[go: up one dir, main page]

JPH0255330A - Production of oriented film for liquid crystal - Google Patents

Production of oriented film for liquid crystal

Info

Publication number
JPH0255330A
JPH0255330A JP20762488A JP20762488A JPH0255330A JP H0255330 A JPH0255330 A JP H0255330A JP 20762488 A JP20762488 A JP 20762488A JP 20762488 A JP20762488 A JP 20762488A JP H0255330 A JPH0255330 A JP H0255330A
Authority
JP
Japan
Prior art keywords
liquid crystal
resin layer
substrate
crystal molecules
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20762488A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamazoe
山添 博司
Shingo Fujita
晋吾 藤田
Shirou Sumida
祉朗 炭田
Isao Ota
勲夫 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20762488A priority Critical patent/JPH0255330A/en
Publication of JPH0255330A publication Critical patent/JPH0255330A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To produce the oriented film for liquid crystal molecules having high reproducibility and reliability at a low cost by irradiating a substrate having a resin layer on the main surface with collimated beams of UV light at a prescribed angle with the substrate. CONSTITUTION:Certain microorder is needed at about the molecular level on the surface of the oriented film at the boundary of a device wall in order to orient the liquid crystal molecules and this order is the case in which the groups interacting with the liquid crystal molecules are regularly arrayed or the recessed and projecting shapes are regular. The orientation control power is eventually considered to be imposed on the liquid crystal molecules by a decrease in the free energy by a volume expelling effect. The substrate 4 having the resin layer 3 is, thereupon, irradiated with the collimated beams of the UV light at the prescribed angle alpha. Ruggedness is effectively provided to the resin layer 3 on the substrate 4 by creating the fine spacial distributions of the collimated beams of the UV light in such a manner, by which the liquid crystals are effectively oriented. A mask is used in tight contact with the resin layer 3 and the resin layer is thereafter rubbed to obtain the better effect. The high pretilt orientation is thereby obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高分子樹脂からなる液晶分子の配向膜の製法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing an alignment film for liquid crystal molecules made of a polymer resin.

従来の技術 液晶分子の配向膜は、液晶デイスプレィには必須のもの
である。
BACKGROUND OF THE INVENTION A liquid crystal molecule alignment film is essential for liquid crystal displays.

前記配向膜としては、無機質の斜方蒸着膜、ラビングさ
れた有機樹脂膜等が使われる(例えば、液晶エレクトロ
ニクスの基礎と応用、佐々木 昭夫編)。
As the alignment film, an inorganic obliquely deposited film, a rubbed organic resin film, or the like is used (for example, Basics and Applications of Liquid Crystal Electronics, edited by Akio Sasaki).

発明が解決しようとする課題 しかしながら、無機質の斜方蒸着膜については、装置が
比較的高価なこと、真空プロセスなのでプロセス・コス
トが高くつくことに難がある。
Problems to be Solved by the Invention However, the problem with obliquely deposited inorganic films is that the equipment is relatively expensive and the process cost is high because it is a vacuum process.

−aにラビング法が産業界では多用されているが、液晶
分子の捻り角の大きいモード、すなわちスーパー・ツィ
スティッド・ネマティック・モードでは、ラビング圧が
軽く、密度の高いラビングが必要となる。この条件を得
るためには、厳格な管理が必要となる。
The rubbing method is often used in industry for -a, but in a mode where the twist angle of liquid crystal molecules is large, that is, a super twisted nematic mode, a light rubbing pressure and high density rubbing are required. Strict management is required to achieve this condition.

さらに、スーパー・ツィスティッド・ネマティック・モ
ードを用いた大容量表示においては、液晶分子のプレ・
チルト角を大きくする必要がある。
Furthermore, in large-capacity displays using super twisted nematic mode, the pre-
It is necessary to increase the tilt angle.

今のところ、一致した考えは無いが、ブレ・チルト角と
しては、15°〜20°は欲しい。現在、配向膜材料と
して有機樹脂を用いた場合、ラビング法においては、再
現性と信頼性を考慮すると、約10゜が限度である。
There is no consensus at the moment, but I want a shake/tilt angle of 15° to 20°. Currently, when an organic resin is used as an alignment film material, the rubbing method has a maximum angle of about 10° in consideration of reproducibility and reliability.

課題を解決するための手段 本発明は前述のような課題を解決するために、樹脂層を
主面に有する基板に平行紫外線光を、前記樹脂層に所定
の角度に照射するような液晶用配向膜の製法を提出する
ものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an alignment method for liquid crystal in which a substrate having a resin layer on its main surface is irradiated with parallel ultraviolet light and said resin layer is irradiated at a predetermined angle. The method for manufacturing the membrane will be submitted.

本発明は前述のような課題を解決するために、樹脂層を
主面に有する基板に平行紫外線光を、前記樹脂層に所定
の角度に照射し、更に前記樹脂層をラビングするような
液晶用配向膜の製法をも提供するものである。
In order to solve the above-mentioned problems, the present invention provides a method for liquid crystal display in which a substrate having a resin layer on its main surface is irradiated with parallel ultraviolet light at a predetermined angle, and the resin layer is further rubbed. The present invention also provides a method for producing an alignment film.

また、本発明は前述のような課題を解決するために、前
に述べた平行紫外線光の照射において、照射強度の空間
的分布をマスクを用いて、変調することを特徴とする液
晶用配向膜の製法をも提供するものである。
Furthermore, in order to solve the above-mentioned problems, the present invention provides an alignment film for liquid crystal, characterized in that the spatial distribution of the irradiation intensity is modulated using a mask in the irradiation with the parallel ultraviolet light described above. It also provides a manufacturing method.

また、本発明は前述のような課題を解決するために、前
述のマスクは紫外線光に対して透明な基板の主面上の、
前記紫外線光を吸収する物質からなる薄膜にサンド・ブ
ラスト法、液体ホーニング法、研磨法によって傷を生起
させることによって得られることを特徴とする前述の様
な液晶用配向膜の製法を提供するものである。
In addition, in order to solve the above-mentioned problems, the present invention provides a method for using the above-mentioned mask on the main surface of a substrate that is transparent to ultraviolet light.
Provided is a method for producing an alignment film for a liquid crystal as described above, characterized in that it is obtained by creating scratches on a thin film made of a substance that absorbs ultraviolet light by a sand blasting method, a liquid honing method, or a polishing method. It is.

本発明は前述のような課題を解決するために、前述の平
行紫外線光がエキシマー・レーザーから得られることを
特徴とする前述の様な液晶用配向膜の製法を提供するも
のである。
In order to solve the above problems, the present invention provides a method for producing an alignment film for liquid crystal as described above, characterized in that the parallel ultraviolet light described above is obtained from an excimer laser.

作用 液晶分子を配向させるためには、器壁界面での液晶分子
を配向させる必要がある。このために、界面に通常、配
向膜が設けられる。配向膜の表面は、分子レベル程度に
ミクロなある秩序が必要なのは理解される。この秩序は
、液晶分子と相互作用する基が規則的に並んでいる場合
もあるし、凹凸形状が規則的であって、結果として体積
排除効果による自由エネルギーの減少により液晶分子に
配向規制力を課することもあると考えられている。
In order to align the working liquid crystal molecules, it is necessary to align the liquid crystal molecules at the vessel wall interface. For this purpose, an alignment film is usually provided at the interface. It is understood that the surface of the alignment film requires a certain degree of microscopic order on the molecular level. This order may be caused by the groups that interact with liquid crystal molecules being regularly arranged, or by having a regular uneven shape, which results in a decrease in free energy due to the volume exclusion effect, which exerts an alignment regulating force on liquid crystal molecules. It is believed that there may be charges.

本発明はこれらの配向メカニズムに関与していると考え
られる。
It is believed that the present invention is involved in these orientation mechanisms.

紫外光そのものにより、または紫外光によって発生した
励起された酸素原子またはオゾンによる樹脂層の分解、
あるいは紫外光による分子レベルでの構造の変化によっ
て、樹脂層の体積が変化しがちである。
decomposition of the resin layer by the ultraviolet light itself or by excited oxygen atoms or ozone generated by the ultraviolet light;
Alternatively, the volume of the resin layer tends to change due to structural changes at the molecular level caused by ultraviolet light.

紫外光そのものが強力な場合、樹脂層の分子の双極子と
作用し、ある配向をさせようとする力が働くと想定され
る。
If the ultraviolet light itself is strong, it is assumed that it acts on the dipoles of the molecules in the resin layer, exerting a force that tends to cause a certain orientation.

本発明はこれらの事に基礎を置いている。しかしこれら
の証拠を明かにすることは難しい。エキシマー・レーザ
ーを使った実験では、観察の結果、樹脂層の体積の変化
が起こっていることは確実である。このことは顕微鏡に
よる観察により、確かめられる。
The invention is based on these considerations. However, revealing this evidence is difficult. In experiments using an excimer laser, it is certain that the volume of the resin layer changes as a result of observation. This can be confirmed by observation using a microscope.

平行紫外光の微細な空間的分布を作ることによって、基
板上の有機樹脂層に、例えばより効果的に凹凸が付けら
れるだろうことは、確実である。
It is certain that by creating a fine spatial distribution of collimated ultraviolet light, the organic resin layer on the substrate, for example, will be more effectively textured.

このような時、液晶分子は効果的に配向した。また、照
射角度や紫外光光源を選ぶことにより、また、場合によ
ってはこの後ラビングすることにより、高ブレ・チルト
配向が実現出来た。
At such times, the liquid crystal molecules were effectively aligned. In addition, by selecting the irradiation angle and the ultraviolet light source, and in some cases by performing rubbing after this, it was possible to achieve high shake/tilt alignment.

前記平行紫外光の微細な空間的分布は、多分、光学系自
身に由来する光源の性質を利用するか、より効果的には
、基板上の有機樹脂層に密着させたマスクを利用する。
The fine spatial distribution of the parallel ultraviolet light may be achieved by utilizing the properties of the light source originating from the optical system itself, or more effectively by utilizing a mask that is in close contact with the organic resin layer on the substrate.

このような微細なパターンのマスクは、人手が困難であ
る。はぼ、1ミクロン口に、数個以上の白パターンが必
要である。これは、例えば、以下の様にして得ることが
出来る。合成石英ブランクスに約500オングストロー
ムの膜厚のクロム層を形成し、重曹粒子を使ったサンド
・ブラスト法によって、または液体ホーニング法によっ
て、または酸化クロム粒子等を使った研磨法により無数
の傷を前記クロム層に発生させ、結果的に無数の白パタ
ーンを有するマスクを得る。サンド・ブラスト法や液体
ホーニング法においては、粒子の照射角度を変えること
により、平均的な白パターンの形状が変化し、ひいては
液晶分子の配向性やプレ・チルト角に影響を与える。
Masks with such fine patterns are difficult to make manually. Several or more white patterns are required in the 1 micron opening. This can be obtained, for example, as follows. A chromium layer with a thickness of approximately 500 angstroms is formed on a synthetic quartz blank, and countless scratches are removed by sand blasting using baking soda particles, liquid honing, or polishing using chromium oxide particles. generated in the chromium layer, resulting in a mask with countless white patterns. In sand blasting and liquid honing, changing the particle irradiation angle changes the shape of the average white pattern, which in turn affects the orientation and pre-tilt angle of liquid crystal molecules.

紫外線光の光源としては、0.2ミクロン以下の短波長
の光が容易に得られること、照射エネルギーが比較的大
きいこと、平行光が得易いこと、大面積の一括照射が可
能なこと等から、エキシマー・レーザーが最も望ましい
As a light source for ultraviolet light, it is possible to easily obtain light with a short wavelength of 0.2 microns or less, the irradiation energy is relatively large, it is easy to obtain parallel light, and it is possible to irradiate a large area at once. , excimer lasers are most preferred.

本発明による方法は、真空を必要とせず、この点、設備
費は小さい。
The method according to the invention does not require a vacuum and, in this respect, the equipment costs are low.

また、従来の繊維等による樹脂膜のラビングにおいては
、ネマチック液晶分子のプレ・チルトを若干、水平より
立てようとすると、非情に微妙な条件設定と、樹脂膜材
料の選定が必要である。本発明による方法では、従来よ
りプレ・チルト角を大きく出来、再現性も向上し、また
樹脂材料の選択の自由度も広がった。
Furthermore, in conventional rubbing of a resin film with fibers, etc., if the pre-tilt of the nematic liquid crystal molecules is to be raised slightly from the horizontal level, it is necessary to set extremely delicate conditions and to select the resin film material. With the method according to the present invention, the pre-tilt angle can be made larger than before, the reproducibility is improved, and the degree of freedom in selecting the resin material is expanded.

また、本発明において、紫外線光照射の後、ラビングす
るのは、基板近傍の液晶分子の並びの方向性を強めるた
めのもので、従来に比べて、より大きなプレ・チルト角
とか、安定性等の本発明の効果は損なわれない。
In addition, in the present invention, the purpose of rubbing after irradiation with ultraviolet light is to strengthen the directionality of the arrangement of liquid crystal molecules near the substrate. The effects of the present invention are not impaired.

実施例 以下、本発明の一実施例について、図面を用いて説明す
る。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

本実施例では樹脂としてポリイミド樹脂(日本合成ゴム
株式会社製JIB−1、溶剤タイプ)、ポリアミック酸
樹脂(日産化学株式会社製5E−4110、溶剤タイプ
)を用いた。ポリイミド樹脂としては、ネマティック液
晶に対して、低ブレ・チルト角用のものであって、レジ
ンにおいて、もともとポリイミド・オリゴマーが含まれ
ているものである。ポリアミック酸樹脂でも、所定の加
熱処理により、イミド化は可能であり、本実施例ではイ
ミド化が可能な熱処理をした。
In this example, polyimide resin (JIB-1, manufactured by Japan Synthetic Rubber Co., Ltd., solvent type) and polyamic acid resin (5E-4110, manufactured by Nissan Chemical Co., Ltd., solvent type) were used as the resins. The polyimide resin is used for low shake/tilt angles for nematic liquid crystals, and the resin originally contains polyimide oligomers. Even polyamic acid resins can be imidized by a predetermined heat treatment, and in this example, a heat treatment capable of imidization was performed.

まず、ポリイミド樹脂とポリアミック酸樹脂を溶剤で粘
度調整をし、スピナーでガラス基板上に回転、塗布した
。これを所定の温度で熱処理した。
First, the viscosity of polyimide resin and polyamic acid resin was adjusted using a solvent, and the mixture was spun and coated onto a glass substrate using a spinner. This was heat-treated at a predetermined temperature.

かくて、ポリイミド樹脂層を主面上に有するガラス基板
を得た。
In this way, a glass substrate having a polyimide resin layer on the main surface was obtained.

小型の紫外線照射装置を作製した。第1図にこの装置の
概略図を示す。第、1図において、1はラムダ・フィジ
ク社製、エキシマー・レーザー(タイプ、EMG 10
1−104  MSC)であって、アルゴン原子とフッ
素原子のエキシマ−を使うことにより、0.193ミク
ロンの平行紫外光を取り出せるものである。2は基板に
密着したマスク、3は樹脂層、4は基板である。同図に
おいて、aは基板の法線と紫外線光とのなす角である。
We created a small ultraviolet irradiation device. FIG. 1 shows a schematic diagram of this device. In Fig. 1, 1 is an excimer laser (type, EMG 10) made by Lambda Physik.
1-104 MSC), which can extract parallel ultraviolet light of 0.193 microns by using an excimer of argon atoms and fluorine atoms. 2 is a mask in close contact with the substrate, 3 is a resin layer, and 4 is a substrate. In the figure, a is the angle between the normal line of the substrate and the ultraviolet light.

(実施例1) 第1図の如く、ただしaはOoとし、マスク2は省き、
直線紫外光を、ポリイミド樹脂層を主面上に有するガラ
ス基板に、すなわちポリイミド樹脂層に10秒照射した
。レーザーのパルス発振の周波数は50ヘルツとした。
(Example 1) As shown in Fig. 1, a is Oo, mask 2 is omitted,
A glass substrate having a polyimide resin layer on its main surface, that is, the polyimide resin layer, was irradiated with linear ultraviolet light for 10 seconds. The frequency of laser pulse oscillation was 50 hertz.

次に、通常の方法で、レーヨン布を使って軽いラビング
を行った。
Next, light rubbing was performed using a rayon cloth in the usual manner.

この様な基板2枚を、液晶分子がホモジニアス配向にな
るように貼り合わせ、液晶を注入し、液晶パネルを得た
。磁場法によるプレ・チルト測定の結果、12〜13°
のプレ・チルトが得られた。実際のパネルにおいても、
従来に比べて液晶分子のツイストにおける捻れ安定性は
向上した。
Two such substrates were bonded together so that the liquid crystal molecules were homogeneously aligned, and liquid crystal was injected to obtain a liquid crystal panel. As a result of pre-tilt measurement using the magnetic field method, it was 12 to 13 degrees.
A pre-tilt of Even in the actual panel,
The twisting stability of liquid crystal molecules has been improved compared to the conventional method.

(実施例2) 実施例1の如く、紫外光を照射した。ただし、第1図に
おいて、aを40°とした。この場合には、ラビングは
行わなかった。
(Example 2) As in Example 1, ultraviolet light was irradiated. However, in FIG. 1, a is set to 40°. In this case, no rubbing was performed.

実施例1と同様のプレ・チルト測定の結果、プレ・チル
トは15°以上であることが分かった。実際のスーパー
・ツィスティッド・ネマチック・パネル(STNパネル
)においては、簡単な検討の結果は総合的に特性が向上
することを示唆している。
As a result of the same pre-tilt measurement as in Example 1, it was found that the pre-tilt was 15° or more. In actual super twisted nematic panels (STN panels), the results of a simple study suggest that the properties are improved overall.

(実施例3) 前記マスクを以下の如く、作製した。研磨された合成石
英板を入手した。まず、約500オングストロームの膜
厚のクロムを前記合成石英板の上に形成した。
(Example 3) The mask was produced as follows. I obtained a polished synthetic quartz plate. First, a chromium film having a thickness of about 500 angstroms was formed on the synthetic quartz plate.

このクロム層に重曹粒子を使ったサンド・ブラスト法に
より、無数の傷を付けた。第2図にサンド・ブラスト法
を行う装置の概略図を示す。11は高圧空気を送るパイ
プ、12は重曹粒子を入れた容器、13は粒子の吹き出
し口、14はクロム層、15は基板であり、またbは粒
子の吹き出し方向と基板の法線とのなす角である。
Numerous scratches were created on this chromium layer by sand blasting using baking soda particles. FIG. 2 shows a schematic diagram of an apparatus for performing sand blasting. 11 is a pipe for sending high-pressure air, 12 is a container containing baking soda particles, 13 is a particle outlet, 14 is a chromium layer, 15 is a substrate, and b is the relationship between the particle blowing direction and the normal to the substrate. It is a corner.

本実施例では、第2図すは0°とした。In this example, the angle in FIG. 2 was set to 0°.

つぎに実施例1の如く、エキシマー・レーザーによって
、ただしマスクを用いて、このマスクのクロムの面を樹
脂層に密着させて、樹脂層に紫外光を照射した。第1図
において、角度aはOo及び30°のもの、2条件につ
いて試みた。
Next, as in Example 1, the resin layer was irradiated with ultraviolet light using an excimer laser, but using a mask with the chrome surface of the mask in close contact with the resin layer. In FIG. 1, two conditions were tested for angle a: Oo and 30°.

この後、通常のラビングを、樹脂層にラビング強度を小
さくして行った。
Thereafter, the resin layer was subjected to normal rubbing at a low rubbing intensity.

液晶パネルを作製し、液晶分子のプレ・チルト角を測定
したところ、その値は15°〜30°の間にあり、これ
に至る諸条件に依存していた。再現性は十分、保証され
ていた。
When a liquid crystal panel was manufactured and the pre-tilt angle of the liquid crystal molecules was measured, the value was between 15° and 30°, and it depended on various conditions leading to this value. Reproducibility was sufficient and guaranteed.

STNパネルにおいては、緒特性は優れたものであった
The STN panel had excellent properties.

(実施例4) 実施例3の如く、マスクを作製した。ただし、重曹粒子
をクロム面に対して、第2図においてbが約70°にな
るようにした。
(Example 4) A mask was produced as in Example 3. However, the angle b of the baking soda particles was approximately 70° in FIG. 2 with respect to the chromium surface.

つぎに実施例1の如く、エキシマー・レーザーによって
、ただしマスクを用いて、このマスクのクロムの面を樹
脂層に密着させて、樹脂層に紫外光を照射した。第1図
において、角度aはOo及び30’のもの、2条件につ
いて試みた。
Next, as in Example 1, the resin layer was irradiated with ultraviolet light using an excimer laser, but using a mask with the chrome surface of the mask in close contact with the resin layer. In FIG. 1, two conditions were tested for angle a: Oo and 30'.

液晶パネルを作製し、液晶分子のプレ・チルト角を測定
したところ、その値は15°〜30°の間にあり、これ
に至る諸条件に依存していた。再現性は十分、保証され
ていた。
When a liquid crystal panel was manufactured and the pre-tilt angle of the liquid crystal molecules was measured, the value was between 15° and 30°, and it depended on various conditions leading to this value. Reproducibility was sufficient and guaranteed.

STNパネルにおいては、緒特性は優れたものであった
The STN panel had excellent properties.

(実施例5) マスクを以下のように作製した。実施例3の様に、合成
石英板にクロムを形成し、1ミクロン以下の粒径のアル
ミナを使った液体ホーニング、または酸化クロムを使っ
た研磨により、前記クロムに無数の傷を生起させた。こ
のとき、液体ホーニングの場合には、粒子の方向とクロ
ム面の法線とのなす角度については、考慮を払った。ま
た、研磨の場合には、傷が方向性を有する条件と、そう
でない場合とについて検討を加えた。
(Example 5) A mask was produced as follows. As in Example 3, chromium was formed on a synthetic quartz plate, and numerous scratches were created on the chromium by liquid honing using alumina with a particle size of 1 micron or less or polishing using chromium oxide. At this time, in the case of liquid honing, consideration was given to the angle between the direction of the particles and the normal to the chromium surface. In addition, in the case of polishing, we investigated conditions in which the scratches have directionality and cases in which they do not.

このマスクを用いて、実施例3、実施例4と同様の試み
をなした。
Using this mask, attempts similar to those in Examples 3 and 4 were made.

結果は総合的に判断して、優れたものであった。Overall, the results were excellent.

発明の効果 以上本発明は液晶分子配向用樹脂膜を得るための方法を
提供するものであり、産業上の価値は大なるものがある
Effects of the Invention The present invention provides a method for obtaining a resin film for aligning liquid crystal molecules, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は樹脂層に平行紫外線を照射するための装置の概
略構成図、第2図はサンド・ブラスト法を行う装置の概
略構成図である。 1・・・・・・エキシマー・レーザー、2・・・・・・
基板に密着したマスク、3・・・・・・樹脂層、4・・
・・・・基板、11・・・・・・高圧空気を送るパイプ
、12・・・・・・重曹粒子を入れた容器、13・・・
・・・粒子の吹き出し口、14・・・・・・クロム層、
15・・・・・・基板。
FIG. 1 is a schematic diagram of an apparatus for irradiating a resin layer with parallel ultraviolet rays, and FIG. 2 is a schematic diagram of an apparatus for performing sand blasting. 1...Excimer laser, 2...
Mask in close contact with the substrate, 3...Resin layer, 4...
... Substrate, 11 ... Pipe for sending high-pressure air, 12 ... Container containing baking soda particles, 13 ...
...Particle outlet, 14...Chromium layer,
15... Board.

Claims (5)

【特許請求の範囲】[Claims] (1)樹脂層を主面に有する基板に平行紫外線光を、前
記基板に所定の角度に照射することを特徴とする液晶用
配向膜の製法。
(1) A method for producing an alignment film for a liquid crystal, which comprises irradiating a substrate having a resin layer on its main surface with parallel ultraviolet light at a predetermined angle.
(2)樹脂層を主面に有する基板に平行紫外線光を、前
記樹脂層に所定の角度に照射し、更に前記樹脂層をラビ
ングすることを特徴とする液晶用配向膜の製法。
(2) A method for producing an alignment film for a liquid crystal, which comprises irradiating a substrate having a resin layer on its main surface with parallel ultraviolet light at a predetermined angle, and then rubbing the resin layer.
(3)平行紫外線光の照射強度の空間的分布をマスクを
用いて、変調することを特徴とする請求項(1)または
(2)のいずれかに記載の液晶用配向膜の製法。
(3) The method for producing an alignment film for a liquid crystal according to claim 1, wherein the spatial distribution of the irradiation intensity of the parallel ultraviolet light is modulated using a mask.
(4)マスクは紫外線光に対して透明な基板の主面上の
、前記紫外線光を吸収する物質からなる薄膜にサンド・
ブラスト法、液体ホーニング法、研磨法によって傷を生
起させることによっていることを特徴とする請求項(1
)または(2)のいずれかに記載の液晶用配向膜の製法
(4) The mask is a thin film made of a substance that absorbs ultraviolet light on the main surface of a substrate that is transparent to ultraviolet light.
Claim (1) characterized in that the scratches are caused by a blasting method, a liquid honing method, or a polishing method.
) or (2), the method for producing an alignment film for liquid crystal.
(5)平行紫外線光がエキシマー・レーザーから得られ
ることを特徴とする請求項(1)または(2)のいずれ
かに記載の液晶用配向膜の製法。
(5) The method for producing an alignment film for liquid crystal according to claim 1 or 2, wherein the parallel ultraviolet light is obtained from an excimer laser.
JP20762488A 1988-08-22 1988-08-22 Production of oriented film for liquid crystal Pending JPH0255330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20762488A JPH0255330A (en) 1988-08-22 1988-08-22 Production of oriented film for liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20762488A JPH0255330A (en) 1988-08-22 1988-08-22 Production of oriented film for liquid crystal

Publications (1)

Publication Number Publication Date
JPH0255330A true JPH0255330A (en) 1990-02-23

Family

ID=16542879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20762488A Pending JPH0255330A (en) 1988-08-22 1988-08-22 Production of oriented film for liquid crystal

Country Status (1)

Country Link
JP (1) JPH0255330A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613037A2 (en) * 1993-01-29 1994-08-31 Sharp Kabushiki Kaisha A liquid crystal display apparatus,a method for producing the same,and a substrate
EP0684500A3 (en) * 1994-05-27 1996-07-24 Sharp Kk Liquid crystal display device, method for producing the same, and apparatus for producing the same.
US5579141A (en) * 1993-07-23 1996-11-26 Sharp Kabushiki Kaisha Liquid crystal display apparatus having regions with different pretilt angles
US5594570A (en) * 1993-07-30 1997-01-14 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
US5627667A (en) * 1993-01-29 1997-05-06 Sharp Kabushiki Kaisha Liquid crystal display apparatus, a method for producing the same, and a substrate
FR2743429A1 (en) * 1996-01-09 1997-07-11 Lg Electronics Inc METHOD FOR CONTROLLING THE DIRECTION OF THE PRE-ORIENTATION ANGLE IN A LIQUID CRYSTAL CELL
US5666178A (en) * 1993-07-30 1997-09-09 Sharp Kabushiki Kaisha Liquid crystal display apparatus having plural regions of different aligning conditions and method for producing the same
US5838407A (en) * 1991-07-26 1998-11-17 Rolic Ag Liquid crystal display cells
US6191836B1 (en) 1996-11-07 2001-02-20 Lg Philips Lcd, Co., Ltd. Method for fabricating a liquid crystal cell
US6292296B1 (en) 1997-05-28 2001-09-18 Lg. Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US6383579B1 (en) 1999-04-21 2002-05-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6399165B1 (en) 1997-11-21 2002-06-04 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6479218B1 (en) 1999-10-14 2002-11-12 Lg Philips Lcd Co., Ltd Method for manufacturing multi-domain liquid crystal cell
US6764724B1 (en) 1999-03-25 2004-07-20 Lg.Philips Lcd Co., Ltd. Alignment layer for a liquid crystal display device
US6770335B2 (en) 2000-10-28 2004-08-03 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display device and method for fabricating the same with said materials
US6793987B2 (en) 2000-10-28 2004-09-21 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display fabricated with such photoalignment materials
US6900868B2 (en) 1998-07-07 2005-05-31 Fujitsu Display Technologies Corporation Liquid crystal display device
US7061679B1 (en) 1998-05-27 2006-06-13 Lg. Philips Lcd Co., Ltd. Light irradiating device
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device
US7615261B2 (en) 2004-12-30 2009-11-10 Lg Display Co., Ltd. Method of forming alignment layer in liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138713A (en) * 1980-04-01 1981-10-29 Dainippon Printing Co Ltd Orienting substrate for liquid crystal display and its manufacture
JPS61208763A (en) * 1985-03-13 1986-09-17 ソニー株式会社 Electronic component and manufacture thereof
JPS6214494A (en) * 1985-07-12 1987-01-23 日本電池株式会社 Ultraviolet laser irradiation
JPS62280720A (en) * 1986-05-29 1987-12-05 Seiko Epson Corp Manufacturing method of liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138713A (en) * 1980-04-01 1981-10-29 Dainippon Printing Co Ltd Orienting substrate for liquid crystal display and its manufacture
JPS61208763A (en) * 1985-03-13 1986-09-17 ソニー株式会社 Electronic component and manufacture thereof
JPS6214494A (en) * 1985-07-12 1987-01-23 日本電池株式会社 Ultraviolet laser irradiation
JPS62280720A (en) * 1986-05-29 1987-12-05 Seiko Epson Corp Manufacturing method of liquid crystal display device

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838407A (en) * 1991-07-26 1998-11-17 Rolic Ag Liquid crystal display cells
US5657102A (en) * 1993-01-29 1997-08-12 Sharp Kabushiki Kaisha Liquid crystal display apparatus, a method for producing the same, and a substrate having an alignment layer with different degrees of roughness
EP0613037A3 (en) * 1993-01-29 1994-11-02 Sharp Kk A liquid crystal display apparatus,a method for producing the same,and a substrate.
EP0977078A3 (en) * 1993-01-29 2000-03-08 Sharp Kabushiki Kaisha A method of manufacturing a liquid crystal display apparatus
EP0977078A2 (en) * 1993-01-29 2000-02-02 Sharp Kabushiki Kaisha A method of manufacturing a liquid crystal display apparatus
EP0613037A2 (en) * 1993-01-29 1994-08-31 Sharp Kabushiki Kaisha A liquid crystal display apparatus,a method for producing the same,and a substrate
US5627667A (en) * 1993-01-29 1997-05-06 Sharp Kabushiki Kaisha Liquid crystal display apparatus, a method for producing the same, and a substrate
US5691792A (en) * 1993-01-29 1997-11-25 Sharp Kabushiki Kaisha Method for producing a liquid crystal display apparatus by irradiating an aligning film with light to reduce pretilt angles of liquid crystal molecules thereof
US5579141A (en) * 1993-07-23 1996-11-26 Sharp Kabushiki Kaisha Liquid crystal display apparatus having regions with different pretilt angles
US6013335A (en) * 1993-07-30 2000-01-11 Sharp Kabushiki Kaisha Liquid crystal display apparatus and method for processing the same
US5689322A (en) * 1993-07-30 1997-11-18 Sharp Kabushiki Kaisha Liquid crystal display device having regions with different twist angles
US5652634A (en) * 1993-07-30 1997-07-29 Sharp Kabushiki Kaisha Multiple domain liquid crystal display device with particular reference orientation directions and method for producing the same
US5666178A (en) * 1993-07-30 1997-09-09 Sharp Kabushiki Kaisha Liquid crystal display apparatus having plural regions of different aligning conditions and method for producing the same
US5855968A (en) * 1993-07-30 1999-01-05 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
US5594570A (en) * 1993-07-30 1997-01-14 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
EP0684500A3 (en) * 1994-05-27 1996-07-24 Sharp Kk Liquid crystal display device, method for producing the same, and apparatus for producing the same.
US5604615A (en) * 1994-05-27 1997-02-18 Sharp Kabushiki Kaisha Liquid crystal display device and methods for producing same with alignment layer having new bond formation or bond cleavage reaction of molecular chains by light irradiation
FR2743429A1 (en) * 1996-01-09 1997-07-11 Lg Electronics Inc METHOD FOR CONTROLLING THE DIRECTION OF THE PRE-ORIENTATION ANGLE IN A LIQUID CRYSTAL CELL
US7145618B2 (en) 1996-01-09 2006-12-05 Lg.Philips Lcd Co., Ltd Method for controlling pretilt angle direction in a liquid crystal cell
US6226066B1 (en) 1996-01-09 2001-05-01 Lg. Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US6879363B2 (en) 1996-01-09 2005-04-12 Lg.Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US6633355B2 (en) 1996-01-09 2003-10-14 Lg. Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US6433850B2 (en) 1996-01-09 2002-08-13 Lg. Phillips Lcd Co., Ltd. Pretilt angle direction in a liquid crystal cell
US6417905B1 (en) 1996-11-07 2002-07-09 Lg. Philips Lcd Co., Ltd. Method for fabricating a liquid crystal cell
US6721025B2 (en) 1996-11-07 2004-04-13 Lg.Philips Lcd Co., Ltd Method for fabricating a liquid crystal cell
US6462797B1 (en) 1996-11-07 2002-10-08 Lg. Philips Lcd Co., Ltd. Method for fabricating a liquid crystal cell
US6191836B1 (en) 1996-11-07 2001-02-20 Lg Philips Lcd, Co., Ltd. Method for fabricating a liquid crystal cell
US6292296B1 (en) 1997-05-28 2001-09-18 Lg. Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US6639720B2 (en) 1997-05-28 2003-10-28 Lg.Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US7016112B2 (en) 1997-05-28 2006-03-21 Lg.Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US7911696B1 (en) 1997-05-28 2011-03-22 Lg Display Co., Ltd. Large scale polarizer and polarizer system employing it
US7016113B2 (en) 1997-05-28 2006-03-21 Lg.Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US6399165B1 (en) 1997-11-21 2002-06-04 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6572939B2 (en) 1997-11-21 2003-06-03 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
US7061679B1 (en) 1998-05-27 2006-06-13 Lg. Philips Lcd Co., Ltd. Light irradiating device
US6900868B2 (en) 1998-07-07 2005-05-31 Fujitsu Display Technologies Corporation Liquid crystal display device
US7420638B2 (en) * 1998-07-07 2008-09-02 Sharp Kabushiki Kaisha Liquid crystal display device with mask for alignment
US7608211B2 (en) 1999-03-25 2009-10-27 Lg Display Co., Ltd. Method of making a liquid crystal display device
US7901605B2 (en) 1999-03-25 2011-03-08 Lg Display Co., Ltd. Method of forming an alignment layer for liquid crystal display device
US6764724B1 (en) 1999-03-25 2004-07-20 Lg.Philips Lcd Co., Ltd. Alignment layer for a liquid crystal display device
US7014892B2 (en) 1999-03-25 2006-03-21 Lg.Philips Lcd Co., Ltd. Alignment layer for a liquid crystal display device
US6582784B2 (en) 1999-04-21 2003-06-24 Lg.Philips Lcd Co., Ltd. Liquid crystal display
US6383579B1 (en) 1999-04-21 2002-05-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6479218B1 (en) 1999-10-14 2002-11-12 Lg Philips Lcd Co., Ltd Method for manufacturing multi-domain liquid crystal cell
US6787292B2 (en) 1999-10-14 2004-09-07 Lg.Philips Lcd Co., Ltd. Method for manufacturing multi-domain liquid crystal cell
US7083833B2 (en) 2000-10-28 2006-08-01 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display fabricated with such photoalignment materials
US6793987B2 (en) 2000-10-28 2004-09-21 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display fabricated with such photoalignment materials
US6770335B2 (en) 2000-10-28 2004-08-03 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display device and method for fabricating the same with said materials
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device
US7615261B2 (en) 2004-12-30 2009-11-10 Lg Display Co., Ltd. Method of forming alignment layer in liquid crystal display device

Similar Documents

Publication Publication Date Title
JPH0255330A (en) Production of oriented film for liquid crystal
US5882238A (en) Method for manufacturing bend-aligned liquid crystal cell using light
JP3926874B2 (en) Liquid crystal cell manufacturing method and liquid crystal cell
KR100222355B1 (en) A method for controlling pretilt direction in a crystal cell
US6191836B1 (en) Method for fabricating a liquid crystal cell
US6226066B1 (en) Method for controlling pretilt angle direction in a liquid crystal cell
KR19980020832A (en) Manufacturing method of liquid crystal aligning film by magnetic field treatment
US6312875B1 (en) Method for manufacturing a multidomain liquid crystal display panel
KR100259258B1 (en) Liquid crystal display device
KR20020064295A (en) Liquid crystal display element, optically anisotropic film, and methods for manufacturing them
JP3054076B2 (en) Manufacturing method of liquid crystal display element
KR100357214B1 (en) Liquid crystal display device
JP4546586B2 (en) Liquid crystal display element and manufacturing method thereof
JPH1062788A (en) Liquid crystal display element
JPH11133431A (en) Alignment method of high-polymer thin film, alignment method of liquid crystal using high-polymer alignment layer and liquid crystal display element including high-polymer alignment layer
KR100201571B1 (en) The method of manufacturing ecb mode liquid crystal cell
CN101082724A (en) Liquid crystal display module manufacturing method
JP2000227595A (en) Production of liquid crystal display device
KR100229198B1 (en) Pretilt Determination Method Using Partially Polarized Light and Manufacturing Method of Liquid Crystal Cell Using the Same
JP4907007B2 (en) Photoreactive polymer liquid crystal for birefringent film and birefringent film using the same
JPH0618884A (en) Plane orientation method of cholesteric liquid crystal having no disclination
JPH06337418A (en) Liquid crystal electro-optical device
KR100298330B1 (en) Liquid Crystal Display Manufacturing Method
KR100455650B1 (en) Liquid Crystal Alignment
CN1188901A (en) Manufacture of liquid crystal display using polarized storage film as alignment film