, the thickness of the barrier layer 3 at the bottom of the pores becomes uneven due to the chemical dissolution treatment, and if this continues, the magnetic metal will not be deposited uniformly. can't get it. Therefore, it is preferable to perform a treatment for adjusting the barrier layer. The energization treatment for this purpose can be performed in the bath used for the chemical dissolution treatment. At this time, if the voltage is too high, the barrier layer 3 will become too thick, making it difficult for the next magnetic metal to be deposited.If the voltage is too low, the barrier layer 3 will become too thin, and the film will not be formed during the magnetic metal deposition process. For direct current, 5 to 25V, preferably
Approximately 10 to 20V is good, and for AC, 6 to 20V,
Preferably it is about 10 to 17V. Note that it usually takes 3 to 10 minutes for the current to stabilize.
In this way, a barrier layer with a uniform thickness of 100 to 400 Å can be obtained. Next, the aluminum material whose pores have been enlarged or whose barrier layer has been adjusted as described above,
Water-soluble salts containing magnetic metal ions such as Fe, Co, Ni, etc., including sulfates, sulfamates, etc.
Furthermore, in order to facilitate electrolytic deposition, it is immersed in a bath containing a supporting electrolyte such as magnesium sulfate that is not electrolyzed, and a direct current (aluminum material is used as the cathode) is connected to an insoluble counter electrode such as graphite or stainless steel. ), a magnetic metal is deposited and filled into the pores through alternating current or a superimposed current. At that time, in the case of direct current, the current density is 0.05 to 1.5A/
In the case of dm2 , alternating current, 10-20V is preferred. However, as schematically shown in FIG. 1C, the magnetic metal deposited in the pores has a different filling amount because the height l of the filled magnetic metal 6 differs even between adjacent pores 5. , which causes the magnetization properties of individual filled metal columns to be different. Therefore, in the present invention, in order to avoid the above-mentioned tendency, as shown in FIG.
physically remove the surface. The amount to be removed is the minimum height l min of the filled magnetic metal column l, or about 10% less than that, and the height of the metal column after this deletion is defined as l 2 . Also, l 2 is the thickness of porous layer 2, which is 50~
Since the amount of porous layer 2 is about 80%, it is desirable to remove 40 to 60% of the porous layer 2 from its surface, so that the entire upper surface of the filled magnetic metal is exposed to the surface of the anodic oxide film. As a result, the heights of the magnetic metal columns are almost constant, so the magnetization characteristics of the individual magnetic metals are almost uniform, and the time axis of the reproduction output of the AC signal recorded on the envelope-magnetic recording medium is shortened. The band-shaped reproduced output figure obtained by recording on a chart also becomes good, and high density is achieved. That is, the envelope is shown in Fig. 2, and the one in which the surface of the anodic oxide film is shaved after filling with magnetic metal as in the present invention is good as shown in Fig. 2 (b), whereas the envelope is as shown in Fig. 2 (a). If the surface of the film is not scraped, the magnetic properties of the medium may be uneven,
Also, the distance between the medium and the head is not uniform, and the envelope is poor. As described above, according to the present invention, a magnetic metal column is placed in each pore of an anodic oxide film of uniform thickness applied to the surface of an aluminum material at the same height as the depth of the pore, and the magnetic metal column is In either case, it is possible to obtain magnetic recording material filled with approximately the same height. At that time, depending on the filling magnetic metal, for example,
In the case of Fe, if the diameter of the magnetic metal column is D and the height is l 2 (assuming it is a cylinder), if l 2 /D>10, it exhibits perpendicular magnetization characteristics, and in the case of Co, l 2 /D>20
The same applies if so. However, if D is made smaller in order to improve the perpendicular magnetization characteristic, the coercive force becomes too large, resulting in problems such as the need for a powerful magnetic head. Note that the present invention does not necessarily aim at perpendicular magnetization characteristics, but can also utilize horizontal magnetization characteristics for metals that do not exhibit perpendicular magnetization characteristics when l 2 /D > 10, and can be applied to metals that do not exhibit perpendicular magnetization characteristics using conventional methods such as coating methods. Sufficiently high density can be achieved compared to horizontal magnetization. The magnetic film obtained above can be finished by washing with water and drying, but as an anti-corrosion treatment, it can be sealed with hot water using a conventional method, or by dry surface treatment, such as sputtering with silicon oxide, to give the surface a very strong surface. A thin protective coating may also be applied. Examples of the present invention will be described below. Example 1 JIS A5086 aluminum donut plate (5
1/4 inch diameter, 2 mm thickness) was processed under the following conditions, the static magnetization characteristics were determined using a vibrating magnetization measuring device, and the envelope of the playback output was determined, and the results shown in Table 1 were obtained. . However, the barrier layer was prepared in a chemical dissolution treatment bath, and the magnetic metal was deposited and filled in a bath containing 120 g of ferrous sulfate, 70 g of magnesium sulfate, and 20 g of citric acid at a bath temperature of 30°C. Electricity was applied at 60 Hz, 15 V AC for 15 minutes using graphite as the counter electrode. After filling with magnetic metal, the anodized film is polished using a buffing polisher for 15 minutes using high-purity (99.99%) alumina abrasive grains (particle size 1 μm) to achieve an average surface roughness Rmax.
=0.04μm was obtained. For comparison, if physical deletion is not performed (No.
4) and without chemical dissolution treatment (No.
The measured values of 5) are also listed in Table 1. As can be seen from the table, unless physical polishing or grinding is performed, the dynamic magnetization characteristics will vary and the material cannot be used as a magnetic recording material.

【表】【table】

【表】 実施例 2 実施例1と同じアルミニウム板に実施例1(No.
1)と同様な条件の陽極酸化処理、化学的溶解処
理を行なつた後、CoおよびNiを細孔に析出、充
填した。その際、析出充填は硫酸コバルト30g/
、硫酸ニツケル70g/、ほう酸20g/、グ
リセリン2g/の浴中で浴温30℃とし、且つグ
ラフアイトを対極として交流60Hz、15V、3〜15
分間通電して実施した。次に物理的な削除量や陽
極酸化皮膜の膜厚に応じて変化させた。表面アラ
サRmax=0.03μmを得た。その磁化特性の結果
は、第2表の通りであつた。
[Table] Example 2 Example 1 (No.
After performing anodization treatment and chemical dissolution treatment under the same conditions as in 1), Co and Ni were precipitated and filled into the pores. At that time, the precipitation filling was 30g of cobalt sulfate/
, nickel sulfate 70g/, boric acid 20g/, glycerin 2g/ in a bath with a bath temperature of 30℃, and with graphite as the counter electrode, AC 60Hz, 15V, 3-15
The test was carried out by applying electricity for a minute. Next, it was varied depending on the amount of physical removal and the thickness of the anodic oxide film. Surface roughness Rmax=0.03 μm was obtained. The results of the magnetization characteristics are shown in Table 2.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図イ〜ニは、本発明方法の工程を概略的に
示す模式図、第2図イ及びロは、物理的な削除を
行わない場合と行つた場合の再生出力のエンベロ
ープを示す図である。 1……アルミニウム材、2……多孔質、3……
バリヤー層、4……陽極酸化皮膜、5……細孔、
6……磁性金属。
Figures 1A to 2D are schematic diagrams schematically showing the steps of the method of the present invention, and Figures 2A and 2B are diagrams showing the envelope of the playback output when physical deletion is not performed and when physical deletion is performed. be. 1... Aluminum material, 2... Porous, 3...
Barrier layer, 4... anodized film, 5... pores,
6...Magnetic metal.

Claims (1)

【特許請求の範囲】 1 アルミニウム材に陽極酸化処理を施して得ら
れた陽極酸化皮膜の細孔に磁性金属を充填して、
磁気記録用アルミニウム材を得るに際し、先づア
ルミニウム材に厚さ4μm以上の陽極酸化皮膜を形
成した後、これを酸またはアルカリ浴中に浸漬し
て陽極酸化皮膜の一部を化学的に溶解することに
よつて陽極酸化皮膜における細孔を300Å乃至
1400Åの範囲の任意の孔径に拡大し、さらに磁性
金属イオンを含む浴中において電解処理を施し
て、上記細孔中に磁性金属を析出させた後、陽極
酸化皮膜の表面を物理的に削つて、充填した磁性
金属を上記皮膜の表面に露出させることを特徴と
する磁気記録用アルミニウム材の製造法。 2 アルミニウム材に陽極酸化処理を施して得ら
れた陽極酸化皮膜の細孔に磁性金属を充填して、
磁気記録用アルミニウム材を得るに際し、先づア
ルミニウム材に厚さ4μm以上の陽極酸化皮膜を形
成した後、これを酸またはアルカリ浴中に浸漬し
て陽極酸化皮膜の一部を化学的に溶解することに
よつて陽極酸化皮膜における細孔を300Å乃至
1400Åの範囲の任意の孔径に拡大し、次いで浸漬
浴中に暫時電流を通ずることによつて、陽極酸化
皮膜におけるバリヤー層の調整を行つた後、磁性
金属イオンを含む浴中において電解処理を施し
て、上記細孔中に磁性金属を析出させ、その後、
陽極酸化皮膜の表面に物理的に削つて、充填した
磁性金属を上記皮膜の表面に露出させることを特
徴とする磁性記録用アルミニウム材の製造法。
[Claims] 1. Filling the pores of an anodized film obtained by anodizing an aluminum material with a magnetic metal,
To obtain an aluminum material for magnetic recording, first an anodic oxide film with a thickness of 4 μm or more is formed on the aluminum material, and then a part of the anodic oxide film is chemically dissolved by immersing it in an acid or alkaline bath. In particular, the pores in the anodic oxide film can be reduced to 300 Å or more.
After enlarging the pores to a desired diameter within the range of 1400 Å and performing electrolytic treatment in a bath containing magnetic metal ions to precipitate the magnetic metal in the pores, the surface of the anodic oxide film is physically scraped. A method for producing an aluminum material for magnetic recording, characterized in that the filled magnetic metal is exposed on the surface of the film. 2 Filling the pores of the anodic oxide film obtained by anodizing the aluminum material with magnetic metal,
To obtain an aluminum material for magnetic recording, first an anodic oxide film with a thickness of 4 μm or more is formed on the aluminum material, and then a part of the anodic oxide film is chemically dissolved by immersing it in an acid or alkaline bath. In particular, the pores in the anodic oxide film can be reduced to 300 Å or more.
The barrier layer in the anodic oxide film is adjusted by enlarging the pores to a desired diameter in the range of 1400 Å and then briefly passing an electric current through an immersion bath, followed by electrolytic treatment in a bath containing magnetic metal ions. Then, a magnetic metal is precipitated into the pores, and then,
A method for producing an aluminum material for magnetic recording, which comprises physically scraping the surface of an anodized film to expose the filled magnetic metal on the surface of the film.
JP18776683A 1983-06-10 1983-10-07 Manufacture of aluminum material for magnetic recording Granted JPS6082694A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP18776683A JPS6082694A (en) 1983-10-07 1983-10-07 Manufacture of aluminum material for magnetic recording
DE19843421442 DE3421442A1 (en) 1983-06-10 1984-06-08 METHOD FOR PRODUCING A MAGNETIC RECORDING MEDIUM
US06/618,512 US4548682A (en) 1983-06-10 1984-06-08 Process of producing magnetic recording media
GB08414656A GB2142043B (en) 1983-06-10 1984-06-08 Magnetic recording media
IT21347/84A IT1174167B (en) 1983-06-10 1984-06-11 PROCEDURE FOR THE PRODUCTION OF VEHICLES FOR MAGNETIC REGISTRATION
NL8401849A NL8401849A (en) 1983-06-10 1984-06-12 METHOD FOR MANUFACTURING MAGNETIC RECORDING MEDIA
FR8409271A FR2548813A1 (en) 1983-06-10 1984-06-12 METHOD FOR MANUFACTURING A MAGNETIC RECORDING MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18776683A JPS6082694A (en) 1983-10-07 1983-10-07 Manufacture of aluminum material for magnetic recording

Publications (2)

Publication Number Publication Date
JPS6082694A JPS6082694A (en) 1985-05-10
JPH025836B2 true JPH025836B2 (en) 1990-02-06

Family

ID=16211831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18776683A Granted JPS6082694A (en) 1983-06-10 1983-10-07 Manufacture of aluminum material for magnetic recording

Country Status (1)

Country Link
JP (1) JPS6082694A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182019A (en) * 1984-02-28 1985-09-17 Toshiro Takahashi Manufacture of magnetic recording medium
JPS6366729A (en) * 1986-09-08 1988-03-25 Nippon Light Metal Co Ltd Production of magnetic recording medium
JPH01188695A (en) * 1988-01-25 1989-07-27 Alps Electric Co Ltd Method for plating anodic oxide film of aluminum with alloy
WO2004070712A1 (en) * 2003-02-06 2004-08-19 Fujitsu Limited Magnetic recording medium and method for producing the same, magnetic medium substrate being employed therein, and magnetic storage device
JP4865240B2 (en) * 2004-03-23 2012-02-01 キヤノン株式会社 Method for manufacturing structure, method for manufacturing magnetic recording medium, method for manufacturing molded body
JP4825995B2 (en) * 2004-11-29 2011-11-30 有限会社三恭興産 Lightweight magnetic material and manufacturing method thereof
CN105332034B (en) * 2015-10-19 2017-08-04 博罗县东明化工有限公司 Aluminum alloy surface treatment agent and its method for preparing nano aperture in aluminum alloy surface

Also Published As

Publication number Publication date
JPS6082694A (en) 1985-05-10

Similar Documents

Publication Publication Date Title
US4548682A (en) Process of producing magnetic recording media
JPS60231921A (en) Surface treatment of substrate for magnetic disk
JPH054727B2 (en)
JPH025836B2 (en)
JPS61229248A (en) Photomagnetic recording medium and its production
CA1317906C (en) Magnetic recording material
JP2001073166A (en) Aluminum alloy substrate for magnetic recording medium and method of manufacturing the same
KR890004229B1 (en) Manufactured method of magnetic recording media
JPS62278294A (en) Production of substrate for magnetic recording medium
JP2500031B2 (en) Method for manufacturing titanium magnetic disk substrate
Tabaković et al. Roughness development in electrodeposited soft magnetic CoNiFe films in the presence of organic additives
JPS599194A (en) Imparting of barrier wall to surface of aluminum substrate
JPS59229738A (en) Manufacturing method of aluminum material for magnetic recording
JPS62291721A (en) Magnetic recording medium and its manufacture
JPH02285518A (en) Production of magnetic recording disk substrate
JPH0329114A (en) Magnetic recording medium and its production
JPS61204837A (en) Production of magnetic recording medium
JPH01173419A (en) Perpendicular magnetic recording medium
JPS6147201B2 (en)
JPS60223029A (en) Production of magnetic recording medium
JPH05140791A (en) Production of magneto-optical thin film
JPH01188695A (en) Method for plating anodic oxide film of aluminum with alloy
JP2000173050A (en) Magnetic recording medium and its fabricating method
JPH03273526A (en) Production of magnetic disk substrate
JPH0138878B2 (en)