[go: up one dir, main page]

JPH0256937B2 - - Google Patents

Info

Publication number
JPH0256937B2
JPH0256937B2 JP57012971A JP1297182A JPH0256937B2 JP H0256937 B2 JPH0256937 B2 JP H0256937B2 JP 57012971 A JP57012971 A JP 57012971A JP 1297182 A JP1297182 A JP 1297182A JP H0256937 B2 JPH0256937 B2 JP H0256937B2
Authority
JP
Japan
Prior art keywords
catalyst
propylene
solution
bismuth
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57012971A
Other languages
Japanese (ja)
Other versions
JPS58131136A (en
Inventor
Masayuki Ootake
Masakatsu Hatano
Tooru Koyama
Masayoshi Murayama
Kazunori Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Industries Ltd filed Critical Mitsubishi Chemical Industries Ltd
Priority to JP57012971A priority Critical patent/JPS58131136A/en
Publication of JPS58131136A publication Critical patent/JPS58131136A/en
Publication of JPH0256937B2 publication Critical patent/JPH0256937B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は触媒組成物に関する。詳しくはプロピ
レンとアンモニアと酸素または酸素含有ガスとを
気相で接触させて、アクリロニトリルを生成する
反応、に優れた触媒効果を示す組成物に関する。
プロピレンとアンモニアと酸素または酸素含有ガ
スとを気相で接触させてアクリロニトリルを生成
する、いわゆるアンモ酸化用の触媒としては種々
の触媒系が提案されているが、工業的実施に使用
されている触媒は極く僅かである。 その中で注目すべき触媒としてモリブデン、ビ
スマスを基本組成としてさらに鉄及びリンからな
る酸化物触媒がある。この系の触媒はその后さら
に種々の改良法が提案され、代表的なものとして
モリブデン、ビスマス、鉄、リンさらにニツケ
ル、コバルトで代表される金属元素を含む酸化物
触媒がある。しかしながらこれらの触媒は未だ副
反応の抑制が十分でなく、プロピレンの反応率を
上げた場合には選択率が低下し、十分高いアクリ
ロニトリル収率を得ることは困難である。また工
業的に使用するには、さらに触媒の寿命の長いこ
とが重要である。そこで本発明者らは高活性、高
選択性を有する触媒、即ち高い反応率でプロピレ
ンを反応させた場合においても、高い選択率でア
クリロニトリルを製造でき、かつ寿命の長い触媒
を開発すべく検討した結果、モリブデン、タング
ステン、ビスマス、鉛、アンチモン、クロムおよ
び酸素を特定の組成範囲で含む触媒あるいは上記
元素に特定量の鉄を添加した触媒を使用すれば従
来のモリブデン―ビスマス系の触媒に比べ、高い
プロピレン反応率の条件下においても、高収率で
アクリロニトリルを製造でき、また触媒の寿命も
長くし得ることを見出し本発明に到達した。 本発明の触媒組成物は組成式(Mo)a(W)
b(Bi)c(Pb)d(Sb)e(Fe)f(Cr)g(O)
h(ただしa,b,c,d,e,f,g,hはそ
れぞれモリブデン、タングステン、ビスマス、
鉛、アンチモン、鉄、クロム、酸素の原子数を表
わしa+b=12としたとき0<b≦7、0.4≦c
≦7、2≦d≦12、0.1/22≦e/a≦25/22、
0≦f/a≦3/22、0<g/a≦3/22であり
hは上記各成分の原子価を満足するのに必要な酸
素の原子数を表す。) で示される。 本発明の触媒組成物においてアクリロニトリル
収率を向上させるために特に好適な各成分元素の
原子数はa+b=12としたとき0<b≦5.5、0.6
≦c≦6、2.6≦d≦11、1/22≦e/a≦10/
22、0≦f/a≦2/22および0.05/22≦g/a
≦2/22である。さらに鉄に関しては、0.05≦
f/a≦2/22がより好ましい。 本発明の触媒組成物は担体を使用せずにそのま
ま成形してもよく、またシリカ、アルミナ、チタ
ニア、シリコンカーバイド等の担体を使用して成
形物を得ることもできる。触媒粒子の大きさおよ
び形状は、特に限定されることなく、使用状態に
応じてペレツト状、タブレツト状、球状、粒状な
ど任意の形状および大きさに成形される。 触媒調製に使用されるモリブデンの化合物とし
ては、三酸化モリブデン等のモリブデン酸化物、
モリブデン酸またはその塩およびリンモリブデン
酸またはその塩等が用いられるが好適にはパラモ
リブデン酸アンモニウムのようなモリブデン酸塩
が用いられる。 タングステンの化合物としては三酸化タングス
テン等のタングステン酸化物、タングステン酸ま
たはその縮合酸、またはそれ等の塩、およびリン
タングステン酸またはその塩等が用いられる。 ビスマスの化合物としては硝酸ビスマス、硫酸
ビスマス等のビスマス塩およびビスマスの各種酸
化物または水酸化物等が用いられる。 鉛の化合物としては硝酸鉛、硫酸鉛等の鉛塩お
よび鉛の各種酸化物または水酸化物等が用いられ
る。 アンチモンの化合物としては三酸化アンチモン
等の酸化物、三塩化アンチモン等の塩化物、アン
チモン金属等が用いられる。 鉄の化合物としては硝酸鉄、硫酸鉄等の鉄塩お
よび鉄の各種酸化物または水酸化物等が用いられ
る。 クロムの化合物としては硝酸クロム、硫酸クロ
ム、重クロム酸アンモン等のクロム塩およびクロ
ムの各種酸化物または水酸化物等が用いられる。 これらの原料を使用して触媒を製造するには各
成分元素の化合物を水に溶解または懸濁させ、場
合によりシリカゾル、アルミナゾルなどの担体成
分のゾルまたはチタニア粉末などの担体粉末を懸
濁させて、均一なスラリーまたは水溶液としたの
ち、焼成すればよい。 噴霧乾燥により触媒の成形を行なう場合には、
噴霧原料スラリーのPHを1〜6に調整したのち噴
霧乾燥を行なうと耐衝撃性にすぐれた触媒を得る
ことできる。 触媒を製造するにあたりモリブデン化合物およ
びタングステン化合物として、それぞれパラモリ
ブデン酸アンモニウムおよびパラタングステン酸
アンモニウムを使用するときは水への溶解度を増
すためにこれらの塩を含む水溶液にアンモニアの
ような溶解促進剤を添加することが好ましい。ビ
スマス化合物として硝酸ビスマス、硫酸ビスマス
を用いる時は、それぞれ硝酸酸性水溶液または硫
酸酸性水溶液とすることが好ましい。またアンチ
モン化合物として三酸化アンチモンを用いる場合
は酒石酸などの有機水溶液に溶解して使用しても
よいが、三酸化アンチモン粉末を使用する場合は
触媒各成分を含むスラリーを均一に撹拌し、スラ
リーのPHを7以下に調整して40℃以上に1〜8時
間加熱処理することが好ましい。この場合鉄化合
物は所望により、上記加熱処理后にスラリーに添
加することができる。 触媒成形后の焼成温度および焼成時間は特に限
定されるものではないが、焼成温度は通常400〜
800℃、好ましくは500〜750℃の範囲内で選択さ
れ5分間〜4時間焼成される。 本発明の触媒組成物が用いられる反応について
説明すれば、アクリロニトリルは下記触媒の存在
下、プロピレンとアンモニアと酸素または酸素含
有ガスとを気相で接触させることにより製造され
る。原料ガスのプロピレンは必ずしも高純度であ
る必要はなく、実質的に反応に不活性なガス、例
えばプロピレンなどの飽和炭化水素を含有してい
てもよい。 工業的には酸素含有ガスとして空気が用いられ
る。プロピレンに対する酸素の供給比率はモル比
で1〜4倍、好ましくは1.5〜2.5倍の範囲が好ま
しい。プロピレンに対するアンモニアの割合はモ
ル比で0.8〜2.5倍、好ましくは0.9〜1.5倍の範囲
が好ましい。反応は通常、常圧下で行なわれる
が、必要に応じて減圧下または加圧下で行なつて
もよい。反応温度は通常360〜540℃、好ましくは
400〜500℃である。また原料ガスの空間速度は
100〜3000hr-1の範囲、好ましくは200〜2000hr-1
の範囲から適宜選ぶことができる。 本発明の触媒組成物は固定床または流動床のい
ずれの方式でも使用することができる。 以上詳細に説明したように本発明の触媒組成物
を用いたプロピレンのアンモ酸化によれば、原料
ガス反応率を高くした場合でも、高い選択率でア
クリロニトリルが生成するので、工業的有利にア
クリロニトリルを製造することができる。 次に本発明を実施例によりさらに詳細に説明す
るが、本発明はその要旨を超えない限り以下の実
施例に限定されるものではない。なお本明細書に
おいて反応率、選択率およびアクリロニトリル収
率は下記式により定義される。 反応率(%)=消費されるプロピレンの
モル数/供給プロピレンのモル数×100 選択率(%)=生成したアクリロニトリ
ルのモル数/消費されたプロピレンのモル数×100 実施例 1 パラタングステン酸アンモニウム
(NH410W12O41・5H2O0.0392gを1重量%アン
モニア水2mlに溶解させた溶液に撹拌下、20重量
%シリカゾル16.14gを加え、続いて硝酸鉛Pb
(NO323.030gを水5.9mlに溶解させた溶液、パラ
モリブデン酸アンモニウム(NH46Mo7O24
4H2O2.225gを5重量%アンモニア水11.5mlに溶
解させた溶液および硝酸ビスマス1.164gを10重
量%硝酸水溶液1.8mlに溶解させた溶液を加えた。
次いで市販の三酸化アンチモンSb2O3粉末3.43g
を水14.2ml、25重量%アンモニア水2.80mlおよび
酒石酸5.3gと混合し、加熱して溶解させ、得ら
れた液の1/10をはかりとつて、上記スラリーに加
え、ついで硝酸第2鉄Fe(NO33・9H2O0.115g
を水3mlに溶解させた溶液および硝酸クロムCr
(NO33・9H2O0.138gを水3mlに溶解させた溶
液を加え、10重量%水溶液を添加してPH2.2に調
節し、撹拌下にホツトプレート上でNO2の発生
がなくなるまで加熱し、乾固させた。得られた固
形物を直径6mm、厚さ3mmのタブレツトに成形
し、空気流通下に700℃で2時間焼成したのち粉
砕して16〜24メツシユの粒状触媒とした。このよ
うにして得られた触媒の組成はMO11.86W0.14Bi2.
26Pb8.61Sb2.21Fe0.27Cr0.32O52.2であり担体として
のシリカと触媒成分の割合は40:60(重量比)で
あつた。 この触媒1mlを内径4mmの耐熱ガラス製反応器
に充填しモル比でプロピレン:アンモニア:空気
=1:1.2:10の混合ガスを空間速度500hr-1で反
応器に供給し、460℃で反応を行なわせた。その
結果プロピレンの反応率は98.6%、アクリロニト
リル選択率は86.2%(アクリロニトリル収率は
85.0%)であつた。 実施例 2〜6 実施例1と同様の方法で表―1記載の組成の触
媒を調製し、同表に示す反応温度で実施例1と同
様に反応を行なわせた。その結果を同じく表―1
に示す。 比較例 1 実施例1で硝酸第2鉄Fe(NO33・9H2Oの添
加を省略し、硝酸クロムCr(NO33・9H2Oの添
加量を増したこと以外は実施例1と同様の実験を
繰り返した。 触媒組成と反応結果を表―2に示す。 比較例 2 実施例3でアンチモンを使用しなかつたこと以
外は実施例3と同様の実験を繰り返した。 触媒組成と反応結果を表―2に示す。 実施例 7 実施例1で硝酸第2鉄Fe(NO33・9H2Oの添
加を省略し硝酸クロムCr(NO33・9H2Oの添加
量を増したこと以外は実施例1と同様の実験を繰
り返した。 触媒組成と反応結果を表―1に示す。
The present invention relates to catalyst compositions. Specifically, the present invention relates to a composition that exhibits an excellent catalytic effect in a reaction that produces acrylonitrile by bringing propylene, ammonia, and oxygen or an oxygen-containing gas into contact in a gas phase.
Various catalyst systems have been proposed as catalysts for so-called ammoxidation, in which acrylonitrile is produced by contacting propylene, ammonia, and oxygen or an oxygen-containing gas in the gas phase, but the catalysts used in industrial implementation are is extremely small. Among these, noteworthy catalysts include oxide catalysts whose basic composition is molybdenum and bismuth, and which further includes iron and phosphorus. Various improvements have since been proposed for this type of catalyst, and typical examples include oxide catalysts containing metal elements such as molybdenum, bismuth, iron, phosphorus, nickel, and cobalt. However, these catalysts still do not sufficiently suppress side reactions, and when the reaction rate of propylene is increased, the selectivity decreases, making it difficult to obtain a sufficiently high acrylonitrile yield. Furthermore, for industrial use, it is important that the catalyst has a long life. Therefore, the present inventors conducted research to develop a catalyst with high activity and high selectivity, that is, a catalyst that can produce acrylonitrile with high selectivity even when reacting propylene at high reaction rate, and has a long life. As a result, using a catalyst containing molybdenum, tungsten, bismuth, lead, antimony, chromium, and oxygen in a specific composition range, or a catalyst in which a specific amount of iron is added to the above elements, compared to conventional molybdenum-bismuth-based catalysts, The present invention was achieved by discovering that acrylonitrile can be produced in high yield even under conditions of high propylene reaction rate, and that the life of the catalyst can be extended. The catalyst composition of the present invention has a composition formula (Mo)a(W)
b(Bi)c(Pb)d(Sb)e(Fe)f(Cr)g(O)
h (however, a, b, c, d, e, f, g, h are respectively molybdenum, tungsten, bismuth,
Representing the number of atoms of lead, antimony, iron, chromium, and oxygen, and assuming a+b=12, 0<b≦7, 0.4≦c
≦7, 2≦d≦12, 0.1/22≦e/a≦25/22,
0≦f/a≦3/22, 0<g/a≦3/22, and h represents the number of oxygen atoms necessary to satisfy the valences of each of the above components. ). In order to improve the acrylonitrile yield in the catalyst composition of the present invention, the number of atoms of each component element particularly suitable is 0<b≦5.5, 0.6 when a+b=12.
≦c≦6, 2.6≦d≦11, 1/22≦e/a≦10/
22, 0≦f/a≦2/22 and 0.05/22≦g/a
≦2/22. Furthermore, regarding iron, 0.05≦
More preferably, f/a≦2/22. The catalyst composition of the present invention may be molded as it is without using a carrier, or a molded product may be obtained using a carrier such as silica, alumina, titania, silicon carbide, or the like. The size and shape of the catalyst particles are not particularly limited, and may be formed into any shape and size such as pellets, tablets, spheres, and granules depending on the usage conditions. Molybdenum compounds used for catalyst preparation include molybdenum oxides such as molybdenum trioxide,
Molybdic acid or a salt thereof, phosphomolybdic acid or a salt thereof, etc. are used, and molybdate salts such as ammonium paramolybdate are preferably used. As the tungsten compound, tungsten oxide such as tungsten trioxide, tungstic acid or condensed acid thereof, or a salt thereof, phosphotungstic acid or a salt thereof, etc. are used. As the bismuth compound, bismuth salts such as bismuth nitrate and bismuth sulfate, and various oxides or hydroxides of bismuth are used. As lead compounds, lead salts such as lead nitrate and lead sulfate, and various lead oxides or hydroxides are used. As the antimony compound, oxides such as antimony trioxide, chlorides such as antimony trichloride, antimony metal, etc. are used. As the iron compound, iron salts such as iron nitrate and iron sulfate, and various iron oxides or hydroxides are used. As the chromium compound, chromium salts such as chromium nitrate, chromium sulfate, and ammonium dichromate, and various chromium oxides or hydroxides are used. To produce a catalyst using these raw materials, compounds of each component element are dissolved or suspended in water, and in some cases, a sol of a carrier component such as silica sol or alumina sol or a carrier powder such as titania powder is suspended. , it may be made into a uniform slurry or aqueous solution and then fired. When forming catalysts by spray drying,
If spray drying is performed after adjusting the pH of the spray raw material slurry to 1 to 6, a catalyst with excellent impact resistance can be obtained. When ammonium paramolybdate and ammonium paratungstate are used as molybdenum compounds and tungsten compounds, respectively, in the production of catalysts, a solubility promoter such as ammonia is added to an aqueous solution containing these salts to increase their solubility in water. It is preferable to add. When bismuth nitrate or bismuth sulfate is used as the bismuth compound, it is preferable to use an acidic nitric acid aqueous solution or a sulfuric acid acidic aqueous solution, respectively. Furthermore, when using antimony trioxide as an antimony compound, it may be used by dissolving it in an organic aqueous solution such as tartaric acid, but when using antimony trioxide powder, the slurry containing each catalyst component must be uniformly stirred. It is preferable to adjust the pH to 7 or less and heat treat at 40° C. or higher for 1 to 8 hours. In this case, the iron compound can be added to the slurry after the heat treatment, if desired. The firing temperature and firing time after catalyst formation are not particularly limited, but the firing temperature is usually 400~400℃.
The temperature is selected to be 800°C, preferably 500 to 750°C, and baked for 5 minutes to 4 hours. To explain the reaction in which the catalyst composition of the present invention is used, acrylonitrile is produced by contacting propylene, ammonia, and oxygen or an oxygen-containing gas in the gas phase in the presence of the following catalyst. The raw material gas propylene does not necessarily have to be of high purity, and may contain a gas substantially inert to the reaction, for example, a saturated hydrocarbon such as propylene. Air is used industrially as the oxygen-containing gas. The molar ratio of oxygen to propylene to be supplied is preferably 1 to 4 times, preferably 1.5 to 2.5 times. The molar ratio of ammonia to propylene is preferably 0.8 to 2.5 times, preferably 0.9 to 1.5 times. The reaction is usually carried out under normal pressure, but may be carried out under reduced pressure or increased pressure, if necessary. The reaction temperature is usually 360-540℃, preferably
The temperature is 400-500℃. Also, the space velocity of the raw material gas is
Range 100-3000hr -1 , preferably 200-2000hr -1
You can choose from the range as appropriate. The catalyst composition of the present invention can be used in either fixed bed or fluidized bed mode. As explained in detail above, according to the ammoxidation of propylene using the catalyst composition of the present invention, acrylonitrile is produced with a high selectivity even when the reaction rate of the raw material gas is increased. can be manufactured. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. In this specification, the reaction rate, selectivity, and acrylonitrile yield are defined by the following formula. Reaction rate (%) = Number of moles of propylene consumed/Number of moles of propylene supplied x 100 Selectivity (%) = Number of moles of acrylonitrile produced/Number of moles of propylene consumed x 100 Example 1 Ammonium paratungstate (NH 4 ) 10 W 12 O 41・5H 2 0.0392 g of 1 wt.
A solution of 3.030 g of (NO 3 ) 2 dissolved in 5.9 ml of water, ammonium paramolybdate (NH 4 ) 6 Mo 7 O 24 .
A solution of 2.225 g of 4H 2 O dissolved in 11.5 ml of 5% by weight aqueous ammonia and a solution of 1.164 g of bismuth nitrate dissolved in 1.8 ml of 10% by weight nitric acid aqueous solution were added.
Next, 3.43 g of commercially available antimony trioxide Sb 2 O 3 powder
was mixed with 14.2 ml of water, 2.80 ml of 25% aqueous ammonia, and 5.3 g of tartaric acid, heated to dissolve it, weighed out 1/10 of the resulting liquid, added it to the above slurry, and then added ferric nitrate Fe. (NO 3 ) 3・9H 2 O0.115g
A solution of Cr dissolved in 3 ml of water and chromium nitrate Cr
(NO 3 ) Add a solution of 0.138 g of 3・9H 2 O dissolved in 3 ml of water, adjust the pH to 2.2 by adding a 10% by weight aqueous solution, and while stirring, no longer generates NO 2 on the hot plate. It was heated to dryness. The obtained solid was formed into a tablet with a diameter of 6 mm and a thickness of 3 mm, calcined at 700° C. for 2 hours under air circulation, and then ground to obtain a granular catalyst of 16 to 24 meshes. The composition of the catalyst thus obtained was MO 11.86 W 0.14 Bi 2 .
26Pb8.61Sb2.21Fe0.27Cr0.32O52.2 , and the ratio of silica as a carrier to catalyst component was 40:60 ( weight ratio). 1 ml of this catalyst was packed into a heat-resistant glass reactor with an inner diameter of 4 mm, a mixed gas with a molar ratio of propylene: ammonia: air = 1:1.2:10 was supplied to the reactor at a space velocity of 500 hr -1 , and the reaction was carried out at 460°C. I let it happen. As a result, the propylene reaction rate was 98.6%, and the acrylonitrile selectivity was 86.2% (acrylonitrile yield was
85.0%). Examples 2 to 6 Catalysts having the compositions shown in Table 1 were prepared in the same manner as in Example 1, and the reactions were carried out in the same manner as in Example 1 at the reaction temperatures shown in the table. The results are also shown in Table 1.
Shown below. Comparative Example 1 Example except that the addition of ferric nitrate Fe(NO 3 ) 3 ·9H 2 O in Example 1 was omitted and the amount of chromium nitrate Cr(NO 3 ) 3 ·9H 2 O was increased. The same experiment as 1 was repeated. The catalyst composition and reaction results are shown in Table 2. Comparative Example 2 The same experiment as in Example 3 was repeated except that antimony was not used in Example 3. The catalyst composition and reaction results are shown in Table 2. Example 7 Example 1 except that the addition of ferric nitrate Fe(NO 3 ) 3 ·9H 2 O in Example 1 was omitted and the amount of chromium nitrate Cr(NO 3 ) 3 ·9H 2 O was increased. The same experiment was repeated. Table 1 shows the catalyst composition and reaction results.

【表】【table】

【表】 実施例 8 実施例1と同一組成の流動触媒を次のようにし
て調製した。パラタングステン酸アンモニウム
(NH410W12O41・5H2O78.4gを1重量%アンモ
ニア水1に溶解させた溶液を、撹拌下20重量%
シリカゾル32.37Kgに加えた。次いで市販の三酸
化アンチモンSb2O3粉末710.7gを水2.9、25重
量%アンモニア水580mlおよび酒石酸1089gと混
合し加熱して溶解させ、得られた溶液を撹拌下上
記スラリーに加え、続いて硝酸鉛Pb(NO326.06
Kgを水11.3に溶解させた溶液、パラモリブデン
酸アンモニウム(NH46Mo7O24・4H2O4.450Kg
を5重量%アンモニア水8.5に溶解させた溶液、
硝酸ビスマスBi(NO33・5H2O2.328Kgを10重量
%硝酸水溶液2.70に溶解させた溶液、硝酸第2
鉄Fe(NO33・9H2O242gを水2.75に溶解させ
た溶液および硝酸クロムCr(NO33・9H2O274.3
gを水2.5に溶解させた溶液を加え97重量%硝
酸を添加してPH2.8に調節した。かくして得られ
たスラリーをホモジナイザーにより均一化し、回
転円盤を有する噴霧装置を使用して、常法により
噴霧乾燥し、微小粒子とした后、回転焼成炉に入
れ、温度670℃、滞留時間14分の条件で連続焼成
して平均粒径58μの触媒を得た。 次のこの触媒1850gを内径2.5インチの流動床
反応器に充填し、モル比でプロピレン:アンモニ
ア:空気=1:1.1:12.7の混合ガスを触媒に対
するプロピレンの単位時間あたりの負荷が
0.068hr-1(供給プロピレンg/hr/gcat)にな
るように反応器に供給し、温度480℃、圧力0.85
Kg/cm2Gで反応を行なわせた。定常状態に達する
までは約100時間掛つた。その結果を表―3に示
す。 比較例 3 パラタングステン酸アンモニウム
(NH410W12O41・5H2O261gを1重量%アンモ
ニア水3.3に溶解させた溶液に撹拌下、市販の
三酸化アンチモンSb2O3粉末350gを加えた。こ
れに撹拌下20重量%シリカゾル32.6Kgを加え、続
いて硝酸鉛Pb(NO326.29Kgを水11.7に溶解さ
せた溶液、パラモリブデン酸アンモニウム
(NH46Mo7O24・4H2O4.450Kgを5重量%アンモ
ニア水8.5に溶解させた溶液および、硝酸ビス
マス2.328Kgを10重量%硝酸水溶液2.70に溶解
させた溶液を加え、67重量%硝酸を用いてスラリ
ーのPHを4.2に調節した。次にリンタングステン
酸P2O5・24Wo3・41.85H2O215.4gを水1に溶
解させた溶液および炭酸カリウムK2CO313.8gを
水500mlに溶解させた溶液を前記のスラリーに加
え、三ツ口フラスコに仕込んで100℃で3時間還
流下に加熱処理した。加熱処理によりスラリーの
PHが4.2から5.0に上昇したので再度4.2に調整した
のち、ホモジナイザーにより均一化し、回転円盤
を有する噴霧装置を使用して、常法により噴霧乾
燥した。得られた微小粒子を回転焼成炉に入れ、
温度685℃、滞留時間14分の条件で連続焼成して
平均粒径50μの触媒を得た。このようにし得られ
た触媒の組成はMo11.2W0.8Bi2.1Pb8.4Sb1.07K0.
03P0.03O49.28であり、担体としてのシリカと触媒
成分の割合は40:60(重量比)であつた。この触
媒1850gを実施例8と同一の反応器に充填し、実
施例8と同じ反応条件で反応を行なわせた。 その結果を表―4に示す。
[Table] Example 8 A fluidized catalyst having the same composition as in Example 1 was prepared as follows. Ammonium paratungstate (NH 4 ) 10 W 12 O 41・5H 2 A solution of 78.4 g of 1 wt % ammonia water dissolved in 1 wt.
Added to 32.37Kg of silica sol. Next, 710.7 g of commercially available antimony trioxide Sb 2 O 3 powder was mixed with 2.9 g of water, 580 ml of 25 wt% aqueous ammonia, and 1089 g of tartaric acid, heated to dissolve it, and the resulting solution was added to the above slurry under stirring, followed by addition of nitric acid. Lead Pb ( NO3 ) 2 6.06
A solution of Kg dissolved in water 11.3, ammonium paramolybdate (NH 4 ) 6 Mo 7 O 24・4H 2 O 4.450Kg
A solution of 5% by weight of ammonia water dissolved in 8.5% of aqueous ammonia,
Bismuth nitrate Bi (NO 3 ) 3・5H 2 O2.328Kg dissolved in 10% by weight nitric acid aqueous solution 2.70%, nitric acid 2
A solution of iron Fe (NO 3 ) 3・9H 2 O242 g dissolved in 2.75 g of water and chromium nitrate Cr (NO 3 ) 3・9H 2 O274.3
A solution prepared by dissolving 2.5 g of water was added thereto, and 97% by weight nitric acid was added to adjust the pH to 2.8. The slurry thus obtained was homogenized using a homogenizer and spray-dried using a conventional method using a spraying device with a rotating disk to form fine particles.The slurry was then placed in a rotary firing furnace at a temperature of 670°C and a residence time of 14 minutes. A catalyst with an average particle size of 58μ was obtained by continuous firing under the following conditions. Next, 1850 g of this catalyst was packed into a fluidized bed reactor with an inner diameter of 2.5 inches, and a mixed gas with a molar ratio of propylene: ammonia: air = 1:1.1:12.7 was added to the catalyst so that the load of propylene per unit time on the catalyst was
0.068hr -1 (supplied propylene g/hr/gcat) was supplied to the reactor at a temperature of 480℃ and a pressure of 0.85.
The reaction was carried out at Kg/cm 2 G. It took about 100 hours to reach steady state. The results are shown in Table-3. Comparative Example 3 350 g of commercially available antimony trioxide Sb 2 O 3 powder was added to a solution of 261 g of ammonium paratungstate (NH 4 ) 10 W 12 O 41・5H 2 O dissolved in 1% by weight aqueous ammonia (3.3 g) with stirring. . To this, 32.6 kg of 20% by weight silica sol was added with stirring, followed by a solution of 6.29 kg of lead nitrate Pb (NO 3 ) 2 dissolved in 11.7 kg of water, ammonium paramolybdate (NH 4 ) 6 Mo 7 O 24・4H 2 A solution of 4.450Kg of O4 dissolved in 5% by weight ammonia water 8.5% and a solution of 2.328Kg of bismuth nitrate dissolved in 10% by weight nitric acid aqueous solution 2.7% were added, and the pH of the slurry was adjusted to 4.2 using 67% by weight nitric acid. did. Next, a solution of 15.4 g of phosphotungstic acid P 2 O 5 24Wo 3 41.85H 2 O dissolved in 1 part of water and a solution of 13.8 g of potassium carbonate K 2 CO 3 dissolved in 500 ml of water were added to the slurry. The mixture was charged into a three-necked flask and heated under reflux at 100°C for 3 hours. Slurry is heated through heat treatment.
The pH increased from 4.2 to 5.0, so it was adjusted to 4.2 again, and then homogenized using a homogenizer, and spray-dried using a conventional method using a spray device with a rotating disk. The obtained microparticles are placed in a rotary firing furnace,
Continuous firing was performed at a temperature of 685°C and a residence time of 14 minutes to obtain a catalyst with an average particle size of 50μ. The composition of the catalyst thus obtained was Mo 11.2 W 0.8 Bi 2.1 Pb 8.4 Sb 1.07 K 0 .
03 P 0.03 O 49.28 , and the ratio of silica as a carrier to catalyst component was 40:60 (weight ratio). 1850 g of this catalyst was charged into the same reactor as in Example 8, and the reaction was carried out under the same reaction conditions as in Example 8. The results are shown in Table 4.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 組成式 (Mo)a(W)b(Bi)c(Pb)d(Sb)e
(Fe)f(Cr)g(O)h (ただしa,b,c,d,e,f,g,hはそ
れぞれモリブデン、タングステン、ビスマス、
鉛、アンチモン、鉄、クロムおよび酸素の原子数
を示し、a+b=12としたとき0<b≦7、0.4
≦c≦7、2≦d≦12、0.1/22≦e/a≦25/
22、0≦f/a≦3/22、0<g/a≦3/22で
ありhは上記各成分の原子価を満足するのに必要
な原子数を示す。) で表わされる、プロピレン、アンモニアおよび酸
素または酸素含有ガスからアクリロニトリルを製
造するための触媒組成物。
[Claims] 1 Compositional formula (Mo)a(W)b(Bi)c(Pb)d(Sb)e
(Fe)f(Cr)g(O)h (a, b, c, d, e, f, g, h are respectively molybdenum, tungsten, bismuth,
Indicates the number of atoms of lead, antimony, iron, chromium, and oxygen, and when a+b=12, 0<b≦7, 0.4
≦c≦7, 2≦d≦12, 0.1/22≦e/a≦25/
22, 0≦f/a≦3/22, 0<g/a≦3/22, and h indicates the number of atoms necessary to satisfy the valence of each component. ) A catalyst composition for producing acrylonitrile from propylene, ammonia and oxygen or an oxygen-containing gas.
JP57012971A 1982-01-29 1982-01-29 catalyst composition Granted JPS58131136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012971A JPS58131136A (en) 1982-01-29 1982-01-29 catalyst composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012971A JPS58131136A (en) 1982-01-29 1982-01-29 catalyst composition

Publications (2)

Publication Number Publication Date
JPS58131136A JPS58131136A (en) 1983-08-04
JPH0256937B2 true JPH0256937B2 (en) 1990-12-03

Family

ID=11820110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012971A Granted JPS58131136A (en) 1982-01-29 1982-01-29 catalyst composition

Country Status (1)

Country Link
JP (1) JPS58131136A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666336B2 (en) * 2003-09-29 2011-04-06 旭化成ケミカルズ株式会社 Method for producing antimony-containing composite metal oxide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0032618B1 (en) * 1979-12-17 1983-06-15 Monsanto Company Oxidation and ammoxidation catalysts and their uses
JPS57119837A (en) * 1981-01-16 1982-07-26 Ube Ind Ltd Catalyst for oxidation of olefin

Also Published As

Publication number Publication date
JPS58131136A (en) 1983-08-04

Similar Documents

Publication Publication Date Title
US5094990A (en) Iron-antimony-phosphorus-containing metal oxide catalyst for oxidation
KR880000515B1 (en) Catalytic composition
US3435069A (en) Oxidation of acrolein and methacrolein with a molybdenum polyvalent metaloxygen catalyst
US5139988A (en) Iron-antimony-containing metal oxide catalyst composition and process for producing the same
US4405498A (en) Oxidation and ammoxidation catalysts
EP0032012A2 (en) Oxidation and ammoxidation catalysts and their use
JPH0764555B2 (en) Prussic acid manufacturing method
JPS6316330B2 (en)
CA1135244A (en) Oxidation and ammoxidation catalysts
JP3720625B2 (en) Method for preparing molybdenum-bismuth-iron-containing composite oxide catalyst
JPS6340577B2 (en)
AU729717B2 (en) Process for production of prussic acid
US4036870A (en) Ammoxidation of alkanes
US4711867A (en) Catalytic composition
JPH0256937B2 (en)
US3525701A (en) Oxidation catalyst of an oxide composition of antimony,tin and copper
JP2520279B2 (en) Method for producing acrylonitrile
JPH0126738B2 (en)
EP0141797B1 (en) Catalysts for the oxidation and ammoxidation of olefins and their use making acrylonitrile
JP2640356B2 (en) Acrylonitrile manufacturing method
JPH0424096B2 (en)
US4565658A (en) Oxidation and ammoxidation process
JPH0259046A (en) Production method of molybdenum-containing ammoxidation catalyst
JPS5915019B2 (en) catalyst composition
JP3720626B2 (en) Method for preparing molybdenum-bismuth-tellurium-containing composite oxide catalyst