JPH0257278B2 - - Google Patents
Info
- Publication number
- JPH0257278B2 JPH0257278B2 JP21021083A JP21021083A JPH0257278B2 JP H0257278 B2 JPH0257278 B2 JP H0257278B2 JP 21021083 A JP21021083 A JP 21021083A JP 21021083 A JP21021083 A JP 21021083A JP H0257278 B2 JPH0257278 B2 JP H0257278B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- hole
- measured
- reflected signal
- receiving element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000001514 detection method Methods 0.000 description 36
- 230000035945 sensitivity Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B17/00—Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
- G01S15/06—Systems determining the position data of a target
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Computer Networks & Wireless Communication (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は超音波を利用した被測定物の形状検出
装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for detecting the shape of an object to be measured using ultrasonic waves.
従来例の構成とその問題点
従来の被測定物の形状検出装置としては超音波
送受波素子を被測定物に対して回転走査して得ら
れた反射信号強度から、被測定物の位置と姿勢を
検出するものがある。以下その内容の概略を説明
する。Configuration of conventional example and its problems A conventional device for detecting the shape of a measured object detects the position and orientation of the measured object from the reflected signal intensity obtained by rotating and scanning an ultrasonic wave transmitting/receiving element with respect to the measured object. There is something that detects The outline of the contents will be explained below.
第1図は従来の装置の概略の構成を示すシステ
ム図である。第2図は従来の装置を用いた形状検
出を示す斜視図である。第1図において超音波送
受波素子1に第3図に示す高電圧パルス17を印
加すると空気中に所定の周波数の超音波パルスが
発射される。この超音波パルスが第2図の対象物
体13で反射され、対象物体13の各辺14,1
5,16からの反射信号が超音波送受波素子1に
到達し、受波信号増巾器3で増幅された後、アナ
ログ−デジタル変換されてメモリ15に記憶され
る。第3図は、メモリ15に記憶された超音波送
受波素子1の動作波形を示すもので、37,3
8,39はそれぞれ対象物体13の各辺14,1
5,16からの反射信号を示す。メモリ15に記
憶された反射信号は小型電子計算機6に転送さ
れ、第3図に示した反射信号37,38,39の
伝藩時間40,41,42及び反射信号強度4
3,44,45を検出している。 FIG. 1 is a system diagram showing the general configuration of a conventional device. FIG. 2 is a perspective view showing shape detection using a conventional device. In FIG. 1, when a high voltage pulse 17 shown in FIG. 3 is applied to the ultrasonic transceiver element 1, an ultrasonic pulse of a predetermined frequency is emitted into the air. This ultrasonic pulse is reflected by the target object 13 in FIG.
The reflected signals from 5 and 16 reach the ultrasonic transceiver element 1, are amplified by the received signal amplifier 3, are analog-to-digital converted, and are stored in the memory 15. FIG. 3 shows the operating waveforms of the ultrasonic transceiver element 1 stored in the memory 15.
8 and 39 are the sides 14 and 1 of the target object 13, respectively.
5 and 16 are shown. The reflected signals stored in the memory 15 are transferred to the small computer 6, and the transmission times 40, 41, 42 and the reflected signal strength 4 of the reflected signals 37, 38, 39 shown in FIG.
3, 44, and 45 are detected.
また第2図において超音波送受波素子1は、小
型電子計算機6からの制御信号によりパルスモー
タドライバ11とパルスモータ10を介して矢印
A、B方向に回転走査する構成となつており、超
音波送受波素子1を所定の角度でステツプしなが
ら前述の被測定物間で反射信号の伝藩時間及び強
度の検出を行なつている。第4図は、超音波送受
波素子1を回転走査させた時の被測定物13から
の反射信号強度を横軸に超音波送受波素子の回転
角、縦軸に反射信号強度をとつてプロツトしたも
のである。46,47,48はそれぞれ被測定物
13の各辺14,15,16からの反射信号を整
理したものであり、それぞれの反射信号強度が最
大となるときの超音波送受波素子1の回転走査角
度から被測定物13の各辺14,15,16の方
向を検出している。また前述の反射信号の伝藩時
間から被測定物の各辺までの距離が得られるので
被測定物13の各辺13,14,15の座標を求
めることができ、被測定物13の位置と姿勢を検
出することができる。 In addition, in FIG. 2, the ultrasonic transmitting/receiving element 1 is configured to rotate and scan in the directions of arrows A and B via a pulse motor driver 11 and a pulse motor 10 in response to a control signal from a small electronic computer 6. While stepping the wave transmitting/receiving element 1 at a predetermined angle, the transmission time and intensity of the reflected signal between the objects to be measured are detected. Fig. 4 plots the intensity of the reflected signal from the object to be measured 13 when the ultrasonic transmitting/receiving element 1 is rotated and scanned, with the rotation angle of the ultrasonic transmitting/receiving element on the horizontal axis and the reflected signal intensity on the vertical axis. This is what I did. 46, 47, and 48 are organized reflection signals from each side 14, 15, and 16 of the object to be measured 13, and are rotational scans of the ultrasonic transceiver element 1 when the intensity of each reflection signal is maximum. The direction of each side 14, 15, 16 of the object to be measured 13 is detected from the angle. Furthermore, since the distance to each side of the object to be measured can be obtained from the transmission time of the reflected signal described above, the coordinates of each side 13, 14, 15 of the object to be measured 13 can be determined, and the position of the object to be measured 13 and Posture can be detected.
しかしながら、従来の位置姿勢検出装置を穴・
溝の形状検出に適用した場合、大径穴あるいは大
巾溝ではその形状検出が可能であるが、小径穴あ
るいは小巾溝では、穴・溝の各辺からの反射信号
が重畳され、超音波送受波素子の減衰性を大幅に
向上しないと形状検出できないという問題点があ
つた。 However, conventional position and orientation detection devices cannot be
When applied to groove shape detection, it is possible to detect the shape of large diameter holes or wide grooves, but in small diameter holes or narrow width grooves, reflected signals from each side of the hole or groove are superimposed, and ultrasonic waves are detected. There was a problem in that the shape could not be detected unless the attenuation of the wave transmitting and receiving elements was significantly improved.
本発明者らは上記従来の問題点を解決するため
にすでに被測定物の形状検出装置を提案してい
る。 The present inventors have already proposed a shape detection device for an object to be measured in order to solve the above-mentioned conventional problems.
第5図はすでに本発明者らによつて提案した被
測定物の形状検出装置のシステム図である。また
第6図は、本形状検出装置を穴82の位置検出に
適用した場合の斜視図である。第7図は同平面図
である。第7図において超音波送受波素子73は
対象物体81に対してθ傾斜して対向する形でマ
ニピユレータ72に取付けられX軸方向に平行移
動する。第6図において83は超音波送受波素子
73から送波される超音波ビームの中心位置を示
しており、超音波送受波素子73は走査開始位置
84から走査終了位置85の間を一定距離間隔で
送受波しながら移動する。第8図は超音波送受波
素子73をX軸方向に平行走査したときの対象物
体81からの反射信号強度を、横軸に超音波送受
波素子73の平行走査量、縦軸に反射信号強度を
とつてプロツトしたものである。ここで反射信号
強度が極小値をとる時の超音波送受波素子73の
平行走査量を検出し、超音波送受波素子73の走
査開始位置84の座標に前記平行走査量を加える
ことによりX軸上における穴82の中心位置を検
出することができる。またY軸上における穴82
の中心位置も同様に検出できる。 FIG. 5 is a system diagram of an apparatus for detecting the shape of an object to be measured, which has already been proposed by the present inventors. Further, FIG. 6 is a perspective view when the present shape detection device is applied to detect the position of the hole 82. FIG. 7 is a plan view of the same. In FIG. 7, the ultrasonic wave transmitting/receiving element 73 is attached to the manipulator 72 so as to face the target object 81 at an angle of θ, and is moved in parallel in the X-axis direction. In FIG. 6, reference numeral 83 indicates the center position of the ultrasonic beam transmitted from the ultrasonic wave transmitting/receiving element 73, and the ultrasonic wave transmitting/receiving element 73 moves from the scanning start position 84 to the scanning end position 85 at constant distance intervals. It moves while transmitting and receiving waves. FIG. 8 shows the intensity of the reflected signal from the target object 81 when the ultrasonic transmitting/receiving element 73 is scanned in parallel in the X-axis direction, the horizontal axis is the parallel scanning amount of the ultrasonic transmitting/receiving element 73, and the vertical axis is the reflected signal intensity. This is a plot taken from . Here, by detecting the amount of parallel scanning of the ultrasonic wave transmitting/receiving element 73 when the reflected signal intensity takes a minimum value, and adding the parallel scanning amount to the coordinates of the scanning start position 84 of the ultrasonic wave transmitting/receiving element 73, The center position of the hole 82 on the top can be detected. Also, the hole 82 on the Y axis
The center position of can also be detected in the same way.
一方上記の構成の形状検出装置を用いて穴82
の位置検出を行なう場合には穴82の位置検出精
度は検出感度Sによつて決まるため、検出の高感
度化を計ることにより、高位置検出精度化の実現
が望まれている。 On the other hand, the hole 82 is
When detecting the position of the hole 82, the accuracy of position detection of the hole 82 is determined by the detection sensitivity S, so it is desired to achieve high position detection accuracy by increasing the detection sensitivity.
発明の目的
本発明者らは超音波送受波素子を用いた被測定
物の形状検出装置の高検出感度化について鋭意検
討し前記超音波送受波素子と前記被測定物の中心
軸との傾斜角の適正値を見出すことにより上記問
題をすべて解決できることを見出し本発明に列つ
た。Purpose of the Invention The present inventors have made extensive studies on increasing the detection sensitivity of a device for detecting the shape of an object to be measured using an ultrasonic transceiver element, and have determined the angle of inclination between the ultrasonic transceiver element and the central axis of the object to be measured. It was discovered that all of the above problems could be solved by finding an appropriate value for , and the present invention was developed.
すなわち本発明は、上述の欠点をなくし、簡易
な構成で、被測定物の高精度な位置検出が出来る
装置を提供することを目的とする。 That is, it is an object of the present invention to eliminate the above-mentioned drawbacks and to provide an apparatus capable of highly accurate position detection of an object to be measured with a simple configuration.
発明の構成
本発明は超音波送受波素子から送波される超音
波ビームを被測定物に対して走査することにより
得られた前記被測定物からの反射信号強度を信号
処理して前記被測定物の形状を検出する信号処理
手段を有する被測定物の位置検出装置において、
前記超音波送受波素子が送受波する超音波の波長
をλ、前記超音波送受波素子の直径をD、θ=
sin1.22λ/D(rad)としたとき、前記超音波送受
波素子はそのビーム送波面に垂直な軸が被測定物
の前記超音波ビームが走査される面に垂直な軸に
対して前記θとほぼ等しく傾斜して構成してな
り、被測定物の位置検出を高精度で行なう装置を
得るものである。Composition of the Invention The present invention processes the reflected signal intensity from the object to be measured, which is obtained by scanning the object to be measured with an ultrasonic beam transmitted from an ultrasonic transceiver element. In a device for detecting the position of a measured object having a signal processing means for detecting the shape of the object,
The wavelength of the ultrasonic wave transmitted and received by the ultrasonic wave transmitting/receiving element is λ, the diameter of the ultrasonic wave transmitting/receiving element is D, θ=
When sin1.22λ/D (rad), the axis perpendicular to the beam transmission surface of the ultrasonic wave transmitting/receiving element is θ The object of the present invention is to obtain a device which is configured to be tilted almost equally as shown in FIG.
実施例の説明
以下本発明の第1の実施例について図面を参照
しながら説明する。DESCRIPTION OF EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings.
本発明の第1実施例における穴の位置検出装置
の概略のシステム図は前述の第5図と同様であり
その構成について説明する。 The schematic system diagram of the hole position detection device according to the first embodiment of the present invention is the same as that shown in FIG. 5 described above, and its configuration will be described below.
第5図において72は被測定物と超音波送受波
素子(以下超音波トランスデユーサという)の相
対位置関係を変化させる手段(以下マニピユレー
タという)であり、データ処理制御装置70から
の制御信号によりマニピユレータ制御装置71を
介して動作を制御している。またマニピユレータ
72上には、送受波兼用の超音波トランスデユー
サ73が設置されている。 In FIG. 5, 72 is a means (hereinafter referred to as a manipulator) for changing the relative positional relationship between the object to be measured and an ultrasonic wave transmitting/receiving element (hereinafter referred to as an ultrasonic transducer), and is controlled by a control signal from the data processing control device 70. The operation is controlled via a manipulator control device 71. Further, on the manipulator 72, an ultrasonic transducer 73 for both transmitting and receiving waves is installed.
超音波トランスデユーサ73は、発振器80に
より所定の周波数の超音波を対象物体に向けて送
波し、またその反射信号を受波している。超音波
トランスデユーサ73が出力する受波信号は受波
信号増幅器74を経て、アナログ−デジタル変換
器75(以下A/D変換器という。)によつてデ
ジタル値に変換され、メモリ76に記憶される。
さらにデータ処理制御装置70が設けられるが、
このデータ処理制御装置70はインタフエイスコ
ントロールユニツト77(以下ICUという。)フ
ロツピデイスクドライブ装置78(以下FDDと
いう。)および小型電子計算機79(以下CPUと
いう。)から構成される。ICU77はFDD78お
よびCPU79に接続されるとともに、前述の発
振器80とメモリ76に接続される。FDD78
は本位置検出装置を用いて位置検出を行なうため
のプログラム或は諸条件を入力する。このデータ
処理制御装置70においては、発振器80を動作
させるための制御信号の出力、マニピユレータ7
2の動作を制御するマニピユレータ制御装置71
への制御信号の出力を行なうとともにメモリ76
から転送された入力データの前処理を行ない、
FDD78から予め入力ストアされたプログラム
に従つてCPU79で反射信号強度の検出、対象
物体の穴の位置の演算処理、マニピユレータ72
の移動量の演算処理を行なう。 The ultrasonic transducer 73 uses an oscillator 80 to transmit ultrasonic waves of a predetermined frequency toward a target object, and receives a reflected signal thereof. The received signal output from the ultrasonic transducer 73 passes through a received signal amplifier 74, is converted into a digital value by an analog-to-digital converter 75 (hereinafter referred to as an A/D converter), and is stored in a memory 76. be done.
Furthermore, a data processing control device 70 is provided,
This data processing control device 70 is composed of an interface control unit 77 (hereinafter referred to as ICU), a floppy disk drive device 78 (hereinafter referred to as FDD), and a small electronic computer 79 (hereinafter referred to as CPU). The ICU 77 is connected to the FDD 78 and the CPU 79, as well as to the aforementioned oscillator 80 and memory 76. FDD78
inputs a program or various conditions for performing position detection using this position detection device. This data processing control device 70 outputs a control signal for operating an oscillator 80, and a manipulator 7
Manipulator control device 71 that controls the operation of 2
It also outputs control signals to the memory 76.
pre-processes the input data transferred from
According to the program stored in advance from the FDD 78, the CPU 79 detects the intensity of the reflected signal, performs arithmetic processing on the position of the hole in the target object, and performs the manipulator 72.
The amount of movement is calculated.
次に上記のように構成した位置検出装置の動作
を説明する。なお本実施例では、第6図及び第7
図に示す超音波トランスデユーサ73の直径が36
mm、駆動周波数が66KHz(波長λ=5.14mm)、対
象物体81と超音波トランスデユーサ73の距離
が100mm、対象物体81の穴82の直径が5mmで、
超音波トランスデユーサ73の送受波面は対象物
体81に対して所定の角度θ(本実施例では10゜)
傾斜して配置されており、0.1mmのステツプでX
軸方向へ、対象物体81と一定の距離を保つて平
行走査した場合について説明する。 Next, the operation of the position detection device configured as described above will be explained. Note that in this embodiment, FIGS. 6 and 7
The diameter of the ultrasonic transducer 73 shown in the figure is 36
mm, the driving frequency is 66 KHz (wavelength λ = 5.14 mm), the distance between the target object 81 and the ultrasonic transducer 73 is 100 mm, and the diameter of the hole 82 in the target object 81 is 5 mm.
The transmitting and receiving wave surface of the ultrasonic transducer 73 is set at a predetermined angle θ (10° in this embodiment) with respect to the target object 81.
It is arranged at an angle, and the X
A case will be described in which parallel scanning is performed in the axial direction while maintaining a constant distance from the target object 81.
位置検出はFDD78から予め入力ストアされ
た第9図のフローチヤートに示す位置検出プログ
ラムの手順に従つて行なわれる。第9図のフロー
チヤートにおいて、まずステツプ1でデータ処理
制御装置70からの制御信号によりマニピユレー
タ制御装置71を介してマニピユレータ72を駆
動して超音波トランスデユーサ73をセンシング
開始位置84に移動する。第6図において83は
超音波トランスデユーサ73から送波される超音
波ビームの中心位置を示す。また84はセンシン
グ開始時の、また85はセンシング完了時の、超
音波ビームの中心位置と対象物体81の交点を示
し、X軸方向のセンシングは、この区間内で行な
われる。なお本実施例ではセンシング区間は40mm
である。 Position detection is performed according to the procedure of the position detection program shown in the flowchart of FIG. 9, which is input and stored in advance from the FDD 78. In the flowchart of FIG. 9, first, in step 1, the manipulator 72 is driven via the manipulator control device 71 in response to a control signal from the data processing control device 70 to move the ultrasonic transducer 73 to the sensing start position 84. In FIG. 6, 83 indicates the center position of the ultrasonic beam transmitted from the ultrasonic transducer 73. Further, 84 indicates the intersection point between the center position of the ultrasonic beam and the target object 81 at the time of starting sensing, and 85 at the time of completing sensing, and sensing in the X-axis direction is performed within this section. In this example, the sensing section is 40mm.
It is.
次にステツプ2でデータ処理制御装置70から
の制御信号により発振器80を動作させ超音波ト
ランスデユーサ73で所定の周波数の超音波を被
測定物81に向けて送波すると同時に、A/D変
換器75、メモリ76を動作させて、対象物体8
1からの反射信号をメモリ76に記憶する。第1
0図にはメモリ76に記憶された反射信号を示
す。90は対象物体81からの反射信号を示す。 Next, in step 2, the oscillator 80 is operated by the control signal from the data processing control device 70, and the ultrasonic transducer 73 transmits ultrasonic waves of a predetermined frequency toward the object to be measured 81, and at the same time converts the A/D. By operating the device 75 and the memory 76, the target object 8 is
The reflected signal from 1 is stored in memory 76. 1st
FIG. 0 shows the reflected signal stored in the memory 76. Reference numeral 90 indicates a reflected signal from the target object 81.
次にステツプ3でメモリ76に記憶された反射
信号をICU77を介してCPU79に転送する。
CPU79ではFDD78から予め入力ストアされ
ているプログラムに従つて対象物体81からの反
射信号90の反射信号強度P1を検出する。 Next, in step 3, the reflected signal stored in the memory 76 is transferred to the CPU 79 via the ICU 77.
The CPU 79 detects the reflected signal intensity P 1 of the reflected signal 90 from the target object 81 according to a program input and stored in advance from the FDD 78 .
次にステツプ4ではマニピユレータ72をX軸
方向へ0.1mm移動して上記ステツプ2、ステツプ
3を繰返して所定のセンシング回数(本実施例で
は400回)を完了すればステツプ5へ進む。 Next, in step 4, the manipulator 72 is moved in the X-axis direction by 0.1 mm, and steps 2 and 3 are repeated, and when a predetermined number of sensing operations (400 times in this embodiment) is completed, the process proceeds to step 5.
ステツプ5では、上記ステツプ2、ステツプ3
で得られた検出対象穴82を含む対象物体81か
らの反射信号強度をもとにして検出対象穴82の
中心位置を検出する。第11図は直径が36mm、駆
動周波数が66KHz(波長λ=5.14mm)の超音波ト
ランスデユーサ73を対象物体に対してθ=10゜
傾斜してX軸方向に平行走査したときの対象物体
81からの反射信号強度を、横軸に超音波トラン
スデユーサ73の平行走査量、縦軸に反射信号強
度をとつて10点おきにプロツトしたものであり、
CPU79では、FDD78から予め入力ストアさ
れたプログラムに従つて反射信号強度の極小値を
検出して穴82のX軸方向の中心位置を検出して
いる。この時の穴検出感度S1は、−16dBであつ
た。なお穴検出感度Sは以下のように定義してい
る。 In step 5, the above steps 2 and 3 are performed.
The center position of the detection target hole 82 is detected based on the intensity of the reflected signal from the target object 81 including the detection target hole 82 obtained in . Figure 11 shows the target object when the ultrasonic transducer 73 with a diameter of 36 mm and a driving frequency of 66 KHz (wavelength λ = 5.14 mm) is tilted at θ = 10 degrees with respect to the target object and scanned in parallel to the X-axis direction. The reflected signal intensity from 81 is plotted every 10 points, with the horizontal axis representing the parallel scanning amount of the ultrasonic transducer 73 and the vertical axis representing the reflected signal intensity.
The CPU 79 detects the minimum value of the reflected signal intensity according to a program input and stored in advance from the FDD 78 to detect the center position of the hole 82 in the X-axis direction. The hole detection sensitivity S1 at this time was -16 dB. Note that the hole detection sensitivity S is defined as follows.
すなわち対象物体81からの反射信号の極小値
をP1、対象物体81からの反射信号の極大値を
P2とすると穴82の検出感度S(dB)は
S=20log(P1/P2)(dB) −(1)
である。また詳細な説明は省略するが、Y軸方向
の中心位置も同様に検出できる。 That is, the minimum value of the reflected signal from the target object 81 is P 1 , and the maximum value of the reflected signal from the target object 81 is P 1 .
When P 2 is assumed, the detection sensitivity S (dB) of the hole 82 is S=20log(P 1 /P 2 )(dB) −(1). Further, although a detailed explanation will be omitted, the center position in the Y-axis direction can also be detected in the same manner.
以上のように本実施例によれば穴82を有する
対象物体81に対して直径が36mmの超音波トラン
スデユーサ73の送受波面を10゜傾斜して駆動周
波数66KHzの超音波を送受波すると同時にマニピ
ユレータ72を動作させて対象物体81に対して
超音波トランスデユーサを一定の距離を保つて走
査することにより得られる反射信号強度を処理す
ることによつて最大の穴検出感度Sを得ることが
でき、これから0.1mmの穴位置検出精度が得られ
た。 As described above, according to this embodiment, the wave transmitting/receiving surface of the ultrasonic transducer 73 having a diameter of 36 mm is tilted by 10 degrees with respect to the target object 81 having the hole 82 to simultaneously transmit and receive ultrasonic waves with a driving frequency of 66 KHz. The maximum hole detection sensitivity S can be obtained by processing the reflected signal intensity obtained by operating the manipulator 72 and scanning the ultrasonic transducer at a constant distance with respect to the target object 81. This resulted in a hole position detection accuracy of 0.1 mm.
なお本実施例では、超音波トランスデユーサ7
3の送受波面は、検出対象の穴82の中心軸に対
して走査方向に10゜傾斜して構成したものについ
て述べたが、この傾斜角度を変化することにより
穴82の検出感度も変化する。第12図aは本実
施例と同様の構成で超音波トランスデユーサ53
の送受波面を穴82の中心軸に対してX軸方向に
傾斜させX軸方向に平行走査した時の対象物体5
4からの反射信号強度を、横軸に超音波トランス
デユーサ73の傾斜角度、縦軸に穴82の検出感
度をとつたものであり、傾斜角度θ1が10゜の時に
穴82の検出感度が最大値を示した。 Note that in this embodiment, the ultrasonic transducer 7
The transmitting/receiving wave surface in No. 3 has been described as being inclined at 10 degrees in the scanning direction with respect to the central axis of the hole 82 to be detected, but by changing this angle of inclination, the detection sensitivity of the hole 82 also changes. FIG. 12a shows an ultrasonic transducer 53 having the same configuration as this embodiment.
The target object 5 when the transmitting and receiving wave surface is tilted in the X-axis direction with respect to the central axis of the hole 82 and scanned parallel to the X-axis direction.
4, the horizontal axis is the inclination angle of the ultrasonic transducer 73, and the vertical axis is the detection sensitivity of the hole 82. When the inclination angle θ 1 is 10 degrees, the detection sensitivity of the hole 82 is showed the maximum value.
本実施例で用いた超音波トランスデユーサ73
の第1零ふく射角θ0は超音波トランスデユーサの
直径をD(mm)、駆動周波数をf(KHz)、音速をC
(mm/S)とすると2式より求まる。 Ultrasonic transducer 73 used in this example
The first zero radiation angle θ 0 is the diameter of the ultrasonic transducer D (mm), the driving frequency f (KHz), and the sound speed C
(mm/S), it can be found from equation 2.
θ0=sin1.22C/f・D(red) −(2)
本実施例ではθ0≒10゜となり穴82の検出感度
が最大値を示すときの超音波トランスデユーサ7
2の傾斜角度とほぼ一致することが分る。 θ 0 = sin1.22C/f・D(red) −(2) In this embodiment, θ 0 ≒10° and the ultrasonic transducer 7 when the detection sensitivity of the hole 82 shows the maximum value.
It can be seen that the angle of inclination is almost the same as No. 2.
また第12図bは本実施例と同様の構成で超音
波トランスデユーサ73の駆動周波数を51(KHz)
にして送受波面を穴82の中心軸に対してX軸方
向に傾斜させX軸方向に平行走査した時の対象物
体54からの反射信号強度を整理したものであ
り、傾斜角度θ1が13゜の時に穴82の検出感度が
最大値を示し、この時の穴検出感度S2は−13dB
であつた。またこの時の超音波トランスデユーサ
73の第1零ふく射角θは上述の2式よりθ0≒
13゜となり穴82の検出感度が最大値を示すとき
の超音波トランスデユーサ73の傾斜角度とほぼ
一致した。 In addition, FIG. 12b shows a configuration similar to that of this embodiment, with the driving frequency of the ultrasonic transducer 73 set to 51 (KHz).
The reflected signal intensity from the target object 54 is summarized when the transmitting/receiving wave surface is tilted in the X-axis direction with respect to the central axis of the hole 82 and scanned parallel to the X-axis direction, and the tilt angle θ 1 is 13°. The detection sensitivity of the hole 82 reaches its maximum value when , and the hole detection sensitivity S 2 at this time is -13 dB.
It was hot. In addition, the first zero radiation angle θ of the ultrasonic transducer 73 at this time is θ 0 ≒ from the above two equations.
The angle of inclination was 13 degrees, which almost coincided with the inclination angle of the ultrasonic transducer 73 when the detection sensitivity of the hole 82 reached its maximum value.
発明の効果
以上のように本発明は、超音波送受波素子はそ
のビーム送波面に垂直な軸が測定物の前記超音波
ビームが走査される面に垂直な軸に対して傾斜し
て配置し、その傾斜角度は超音波送受波素子の第
1零ふく射角とほぼ等しくすることにより、検出
感度の最大値を得るので、高精度の位置検出装置
を得ることができ、その実用的効果は大なるもの
がある。Effects of the Invention As described above, in the present invention, an ultrasonic wave transmitting/receiving element is arranged such that the axis perpendicular to the beam transmission plane thereof is inclined with respect to the axis perpendicular to the plane on which the ultrasonic beam of the measurement object is scanned. By making the inclination angle approximately equal to the first zero radiation angle of the ultrasonic wave transmitting/receiving element, the maximum detection sensitivity is obtained, so a highly accurate position detecting device can be obtained, and its practical effect is great. There is something.
第1図は従来の超音波形状検出装置の概略の構
成を示すシステム図、第2図は従来の装置を用い
た形状検出の斜視図、第3図は従来の装置の動作
波形を示す図、第4図は従来の装置の動作波形を
整理した図、第5図は本発明者らによつて提案し
た被測定物の形状検出装置の概略の構成を示すシ
ステム図、第6図は同穴位置検出の斜視図、第7
図は同平面図、第8図は同じく装置の動作波形を
整理した図、第9図は本発明の第1実施例におけ
る穴位置検出のためのプログラムの1例を示すフ
ローチヤート図、第10図、第11図は本発明の
第1実施例における装置の動作波形を示す図、第
12図は本発明の第1実施例における穴検出感度
を示す図である。
72……マンピユレータ、73……超音波トラ
ンスデユーサ、61……CPU、82……穴。
FIG. 1 is a system diagram showing the general configuration of a conventional ultrasonic shape detection device, FIG. 2 is a perspective view of shape detection using the conventional device, and FIG. 3 is a diagram showing operating waveforms of the conventional device. Fig. 4 is a diagram arranging the operating waveforms of the conventional device, Fig. 5 is a system diagram showing the general configuration of the device for detecting the shape of a measured object proposed by the present inventors, and Fig. 6 is a diagram showing the same hole. Perspective view of position detection, seventh
FIG. 8 is a diagram arranging the operation waveforms of the device, FIG. 9 is a flowchart showing an example of a program for hole position detection in the first embodiment of the present invention, and FIG. 11 is a diagram showing operation waveforms of the apparatus in the first embodiment of the present invention, and FIG. 12 is a diagram showing hole detection sensitivity in the first embodiment of the present invention. 72...Manpilulator, 73...Ultrasonic transducer, 61...CPU, 82...Hole.
Claims (1)
ムを被測定物に対して走査することにより得られ
た前記被測定物からの反射信号強度を信号処理し
て前記被測定物の形状を検出する信号処理手段を
有し、前記超音波送受波素子が送受波する超音波
の波長をλ、前記超音波送受波素子の直径をD、
θ=sin1.22λ/D(rad)としたとき、前記超音波
送受波素子はそのビーム送波面に垂直な軸が前記
被測定物の前記超音波ビームが走査される面に垂
直な軸に対して前記θの角度をなすよう傾斜して
配置された被測定物の位置検出装置。1. Detecting the shape of the object by processing the intensity of the reflected signal from the object to be measured, which is obtained by scanning the object with an ultrasonic beam transmitted from an ultrasonic transceiver element. λ is the wavelength of the ultrasonic waves transmitted and received by the ultrasonic wave transmitting/receiving element, and D is the diameter of the ultrasonic wave transmitting/receiving element.
When θ=sin1.22λ/D (rad), the ultrasonic transceiver element has an axis perpendicular to its beam transmission surface relative to an axis perpendicular to the surface of the object to be measured over which the ultrasonic beam is scanned. A position detecting device for a measured object, which is arranged to be inclined so as to form an angle of θ.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21021083A JPS60102509A (en) | 1983-11-08 | 1983-11-08 | Position detecting apparatus for material to be measured |
US06/705,470 US4627291A (en) | 1983-06-06 | 1984-06-05 | Position sensing apparatus for an object to be measured |
DE8484902085T DE3485371D1 (en) | 1983-06-06 | 1984-06-05 | POSITION DETECTOR OF AN OBJECT TO BE MEASURED. |
EP84902085A EP0148952B1 (en) | 1983-06-06 | 1984-06-05 | Apparatus for detecting position of object being measured |
PCT/JP1984/000287 WO1984004961A1 (en) | 1983-06-06 | 1984-06-05 | Apparatus for detecting position of object being measured |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21021083A JPS60102509A (en) | 1983-11-08 | 1983-11-08 | Position detecting apparatus for material to be measured |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60102509A JPS60102509A (en) | 1985-06-06 |
JPH0257278B2 true JPH0257278B2 (en) | 1990-12-04 |
Family
ID=16585607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21021083A Granted JPS60102509A (en) | 1983-06-06 | 1983-11-08 | Position detecting apparatus for material to be measured |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60102509A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60108704A (en) * | 1983-11-17 | 1985-06-14 | Matsushita Electric Ind Co Ltd | Position detecting device of material to be measured |
JPS6214389U (en) * | 1985-07-12 | 1987-01-28 |
-
1983
- 1983-11-08 JP JP21021083A patent/JPS60102509A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60102509A (en) | 1985-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4627291A (en) | Position sensing apparatus for an object to be measured | |
JPH0257278B2 (en) | ||
JPH069562B2 (en) | Ultrasonic diagnostic equipment | |
JPH0354409A (en) | ultrasonic seam detector | |
JPH0148996B2 (en) | ||
JPH0319954B2 (en) | ||
JPH0334596B2 (en) | ||
JPS63231286A (en) | Tracking distance measuring device for moving objects using laser beam | |
JPH0148997B2 (en) | ||
JPS6162808A (en) | Apparatus for detecting position of object to be measured | |
JPS606884A (en) | Shape detector for body to be measured | |
JPH0249675B2 (en) | HISOKUTEIBUTSUNOICHIKENSHUTSUHOHO | |
JPS6091205A (en) | Shape detecting method of material to be measured | |
JPS606885A (en) | Shape detector for body to be measured | |
JPH07286845A (en) | Method and instrument for measuring three-dimensional shape | |
JPS62141900A (en) | Ultrasonic wave sensor | |
Gunnarsson et al. | Ultrasonic sensors in robotic seam tracking | |
JPH08128994A (en) | Array probe in array-type flaw detector and incident angle control device thereof | |
JPS60131414A (en) | Detecting method of position of object to be measured | |
JPH07253379A (en) | Polygon mirror measuring instrument | |
JPS61120011A (en) | Position detection device | |
JPH05323044A (en) | Snow fall measuring apparatus | |
JPS6184579A (en) | Position detector for unmanned running vehicle | |
JPS5965277A (en) | Ultrasonic object detecting apparatus | |
JPS59147286A (en) | Detection of position |